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ABSTRACT

Vibrational spectroscopy is an ideal tool to probe the complex structure of ice, water and

other aqueous systems. However, the interpretation of experimental spectra is usually not

straightforward, due to complex spectral features associated with different bonding config-

urations present in these systems. Therefore, accurate theoretical predictions are required

to assign spectral signatures to specific structural properties and hence to fully exploit the

potential of vibrational spectroscopies. My dissertation focused on the development and

applications of first-principles electronic structure methods for the simulation of vibrational

spectra of water and aqueous systems, as well as of their basic electronic properties.

In particular, I focused on the calculation of response properties of aqueous systems in

the presence of external electric fields, including the computation of dipole and quadrupole

moments and polarizabilities, which were then used to simulate vibrational spectra, e.g.

Raman and sum frequency generation (SFG) spectra. I developed linear response and fi-

nite field methods based on electronic structure calculations within density functional theory

(DFT), which were applied to accurate and efficient evaluations of the electric field response,

and coupled to large-scale first-principles electronic structure and molecular dynamics (MD)

simulations. Our implementation enabled on-the-fly calculations of polarizabilities in first-

principles MD (FPMD) simulations, which are necessary to compute vibrational spectra us-

ing time correlation functions (TCF) formulations. In addition, in this dissertation I provide

the first ab initio implementation of SFG calculations, inclusive of quadrupole contributions

as well as of electric field gradients at the interface.

I present the first calculation of the Raman spectra of liquid water using FPMD simula-

tions. Interesting signatures were found in the low frequency region of the spectra, indicat-

ing intermolecular charge fluctuations that accompany hydrogen bond stretching vibrations.

Furthermore I applied the newly developed method for the calculation of SFG spectra, a sur-

face specific spectroscopic probe, to the investigation of the ice Ih basal surfaces. Note that

all the methods developed here, although only applied to aqueous systems, are of general

xiv



applicability to semiconductors and insulators.

Finally I present investigations of the vibrational and electronic properties of aqueous

sulfuric acid systems, including sulfate-water clusters and sulfuric acid solutions. Our results

on the energy alignment between sulfate and water states bear important implications on the

relative reactivities of ions and water in electrochemical environment used in water splitting

reactions.
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CHAPTER 1

INTRODUCTION

Despite a long history in the study of water and other aqueous solutions, several of their

properties are not yet well understood because of the subtle and complex interactions between

water molecules and between water and solutes [15]. These interactions are determined by

the interplay of hydrogen bonding [16], nuclear quantum effects [17–19], van der Waals

interactions [20, 21], charge transfer effects [22–24] and overall many-body electronic and

nuclear interactions.

Vibrational spectroscopies, notably infrared and Raman, have been widely used to inves-

tigate water and aqueous solutions and to unravel their complex structure through analyses

of vibrational signatures [16, 25, 26]. However infrared and Raman signals are not neces-

sarily surface sensitive and hence may not be useful in understanding and determining the

surface and interface properties of aqueous systems. Nonlinear sum-frequency generation

(SFG) vibrational spectroscopy [27] is instead surface sensitive and has recently enabled a

series of studies of aqueous surfaces [7, 28–30]. However, due to the complexity of vibrational

spectral features, in-depth theoretical studies and simulations are necessary to help interpret

SFG spectra in particular, and in general of IR and Raman signals [26].

First-principles molecular dynamics (FPMD) simulations provide a straightforward way

to simulate vibrational spectra of disordered systems, e.g. liquid water, through the compu-

tation of time correlation function (TCF) [31]. The FPMD approach combines the molecular

dynamics (MD) technique to obtain atomic trajectories with density functional theory (DFT)

calculations of forces acting on atoms at each MD step [32]. For aqueous systems, this ap-

proach has proved very promising in tackling a wide range of problems, including covalent

bond breaking and formation [33, 34], infrared vibrational excitations [23, 35] and dielectric

response [36, 37] in water, as well as water at high temperature and high pressure [37–39].

Most FPMD carried out in the last two decades were based on the calculation of ground

state properties of isolated systems, e.g. in the absence of external fields. FPMD simulations
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for Raman and SFG spectra, which require electric field response calculations, have been

sparse so far [40–42], due to the lack of accurate and efficient ab initio methods to predict

the response to electric fields of complex, disordered systems. It is therefore highly desirable

to develop such methods and seamlessly integrate them with FPMD simulation software, so

as to efficiently compute Raman and SFG spectra from first principles.

Two formulations may be used to simulate condensed systems in the presence of the elec-

tric field from first principles: linear response and finite field methods. The linear response

approach based on density functional perturbation theory (DFPT) [43] treats the electric

field as a perturbation and response properties, e.g. polarizabilities, are computed by solving

the Sternheimer equation [44]. DFPT is general and may in principle be applied using any

energy functional. However in practice its applicability is limited to local or semilocal energy

functionals, due to algorithmic and technical difficulties in evaluating functional derivatives

of exchange and correlation potentials in the case of orbital-dependent density functional ap-

proximations, i.e. hybrid functionals [43]. Within the finite field approach, the presence of

an external electric field is treated in a non-perturbative manner, by introducing an electric

enthalpy functional [45], which is easily defined irrespective of the exchange correlation func-

tional used, whether semilocal or hybrid. However, the results of this approach suffer from

slow convergence with respect to the supercell size used in first-principles calculations, due

to computational difficulties involved in evaluating the polarization of condensed systems.

In this dissertation, I will present efficient formulations of DFPT and finite field ap-

proaches in conjunction with FPMD simulations, and their implementation in the massively

parallel, open source Qbox code [46, 47]. To improve the accuracy of the finite field approach,

a simple and accurate method for polarization calculations was developed, which is based on

maximally localized Wannier functions [48] and a so called refinement procedure originally

proposed by Stengel and Spaldin [49]. The method was also generalized to enable the accu-

rate evaluation of electric multipole moments, e.g. quadrupole moments, of molecules in the

condensed phase.
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The development and implementation DFPT and finite field methods have enabled the

first FPMD simulation of Raman spectra of liquid water, presented in this dissertation, where

I observed signatures of intermolecular charge fluctuations in the liquid, at low frequencies.

Building upon these methods, I then formulated a robust first-principles framework for the

simulation of SFG spectra, and performed the first ab initio simulation of SFG spectra of

ice surfaces. The capability of computing multipole moments in the condensed phase has

made possible the evaluation of higher-order quadruple contributions to the spectra, which

were not previously predicted from first principles. Our results provided guidance for the

interpretation of experimental spectra of surfaces and interfaces. In addition, our formulation

of FPMD simulations in an external field was used to study the dielectric properties of water

under high pressure and temperature, providing results with important implications for

carbon transport in the Earth’s mantle [37].

In addition to the vibrational properties of pure water, this dissertation presents studies

of the electronic properties of aqueous solutions, and of their implications for understand-

ing the reactivity of ions and water, whose properties are of interest in most chemical and

electrochemical reactions [50, 51]. I carried out FPMD simulations of sulfuric acid solutions,

using highly accurate hybrid functionals. In particular, I focused on the energy alignment be-

tween sulfate and water states, and on its implication for the mechanism of oxygen evolution

reactions in water splitting experiments [50, 51].

The rest of this dissertation is organized as follows: in Chapter 2, I summarize the basic

concepts of DFT and FPMD techniques and their application to the study of ground state

properties; the development and implementation of linear response and finite field methods

for ab initio calculations in the presence of electric fields are described in Chapter 3; results

on Raman spectra of liquid water are presented in Chapter 4; in Chapter 5, I present the

theoretical framework for SFG spectra calculations developed in this dissertation, as well as

its application to ice surfaces; results on structural, vibrational and electronic properties of

small sulfate water clusters and aqueous sulfuric acid solutions are presented in Chapter 6
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and Chapter 7, respectively; Chapter 8 summarizes and concludes the dissertation.
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CHAPTER 2

FIRST PRINCIPLES CALCULATIONS OF GROUND STATE

PROPERTIES

In this chapter, I will introduce the basic principles of density functional theory (DFT) and

first principles molecular dynamics (FPMD).

2.1 Density functional theory

Density functional theory (DFT) provides an exact description of the properties of an inter-

acting many-electron system through the Hohenberg-Kohn (HK) theorems [52]. The latter

states that ground and excited state properties of a system of interacting electrons under the

influence of an external potential can be derived from the ground state charge density of the

system, hence eliminating the need to evaluate the many-body wavefunction; the energy of

the interacting electronic system is a unique functional of its charge density. However, the

explicit form of such density functional is unknown, and approximate functionals are used in

practical implementations of DFT. In addition the minimization of the functional is recast

into the solution of a set of Schrödinger like equations for single particle orbitals using the

Kohn-Sham formulation of DFT [53], on which I will focus in the rest of this chapter.

2.1.1 The Schrödinger Equation

According to quantum mechanics, the ground state energy and wavefunction of an electronic

system is obtained by solving the time independent Schrödinger equation:

ĤΨ = EΨ, (2.1)

where Ĥ is the Hamiltonian operator, E is the electronic energy and Ψ is the wavefunction.

The Hamiltonian depends on the electronic and nuclear coordinates and spin variables. In
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most problems one adopts the so-called Born-Oppenheimer (BO) approximation to separate

the nuclear degrees of freedom from the electronic ones, given that the electronic mass is

much smaller than that of the nuclei and the nuclei may be considered at rest when one

computes the electronic wavefunction. Hereafter we adopt the BO approximation and we

only consider the electronic coordinate in Eq. 2.1.

For systems consisting of light elements for which relativistic effects can be neglected,

the Hamiltonian Ĥ can be written as:

Ĥ = T̂ + V̂ + Û , (2.2)

where T̂ is the kinetic energy of the electrons, V̂ is the external potential exerted by the nuclei

on the electrons and Û is the electron-electron interaction energy. The explicit expressions

of these three operators are:

T̂ = −
1

2

NE
∑

n

∇2, (2.3)

V̂ = −

NE
∑

n=1

NN
∑

i=1

Zi
|rn −Ri|

, (2.4)

Û =
1

2

∑

n<m

1

|rn − rm|
, (2.5)

where NE and NN are the number of electrons and nuclei in the system, ∇2 is the Laplacian

operator, rn is the position of the nth electron and Ri and Zi are the position and charge

of the ith nucleus, respectively. Solving Eq. 2.1 with Ĥ given by Eq. 2.2 is prohibitively

difficult for systems with more than two electrons [54].

2.1.2 Density Functional Theory and the Kohn-Sham Ansatz

Density functional theory seeks to find the ground state of interacting electrons by minimizing

an energy functional instead of solving Eq. 2.1. It is based on two theorems put forward in
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a seminal paper by Hohenberg and Kohn [52], which connect all the properties of a many-

electron system to its electron density ρ(r). The HK theorems state:

1. The external potential vext(r) acting on an interacting electronic gas is a unique func-

tional, within a constant, of the ground state electron density ρ(r). Thus ρ(r) uniquely

determines all properties of the system, including the many-electron wavefunction.

2. The total energy of an interacting electronic gas is a unique functional of the electron

density. The ground state energy is the variational global minimum of this unique

functional E[ρ].

Practical implementations of the HK theorems use the Kohn-Sham Ansatz [53], where

a system of NE interacting electrons is mapped onto a fictitious system of non-interacting

electrons with the same electron density. The wavefunction of this non-interacting system is

a Slater determinant constructed from the orbitals of the individual non-interacting electrons

{ψn}, which may be obtained by self-consistently solving a set of Schrödinger like Equations

called the Kohn-Sham equations.

The total electron density of the non-interacting system ρ(r) is:

ρ(r) =

NE
∑

n

ψ∗n(r)ψn(r). (2.6)

The total energy functional in terms of the electron density is:

EKS [ρ] = T [ρ] + Vext[ρ] + EH [ρ] + Exc[ρ] + EN , (2.7)

where the first four terms on the rhs are the kinetic, external potential, Hartree and exchange-

correlation (XC) energy functionals. The explicit form of the kinetic energy functional is

T [ρ] = −
1

2

NE
∑

n

∫

drψ∗n(r)∇
2ψn(r), (2.8)
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which is an implicit functional of the electron density ρ(r) since ψn(r) is a functional of ρ(r),

according to the first HK theorem. The external potential energy functional is:

Vext[ρ] = −

NN
∑

i=1

∫

drρ(r)
Zi

|r−Ri|
. (2.9)

The Hartree energy functional accounts for the Coulomb interaction between electrons:

EH [ρ] =
1

2

∫

drdr′
ρ(r)ρ(r′)

|r− r′|
. (2.10)

The only unknown term in Eq. 2.7 is the XC functional Exc[ρ], which will be discussed in

the next section. The term EN is the Coulomb interaction between nuclei:

EN =
1

2

∑

i<j

ZiZj
|Ri −Rj |

(2.11)

Using the second HK theorem, the ground state energy of the interacting electrons can

be obtained by minimizing the energy functional EKS [ρ] with respect to ρ. This requires

the functional derivatives of EKS [ρ] with respect to ψ∗n to be zero.

δ

(

EKS [ρ]− εn
∫

ψ∗nψndr

)

δψ∗n
=

(

δT [ρ]

δρ
+
δVext[ρ]

δρ
+
δEH [ρ]

δρ
+
δExc[ρ]

δρ
− ǫn

)

δρ

δψ∗n

=

(

−
1

2
∇2 + vext + vH + vxc − ǫn

)

ψn

= 0.

(2.12)

Here εn is a Lagrange multiplier used to ensure normalization of the wavefunctions and vext,

vH and vxc are the external, Hartree and XC potentials, respectively. The minimization

of EKS [ρ] can be recast into the solution of Schrödinger-like equations for non-interacting

electrons:

ĤKSψn = εnψn, (2.13)
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where

ĤKS = −
1

2
∇2 + vext + vH + vxc. (2.14)

Eq. 2.13 is to be solved self-consistently since vext, vH and vxc are functionals of ρ. The

resulting ψn and εn are KS eigenfunctions and KS eigenvalues, respectively. Here all the

many-body electron interactions are included in the XC potential vxc within a mean-field

approach.

2.1.3 Approximations to the Exchange-Correlation Energy Functional

As mentioned above, the exact form of the XC functional and hence of its functional deriva-

tives are unknown. Approximate forms of this functional are often used in practical calcu-

lations. One often separates the exchange and correlation functionals:

Exc = Ex + Ec. (2.15)

Within the local density approximation (LDA) [55, 56], the XC functional is expressed in

terms of the exchange and correlation energy of the homogeneous electron gas:

ELDAxc =

∫

drρ(r)ǫLDAxc (ρ) (2.16)

where ǫLDAxc (ρ) is the exchange-correlation energy per electron of a homogeneous electron

gas with density ρ; the correlation part of Eq. 2.15 is obtained by fitting the results of highly

accurate quantum Monte Carlo simulations of a homogeneous electron gas for different values

of ρ [55]. More sophisticated approximations, such as the generalized gradient approximation

(GGA), include the gradient of the electron density in the XC functional:

EGGAxc =

∫

drρ(r)ǫGGAxc

(

ρ(r),∇ρ(r)
)

. (2.17)
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Commonly used GGA functionals, sometimes referred to as semilocal functionals, include

BLYP [57, 58] and PBE [59, 60]. These two functionals have been widely used, e.g. for simu-

lations of water and aqueous solutions and provide a reasonable description of their structural

and vibrational properties [23, 61–63]. However at ambient conditions, GGA functionals of-

ten predict an overstructured liquid and underestimate its vibrational frequencies [64, 65]. In

addition, GGA functionals are often not sufficiently accurate to treat excitation properties of

materials and molecules [66, 67]. These disadvantages of the GGA functionals arise in part

from the so-called delocalization error [66, 67], i.e. from the incorrect partial cancellation

of the Hartree and exchange energy for each electron in the system, which in turn leads to

some bonds, e.g. the OH bond in water, being characterized by an excessively delocalized

charge density.

One way to improve the accuracy of GGA functionals is to define an exchange correlation

functional as a linear combination of EGGAxc and the Hartree-Fock (HF) exchange, which is

sometimes referred to as exact exchange (EXX). The HF approximation has been widely

used in quantum chemistry community and the HF exchange energy is given by:

EHFx = −
1

2

∑

m 6=n

∫

drdr′
ψ∗n(r)ψm(r)ψ∗m(r′)ψn(r

′)

|r− r′|
. (2.18)

Among the most commonly used hybrid functionals, the PBE0 functional [68] is the one

used in this dissertation. It is defined as:

EPBE0
xc = 0.25EHFx + 0.75EPBEx + EPBEc , (2.19)

where the parameters 0.25 and 0.75 in Eq. 2.18 are not empirical and they are derived by sum

rules of the homogeneous electrons gas. The PBE0 functional has been shown to considerably

improve upon PBE in the description of the structural and vibrational properties of several

systems, in particular water [10, 65, 69] and ice [14, 70].
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2.1.4 Planewave Pseudopotential Scheme

Numerical solutions of the KS equations are obtained by expanding the KS orbitals into

appropriate basis sets. For condensed phase systems, periodic boundary conditions and

planewave basis sets have been a popular and computationally efficient choice in the literature

of the last three decades [44]. KS orbitals that satisfy the Bloch theorem [44] can be expanded

in planewaves:

ψn(r) =
∑

k

∑

G

cn,k,Ge
i(k+G)·r, (2.20)

where k is a k-point vector in the first Brillouin zone of the unit cell or supercell used in the

calculation and G is a reciprocal lattice vector. For disordered solids and liquids, one often

considers only the Γ point (k = {0, 0, 0}). In this dissertation I will focus on methods using

only the Γ point because our primary interest is in disordered systems. The number of G

vectors included in Eq. 2.20 is usually expressed in terms of a cutoff Ecut, where G vectors

with 1
2 |G|2 < Ecut are included in the summation.

Describing KS orbitals using planewaves may result in slow convergence with respect

to basis set size if core electrons are included, since ψn(r) is rapidly varying near atomic

nuclei. Therefore the use of planewaves is always acompanied by that of pseduopotentials.

A psedupotential [44] is defined for each atomic species and describes the effective inter-

action between chemically inert core electrons and valence electrons, i.e. those electrons

participating in chemical bonds. The partition between core and valence electrons depends

on the elements and, to some extent, on the problem. Replacing the Coulomb potential in

Eq. 2.9 by sum of pseudopotentials and solving for pseduopwavefunction ψn(r) allows one to

greatly reduce the number of planewaves needed to represent KS orbitals. In our studies we

choose to use norm-conserving pseudopotentials of the Hamann-Schlüter-Chiang-Vanderbilt

(HSCV) type [71, 72], which were previously tested in the literature [10, 73] in the case of

water and ice.

The combination of planewave basis sets and psudopotentials permits effective use of
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Fast Fourier transform (FFT) algorithms that enable efficient transformation between the

real space wavefunction ψn(r) and its reciprocal space Fourier components cn,k,G. The

efficiency of this approach comes from the fact that KS Hamiltonian matrix ĤKS can be

written as the sum of two sparse matrices, one corresponding to the kinetic energy and

the other to the potential energy operator, respectively (see Eq. 2.14). The kinetic energy

and potential energy matrices are diagonal in Fourier and real spaces, respectively, and are

computed efficiently in the these spaces [74].

The LDA and GGA XC functionals are efficiently computed in the real space. The

calculation of hybrid XC functionals is much more demanding than that of LDA or GGA

functionals and cannot be straightforwardly carried out in real space [10]. In particular,

the evaluation of EHFx requires the computation of a large number (12N
2) of integrals over

KS orbital pairs (see Eq. 2.18). Its computational cost may be greatly reduced by using a

recursive subspace bisection algorithm, which localizes KS orbitals onto different domains

of the supercell and thus greatly decrease the number of required integrals [75, 76]. The

recursive subspace bisection algorithm has made possible a number of accurate simulations

of aqueous systems using hybrid functionals [39, 69, 77].

2.1.5 First Principles Molecular Dynamics

Molecular dynamics (MD) is a simulation technique to model the time evolution of a system

consisting of interacting atoms and molecules. The position and velocity of a given atom at

a given time is obtained by numerical integration of the Newton’s equation of motion, e.g.

using the Verlet algorithm [78]:

−
∂E
(

{Rj}
)

∂Ri
= miR̈i, (2.21)

where mi and R̈i are the mass and the acceleration of the ith nuclei, respectively. E
(

{Rj}
)

is the total energy of the system.
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Based on the method used to compute E
(

{Rj}
)

, the MD technique can be categorized

into classical and first principles MD (FPMD) schemes. The classical MD scheme uses

empirical potentials to approximate the total energy of the system E
(

{Rj}
)

, resulting in low

computational costs (compared to FPMD), but often sacrificing accuracy and transferability

from different bonding configurations. On the other hand, the FPMD scheme provides an

accurate and non-empirical description of the potential energy surface E
(

{Rj}
)

[32], and

it is the method of choice in this dissertation. In an FPMD simulation, one computes

EKS
(

{Rj}
)

by solving the KS equations (Eq. 2.13), at each time step. Evaluation of the

force −∂EKS
(

{Rj}
)

/∂Ri is carried out efficiently using the Hellmann-Feynman theorem

[79]. Compared to classical MD, the accuracy of FPMD is superior for a wide range of

systems and configurations, including those with bond breaking and formation [34], charge

transfer [23] and at high pressure and temperature conditions [39]. The disadvantage of

FPMD is the high computational cost which limits its applicability to systems much smaller

(one to several order of magnitudes) than those tractable with classical MD and to shorter

simulation times (typically in tens of ps range, not exceeding ∼ 100 ps).
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CHAPTER 3

FIRST-PRINCIPLES CALCULATIONS IN THE PRESENCE

OF EXTERNAL ELECTRIC FIELDS

In this chapter, I focus on first principles methods to compute the properties of ordered and

disordered systems in the presence of external electric fields. Two types of methods will be

discussed: linear response and finite field methods.

3.1 Density functional perturbation theory for Homogeneous

Electric Field Perturbations

As a linear response method, density functional perturbation theory (DFPT) is a powerful

tool for studying the response of a system to external perturbations. The detailed formulation

of DFPT is described by Baroni et al. [43]. Here we only discuss DFPT for homogeneous

electric field perturbations.

3.1.1 Linear Response within DFPT

The study of a system’s response to homogeneous electric field perturbations is one of the

main focuses of this dissertation, as such response is needed to compute vibrational spectra

such as Raman and sum frequency generation (SFG) spectra. After summarizing density

functional perturbation theory (DFPT) in this section, we will focus on its application to

describe homogeneous electric field perturbation in Section 3.1.2. In DFPT, the change of

the KS orbitals in response to a external perturbational potential ∆v(r) can be obtained by

solving the Sternheimer equation [43]:

(

ĤKS − εn
)

|∆ψn〉 = Pc
(

∆v +∆vlf
)

|ψn〉, (3.1)
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where ĤKS is the KS Hamiltonian of the unperturbed system defined in Eq. 2.14, Pc is the

projector of the conduction band manifold: Pc = 1−
∑N
n |ψn〉〈ψn|; ∆v

lf , often referred to

as the local field correction, is by definition:

∆vlf =

∫

∆ρ(r′)

|r− r′|
dr′ +

δvxc(ρ, |∇ρ|)

δρ
∆ρ+

δvxc(ρ, |∇ρ|)

δ|∇ρ|
∆|∇ρ|; (3.2)

it accounts for the change of the Hartree and XC potential due to the change of the charge

density ∆ρ(r) = 4
∑N
n ψ∗n(r)∆ψn(r), where N is the number of doubly occupied KS orbitals.

Note that here we only consider systems with zero total electronic spins, and we show the

expression of ∆vlf for GGA XC potentials, which are functionals of the charge density ρ

and its gradient |∇ρ|. For LDA XC potentials, the third term on the rhs is zero. In the

case of hybrid functionals, the evaluation of ∆vlf is computationally demanding since ∆vlf

depends explicitly on the wavefunctions ψn, through the expression of the HF exchange

functional (see Eq. 2.18). Therefore, DFPT has been mainly implemented for LDA and

GGA functionals. For hybrid functionals, it is computationally more efficient to use finite

field methods instead of DFPT, as explained in Section 3.2.

We note that by using Pc in Eq. 3.1, one has 〈ψn|∆ψm〉 = 0 for all n, m in the valence

manifold. This property permits to solve the linear system of Eq. 3.1 using efficient iterative

algorithms such as the conjugate gradient (CG) method [80].

3.1.2 Homogeneous Electric Field Perturbations

We now turn to the discussion of homogeneous electric field perturbations. In isolated

systems, ∆v = E · r, where E is the external electric field. In condensed systems with

periodic boundary conditions, the position operator r is ill defined and hence ∆v is not

straightforward to obtain. Within DFPT, the matrix element of the position operator is
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written in terms of a commutator between the KS Hamiltonian and the position operator:

〈ψm|r|ψn〉 =
〈ψm|[ĤKS , r]|ψn〉

εm − εn
, (3.3)

where ψn and ψm are KS eigenfunctions and εn and εm the corresponding eigenvalues, and:

[ĤKS , r] = −∇. (3.4)

In the absence of nonlocal pseudopotentials [43, 81], only the kinetic energy part of the KS

Hamiltonian does not commute with r. When using nonlocal pseudopotentials, an extra term

should be included in Eq. 3.4 [82]. For simplicity we assume using only local pseudopotentials

in our formulation. We obtain rν |ψn〉 by multiplying |ψm〉 on both sides of Eq. 3.3 and

summing over m:

rν |ψn〉 =
∑

m 6=n

|ψm〉
〈ψm|[ĤKS, rν ]|ψn〉

εm − εn
, (3.5)

where rν is the νth Cartesian component of r and we now define rν |ψn〉 ≡ |ψ̄νn〉. The latter

may be obtained by solving a linear system similar to Eq. 3.1:

(

ĤKS − εn
)

|ψ̄νn〉 = Pc[ĤKS , rν ]|ψn〉. (3.6)

Replacing ∆v|ψn〉 in Eq. 3.1 by −
∑

ν Eν |ψ̄
ν
n〉, where Eν is the νth Cartesian component of

the external electric field E, we obtain the basic equation of DFPT in the case of an applied

homogeneous electric field perturbation E:

(

ĤKS − εn
)

|∆Eψn〉 = −
∑

ν

Eν |ψ̄
ν
n〉+ Pc∆v

lf |ψn〉. (3.7)
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This equation can be solved self-consistently by updating ∆vlf using Eq. 3.2, where the

response density ∆Eρ(r) is obtained by

∆Eρ(r) = −4
N
∑

n

ψ∗n(r)∆
Eψn(r). (3.8)

For crystalline solids, the self consistent solution of Eq. 3.7 may be obtained by assuming

a constant applied electric field perturbation E. However for slab geometries modeling

surfaces or interfaces, this assumption is inappropriate since the electric field in the direction

perpendicular to the surface is not constant, due to the polarization charge at the interface.

In this cases, the applied perturbation to be used in Eq. 3.7 is the electric displacement field

D = E+ 4πP (see Section 5.4.2).

Once the wavefunction response is obtained, we compute the νth Cartesian component

of polarization change using:

∆EPν = −
4

V

N
∑

n

〈ψn|rν |∆
Eψn〉

= −
4

V

N
∑

n

〈ψ̄νn|∆
Eψn〉.

(3.9)

The solutions of Eq. 3.9 may then be used to compute the macroscopic high-frequency

dielectric constant:

ǫ
µν
∞ = δµν + 4π

∆EµPν
Eµ

, (3.10)

where µ and ν are components of the Cartesian coordinates and δµν is the Kronecker delta

function.

3.1.3 Implementation of DFPT in the Qbox Code

In this subsection, I will discuss the implementation of DFPT in the Qbox Code [46], in-

cluding the calculation of ∆vlf , and the conjugate gradient (CG) linear solver.
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The calculation of ∆vlf in Eq. 3.2 requires the functional derivative of the XC potential

vxc. For LDA functionals, an analytical form of vxc is available. But for GGA functionals

analytical functional derivatives are not available, and hence numerical functional derivative

are computed. The XC potential for GGA functionals is expressed as a sum of two terms:

vxc = v1 +∇ · (v2∇ρ), (3.11)

where v1 and v2 are the functional derivative of the GGA XC energy functional with respect

to ρ and ∇ρ, respectively [59]. The numerical derivatives of va (a = 1, 2) with respect to the

charge density ρ and the gradient |∇ρ| are:

∂va(ρ, |∇ρ|, r)

∂ρ(r)
=
va(ρ+ δρ, |∇ρ|, r)− va(ρ− δρ, |∇ρ|, r)

2δρ
, (3.12)

∂va(ρ, |∇ρ|, r)

∂|∇ρ(r)|
=
va(ρ, |∇ρ|+ δ|∇ρ|, r)− va(ρ, |∇ρ| − δ|∇ρ|, r)

2δ|∇ρ|
, (3.13)

where δρ and δ|∇ρ| are chosen to be:

δρ = min(10−4, 0.01n), δ|∇ρ| = min(10−4, 0.01|∇ρ|).

The choices above help reduce the numerical instability for small values of the charge density.

Then ∆vxc is given by:

∆vxc =

(

∂v1
∂ρ

+
1

|∇ρ|

∂v1
∂|∇ρ|

∑

ν

∂νρ∂ν

)

∆ρ+
∑

ν

∂νhν , (3.14)

where ∂ν ≡ ∂/∂rν and

hν = v2∂ν∆ρ+
∂v2
∂ρ

∆ρ∂νρ+
1

|∇ρ|

∂v2
∂|∇ρ|

(

∑

µ

∂µρ∂µ∆ρ

)

∂νρ. (3.15)

These are all the equations necessary to compute ∆vxc.
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We used the preconditioned CG (PCG) linear solver [80] to solve Eq. 3.5 and Eq. 3.6.

Here we describe in detail the implementation of the PCG solver in the Qbox Code. We

seek to solve an equation of the type Ax = b, where A is a square matrix and x and b are

column vectors. In our case A = ĤKS − εn, and x and b denote wavefunctions represented

in Fourier space. First, we define column vectors f , z, p as the residual, the preconditioned

residual and the search direction, respectively. We denote the preconditioner as Pprec. For

initial conditions:

f0 = b−Ax0 (3.16)

z0 = Pprecf0 (3.17)

p0 = z0 (3.18)

where the subscript indicate the iteration number. The wavefunctions at the (k + 1) th

iteration are updated as follows:

αk+1 =
rk · zk

pk · (Apk)
(3.19)

fk+1 = rk − αkApk (3.20)

xk+1 = xk + αkApk (3.21)

zk+1 = Pprecfk+1 (3.22)

βk+1 =
rk+1 · zk+1

rk · zk
(3.23)

pk+1 = rk + βkpk (3.24)

We use is a diagonal matrix as the preconditioner, with diagonal elements defined as:

Pprec(G) =

{

0.5E
prec
cut |G|2 < 2E

prec
cut

1/|G|2 |G|2 > 2E
prec
cut

(3.25)
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where G is the index of the planewave basis defined in Eq. 2.20 and E
prec
cut is the precondi-

tioner cutoff. We note that as E
prec
cut decreases, Pprec becomes similar to A, and this results

in faster convergence of PCG algorithms. However, as E
prec
cut approaches 0, large 1/|G|2

terms in the Pprec matrix may cause numerical instabilities. In our implementation, we

set E
prec
cut = 0.01Ecut, where Ecut is the planewave kinetic energy cutoff used in KS DFT

calculations.

It is well known that the CG algorithm diverges if A is a non-positive definite matrix

[80]. In our case, in order to apply the CG algorithm to the non-positive definite matrix

(ĤKS − εn), we apply Pc on search directions p at each CG iteration so as to limit the

solution x to the conduction band manifold. As the latter is spanned by the eigenvectors of

(ĤKS − εn) with positive eigenvalues, the convergence of the CG algorithm is guaranteed.

The use of CG algorithms also requires attaining good convergence in solving KS equations

prior to DFPT calculation, otherwise Pc contains valence band components which may lead

to divergence of the CG algorithm.

3.2 Finite Field Methods for Homogeneous Electric Field

As mentioned in Section 3.1, density functional perturbation theory provides a way to treat

external electric fields within the linear response regime. But the use of DFPT to obtain

nonlinear responses and tackle orbital-dependent functionals (i.e. hybrid functional) is not

straightforward and can be computationally cumbersome and expensive [43]. The Berry

phase approach (or the modern theory of polarization) [83–85] provides a rigorous way to

define the position operator in condensed systems, enabling first principles calculation of

the change in polarizations. In a similar fashion, maximally localized Wannier functions

(MLWF), or localized linear combinations of Bloch orbitals, provides a simple way to compute

the position operator.

The Berry phase and MLWF approaches can be used to simulate insulating systems

under applied external electric fields [48, 85], by introducing an electric enthalpy functional
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[45]. However, we found that when using the Berry phase and MLWF approaches to evaluate

the polarizability or dielectric properties of a system, the convergence of response function

calculations with respect to the size of the supercell may be slow, especially with only the

Γ point to sample the supercell Brillouin zone [86]. A method proposed by Stengel and

Spaldin is a promising route to overcome the slow convergence [49]. This method makes use

of a computationally inexpensive refinement procedure to estimate the position of MLWF

centers. One can use similar procedures to calculate higher multipole moments which can

be useful in parameterization of classical force field models and in simulations of nonlinear

spectroscopies such as sum frequency generation (SFG). In this chapter, I will summarize

the basic formulations of the Berry phase, MLWF and the refinement approaches, and their

pactical implementation in the Qbox code [46, 47].

3.2.1 Finite Field Methods

Following Ref. [45] we define an electric enthalpy functional F :

F = EKS − V E ·P, (3.26)

where EKS is the ground state KS energy functional, E is the applied total electric field, P is

the polarization and V is the total volume of the system. The polarization P can be written

as a sum of an ionic and an electronic contributions: P = Pion+Pelec. Obtaining the ionic

contribution is trivial: Pion =
∑

j ZjRj , where Zj and Rj are the charge and position of

the jth nucleus; however the calculation of Pelec is not straightforward. In analogy to the

calculation of ground state KS orbitals via a minimization of the KS energy functional (see

Eq. 2.13), the wavefunction and the polarization of the system in the presence of an applied

electric field E may be obtained by minimizing F .

In order to minimize F , its functional derivative with respect the nth ground occupied
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state KS orbital 〈ψn| is needed:

δF

δ〈ψn|
= ĤKS|ψn〉 − V E ·

δP

δ〈ψn|
, (3.27)

where ĤKS is the KS Hamiltonian (Eq. 2.14). Since the nuclei are kept fixed within the BO

approximation, δPion/δ〈ψn| = 0, and thus δP/δ〈ψn| = δPelec/δ〈ψn|. In the following I will

discuss different methods to compute P and δPelec/δ〈ψn|.

The Berry phase approach was first introduced by several authors [83–85] using a for-

mulation employing dense grids of k-points. Later, a specialized Γ point formulation [87]

was used to treat perturbative electric fields [88, 89]. Using this approach the νth Cartesian

component of polarization, Pelec, are:

P elecν = −2
Lν
2πV

Im ln detSν , (3.28)

where the factor−2 accounts for the two negatively charged electrons in one occupied orbital,

Lν is the νth cell dimension; the mnth matrix elements of the N ×N matrix Sν , where N

is number of occupied states, are:

Sν,mn = 〈ψm|ei
2π
Lν
rν |ψn〉. (3.29)

The functional derivative of the electric enthalpy functional F is therefore:

δF

δ〈ψn|
= Ĥ|ψn〉+

∑

ν

Eν
Lν
2π

Im

N
∑

m=1

ei
2π
Lν
rν |ψm〉S−1

ν,mn, (3.30)

where S−1
ν,mn is the mnth element of the inverse of Sν .

The MLWF approach is a formulation very closely related to the Berry phase [48, 90]

one and its Γ point formulation [61] has been widely used to compute the dipole moment of

molecules in condensed phases [23, 62, 91]. Within this approach, the electronic polarization
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Pelec is:

Pelec =
−2

V

∑

n

r0n. (3.31)

In Eq. 3.31, r0n is the Wannier center of the nth MLWF, wn, defined as:

r0n,ν =
Lν
2π

Im ln〈wn|e
i 2πLν rν |wn〉, (3.32)

where wn is obtained by applying a unitary transformation to the occupied Kohn-

Sham (KS) eigenstates (see Eq. 2.13) so as to minimize the total spread: (s0)2 =

∑

ν(Lν/2π)
2∑

n 6=m

∣

∣〈wn|e
i 2πLν rν |wm〉

∣

∣

2
; the latter is an approximation to the quadratic

spread:
∑

n〈r
2〉n − 〈r〉2n [61]. The spread of individual MLWF is (s0n)

2 =
∑

ν(Lν/2π)
2
(

1 −
∣

∣〈wn|e
i 2πLν rν |wn〉

∣

∣

2)
, and their second moment [91, 92] is given by:

〈rνrµ〉n − 〈rν〉n〈rµ〉n =
L2

16π2

{

ln
∣

∣〈wn|e
i 2πLν rνe

−i 2πLµ rµ |wn〉
∣

∣

2
− ln

∣

∣〈wn|e
i 2πLν rνe

i 2πLµ rµ |wn〉
∣

∣

2
}

(3.33)

Within the MLWF approach, the functional derivative of F is:

δFmlwf

δ〈wn|
= Ĥ|ψn〉+

∑

ν

Eν
Lν
2πV

Im ei
2π
Lν
rν |wn〉/〈wn|e

i 2πLν rν |wn〉. (3.34)

As shown above, Berry phase and MLWF methods use the same kernel function,

exp(i 2πLν
rν), to evaluate the polarization in Γ-point only calculations. In the thermodynamic

limit, the two methods yield the same, exact result [87]. However in practical calculations,

this is often difficult or impossible to obtain. As pointed out by Stengel and Spaldin (see

Fig. 1 of Ref. [49]), exp(i 2πLν
rν) is an approximation to the position operator r̂ in periodic

boundary conditions (PBC); such approximation is not justified when the unit cell is small

compared to MLWF spreads [87], and it may lead to large errors in computing the polar-

ization and other related physical properties, e.g. Born effective charge [49], polarizabilities

[86] and high-frequency dielectric constants ǫ∞ [86].
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Stengel and Spaldin [49] proposed to compute the polarization in real space using saw-

tooth functions instead of exp(i 2πLν
rν). The calculation is done as a refinement step after the

MLWFs wn are computed, e.g. using the algorithm described in Ref. [93]. Since MLWFs

decay exponentially in real space, the discontinuity of the saw-tooth function within PBC

does not have any significant impact on the numerical stablity of the refinement procedure

and on the final results. In the following, we describe in detail the refinement scheme and

derive the functional derivatives required to optimize of the electric enthalpy functional

(Eq. 3.27).

Figure 3.1: Schematic representation of the refinement approach described in Section 3.2
for a one-dimensional periodic system with periodicity L. wn(r) is nth Maximally localized
Wannier Function (MLWF) localized in real space at r0n and Xn(r) is the corresponding
saw-tooth function (see text).

The refinement procedure for a 1D system is illustrated in Fig. 3.1. The nth refined

MLWF center rn is computed as rn = r0n + ∆rn, where r0n is defined by Eq. 3.32 and ∆rn

is the refinement we seek to compute. The νth Cartesian component of ∆rn, ∆rn,ν , can be

computed in real space using a periodic saw-tooth function, Xn,ν(rν) (see Fig. 3.1), centered

at the MLWF center r0n:

Xn,ν(rν) =























rν − r0n,ν + Lν if rν − r0n,ν <= −Lν/2

rν − r0n,ν if rν − r0n,ν ∈ (−Lν/2, Lν/2]

rν − r0n,ν − Lν if rν − r0n,ν > Lν/2.

(3.35)

After multiplying the MLWF by the corresponding saw-tooth function in real space, we
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define:

uνn(r) ≡ Xn,ν(rν)wn(r), (3.36)

and the refinement is computed as:

∆rn,ν = 〈wn|u
ν
n〉. (3.37)

The total electronic contribution to the polarization becomes:

P elecν = −
2

V

∑

n

r0n,ν +∆rn,ν (3.38)

= −
2

V

∑

n

r0n,ν + 〈wn|u
ν
n〉.

The derivative of the electric enthalpy functional using the refinement scheme is:

δF

δ〈wn|
= Ĥ|wn〉+

∑

ν

Eν |u
ν
n〉. (3.39)

It is then straightforward to extend Eqs. 3.36 and 3.37 to compute the refined MLWF

spread:

(sn)
2 =

∑

ν

〈uνn|u
ν
n〉 − (∆rn,ν)

2. (3.40)

Similarly, the refined second moment of the nth MLWF can be obtained as:

〈rνrµ〉n − 〈rν〉n〈rµ〉n = 〈uνn|u
µ
n〉 −∆rν∆rµ. (3.41)

In the following, we will call this method the refined MLWF method.

3.2.2 Computational Details of Finite Field Implementations

We implemented the above three methods (Berry phase, MLWF and refined MLWF meth-

ods) in a massively parallel planewave FPMD code, the Qbox Code [46]. We verified our
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implementation for single water molecules at the experimental geometry [94, 95] and for

64-water liquid water samples with a cell size of 23.46 a.u.; the latter were obtained from

previous FPMD simulations [2, 14] with PBE [59, 60] and PBE0 [68] functionals. We used

norm-conserving pseudopotentials [71, 72] and a planewave basis set with a kinetic energy

cutoff of 85 Ry. We computed several quantities, including the dipole momentM, quadrupole

moment Q and the corresponding dipole and quadrupole polarizabilities; the latter is de-

fined as the derivative of the quadrupole moment with respect to the applied electric field:

Aν,µξ = dQµξ/dEν . As reference results, we calculated dipole polarizabilities with linear

response DFPT, as implemented in the Qbox Code (see Section 3.1). Additional reference

results for polarizabilities were obtained from all-electron calculations as implemented in

the NWChem software package [96], with a d-aug-cc-pVQZ basis set [1] so as to ensure

convergence.

For a single molecule, the dipole moment M = VP. The quadrupole moment is often

defined as a traceless tensor [97] with elements:

Qtracelessνµ =
1

2

∫

drρ(r)
(

3rνrµ − δνµr
2), (3.42)

where ρ(r) is the charge density and δνµ is the Kronecker delta. Alternatively, the quadrupole

moment can be defined as:

Qνµ =
1

2

∫

drρ(r)rνrµ, (3.43)

and it equals the derivative of the total energy with respect to the electric field gradient; such

expression can be used to compute nonlinear vibrational spectra such as the SFG spectra

[98] (see Chapter 5). Qtracelessνµ and Qνµ may be obtained using the second moment:

∫

drρ(r)rνrµ =
∑

k

ZkRk,νRk,µ − 2
∑

n

〈rνrµ〉n, (3.44)

where the first and second terms on the rhs account for the ionic and electronic contributions,
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respectively, and 〈rνrµ〉n are computed using MLWF or refined MLWF methods, using

Eq. 3.33 or Eq. 3.41, respectively. We computed dipole and quadrupole polarizabilities,

using finite differences:

ανµ =
Mµ(δEν)−Mµ(−δEν)

2δEν
, (3.45)

Aν,µξ =
Qµξ(δEν)−Qµξ(−δEν)

2δEν
, (3.46)

where M is the dipole moment. δE was chosen to be 0.001 a.u.; it was chosen to be small

enough to fall in the linear response regime and large enough to avoid numerical instabilities

caused by small denominators.

We computed the high-frequency dielectric constant, ǫ∞, for liquid water samples, using

the expression:

ǫ∞,νµ = δνµ + 4π
δPµ
δEν

. (3.47)

For isotropic systems such as liquids, ǫ∞ is diagonal with all equal elements.

3.2.3 Results for Single Water Molecules and Liquid Water

We first discuss our computed dipole moment, MLWF spread and polarizability for a single

water molecule. We tested the convergence of these quantities with respect to the supercell

size, where all calculations were carried out for the same molecular geometry. As shown

in Fig. 3.2a, the dipole moment computed using Berry phase or MLWF aproaches are not

converged even for cell edge as large as 60 a.u. Instead results from the refined MLWF

method show a more favorable convergence behavior. The converged value obtained at 30

a.u. is 1.82 Debye, in agreement with all electron calculations [99] and the experimental

value of 1.85 Debye [100]. The spread of the two types of MLWFs present in the water

molecule, bond pair and lone pair MLWFs, is shown in Fig. 3.2b. Also in this case, the

refined MLWF method shows faster convergence than the MLWF approach (see Fig. 3.2b).

The computed isotropic polarizability, α = (αxx + αyy + αzz)/3, is shown in Fig. 3.2c.
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Figure 3.2: Dipole moment (a), spread of lone pair and bond pair MLWFs (b) and isotropic
polarizability (c) of a water molecule computed at different cell size using Berry phase (black),
MLWF (red), refined MLWF (blue), DFPT (green) and all electron (orange) approaches. The
Berry phase, MLWF (Maximally localized Wannier Function) and refined MLWF methods
are described in Section 3.2.1, and the DFPT (Density Functional Perturbation Theory)
approach is described in Section 3.1. d-aug-cc-pVQZ denotes the basis set [1] adopted in
All Electron (AE) calculations. Four MLWFs are associated to each water molecule (2 lone
pairs and 2 bond pairs) constructed as linear combinations of occupied KS eigenstates.

As observed in previous studies [86], we found that the MLWF and Berry phase approaches

show a rather slow convergence. Interestingly, both methods yield almost the same results at

each cell size, probably because the same kernel function exp(i 2πLν
rν) is used to compute the

polarization. The polarizability computed with the refinement method converges to a value

of 1.574 Å3 at a cell size of 30 a.u. The convergence behavior is almost the same as that

observed using DFPT [43], and the converged result is almost identical to the DFPT one

(1.571 Å3). The converged results are also in good agreement with all-electron calculations

(1.568 Å3). Not surprisingly, our results computed with the PBE functional overestimated

the experimental value of 1.47 Å3 [101]. This is mainly due to the delocalization error

introduced by semilocal functionals such as PBE [66]. Hybrid functionals, e.g. PBE0,

reduce this error and PBE0 yielded a value in better agreement with experiments, 1.46 Å3,

when using the refined MLWF methods.

Our results for the quadrupole moments and quadrupole polarizabilities are shown in

Fig. 3.3; it is seen that the calculated traceless quadrupole and the components of the

quadrupole polarizabilities converge for cell size of 30 a.u.. The quadrupole polarizability
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component AZ,ZZ converges slightly slower than the other components probably because of

the spurious Coloumb interaction between the Z-component of the dipole associated with

water molecules in neighboring cells. In Table 3.1, we show that the traceless quadrupole

computed with the refined MLWF method does not depend on the molecular orientation.

The MLWF method, on the other hand, showed poor convergence and yielded inconsistent

results for different molecular orientations. As shown in Table 3.1, our results are also

consistent with all electron calculations, as well as experimental data reported in Ref. [97].
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Figure 3.3: Diagonal elements of the traceless quadrupole moment (a) and the quadrupole po-
larizability (b) of a water molecule computed using refined MLWF method (see Section 3.2.1)
at different cell sizes. Here X , Y and Z denote the axis in the molecular plane, the axis
perpendicular to the molecular plane and the dipole axis of the water molecule, respectively.

Now we turn to condensed systems and present the results obtained using the refined

MLWF method for one configuration extracted from FPMD simulations of liquid water [2].

In particular we show the computed high-frequency dielectric constant, and molecular dipole

and quadrupole moments. In Table 3.2, we show ǫ∞ computed using Eq. 3.47 and several

different methods for the polarization P. We found that for calculations using the PBE

functional, the refined MLWF and DFPT approaches give consistent results while the Berry

phase approach predicts a slightly smaller ǫ∞. This is not surprising as we already observed

that the Berry phase method underestimates the dipole polarizability of an isolated water
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Table 3.1: Diagonal elements of the traceless quadrupole moment, in Buckingham, of an
isolated water molecule

Config. 1a Config. 2b

X Y Z X Y Z
Refined MLWFc

PBE cell 30 2.571 -2.421 -0.150 2.571 -2.421 -0.149
PBE cell 50 2.571 -2.421 -0.150 2.571 -2.421 -0.150
PBE0 cell 30 2.572 -2.428 -0.145 2.572 -2.427 -0.145

MLWFd

PBE cell 30 2.614 -2.375 -0.238 2.650 -2.341 -0.309
PBE cell 50 2.587 -2.404 -0.183 2.584 -2.406 -0.177
All electrone

PBE 2.555 -2.408 -0.147
PBE0 2.551 -2.407 -0.144

Other work

MLWF PBE f 2.58 -2.45 -0.13
Expt.g 2.63± 0.02 −2.50± 0.02 −0.13± 0.03

a Calculations carried out for a water molecule with its molecular axis (X , Y and Z, which
denote the axis in the molecular plane, the axis perpendicular to the molecular plane and the
dipole axis of the water molecule, respectively) parallel to the supercell edges. b Calculations
carried out for a water molecule with the same geometry as Config. 1, but at a different,
random orientation. c Results obtained using the refined MLWF method (Eqs. 3.41 and
3.44), with PBE [59, 60] or PBE0 [68] functionals; the specified cell dimensions are in a.u..
d Results obtained using the MLWF method (Eqs. 3.33 and 3.44) adn the PBE functional.
e All electron calculations carried out using the NWChem code [96] (see text). f Results
obtained using the MLWF method and the PBE functional [91]. g Experimental results from
Ref. [97].

Table 3.2: High-frequency dielectric constant, ǫ∞, of a 64-molecule liquid water sample
extracted from FPMD trajectories obtained in the NVE ensemble and the PBE functional,
with the Qbox code. Calculations of ǫ∞ were carried out with both GGA (PBE) and
hybrid (PBE0) functionals. The Berry phase and refined MLWF methods are described in
Section 3.2.1, and the DFPT approach is described in Section 3.1.

Method ǫ∞
Refined MLWF PBE 1.873

DFPT PBE 1.879
Berry phase PBE 1.796

Refined MLWF PBE0 1.782
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molecule at this cell size (23.464 Å) (see Fig. 3.2c). Note that the value predicted by the

Berry phase method and the PBE functional is in good agreement with experimental value

of about 1.77, mainly due to error cancellations. Similar results have been found in previous

FPMD simulations using the same approach [102]. As shown in Table 3.2, by using the

PBE0 functional and the refined MLWF method, one observes converged results in good

agreement with the experimental value. In addition to ambient conditions, we also used the

refined MLWF method with the PBE0 functional to accurately compute the high-frequency

dielectric constant of liquid water under high temperature and pressure conditions [39].
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Figure 3.4: (a) Distribution of dipole moments of water molecules computed using the MLWF
method and PBE functional (black), the refined MLWF method and PBE functional (red)
and the refined MLWF and PBE0 functional (blue) for 200 snapshots extracted from an
FPMD simulation using PBE functional and 64 molecule liquid water sample [2]. (b) Dis-
tribution of traceless quadrupole moments of water molecules computed using the refined
MLWF method in combination with PBE (black) and PBE0 functionals (red) for the same
snapshots. The blue dots and vertical lines indicate values computed for an isolated water
molecule using the refined MLWF method and PBE functional.

In Fig. 3.4, we show the distribution of the computed dipole and traceless quadrupole

moments of the water molecules taken from 200 configurations extracted from a 50-ps FPMD

simulation [2]. We found that the dipole moment contribution computed from MLWF and

refined MLWF methods are nearly identical: 3.06 and 3.07 Debye, respectively, with the

PBE functional. The dipole moment computed with the PBE0 functional using the same
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Table 3.3: Average diagonal elements of the traceless quadrupole moment tensor of water
molecules in liquid computed using the refined MLWF method and the PBE or PBE0 func-
tionals and 200 snapshots extracted from FPMD simulations using PBE [2] and PBE0 [14]
functionals.

Refined MLWF Method X Y Z
PBE@PBE 3.53 -3.34 -0.19
PBE0@PBE 3.49 -3.30 -0.19
PBE@PBE0 3.32 -3.13 -0.19
PBE0@PBE0 3.28 -3.10 -0.18

configurations is slightly smaller, 3.03 Debye. This value is much larger than the dipole

moment of a single water molecule, 1.82 Debye, in agreement with results obtained in pre-

vious FPMD simulations [62, 91]. In Fig. 3.4b, we show the traceless quadrupole moment

computed using the refined MLWF method and the PBE functional. The average of its

three components are shown in Table 3.3 and are much larger than the values obtained for a

single water molecule, shown in Table 3.1. We note that predictions of enhanced quadrupole

moments of water molecules in the liquid, compared to the gas phase, have been reported by

several FPMD studies [91, 103] and quantum chemistry calculations [104–106]. Large dipole

and quadrupole moments of water molecules in the liquid originates from strong polarization

due to the strong electric field in the liquid, which also affects the molecular polarizabilities

as shown in previous studies, [2, 107, 108].

3.2.4 Conclusions

In summary, we proposed an accurate ab initio method to carry out electronic structure

calculations in the presence of finite electric fields, by combining the refinement scheme [49]

based on MLWF with an electric enthalpy functional [45]. We also extended the refinement

scheme to the computation of multipole moments, e.g. quadrupole moments. Our method

works equally well with semilocal and hybrid functionals, at variance with DFPT which

is not straightforward to implement when using hybrid functionals. We showed that the

proposed method converges much faster with respect to cell size than conventional Γ-only
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calculations, based on Berry phase and MLWF approaches, and it can be implemented with

low computational costs. Our predictions of electrostatic properties using hybrid functionals,

e.g. dipole and quadrupole moments and their polarizabilities in the condensed phase, are

in very good agreement with experiments.

The predicted multipole moments and polarizabilities may be useful for the parametriza-

tion of empirical force fields and will be used in the next chapters for the calculation of

vibrational spectra. Another potential application of our method is in FPMD simulations in

the presence of electric fields, which may be useful to study electrochemical systems under

working conditions.
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CHAPTER 4

VIBRATIONAL SIGNATURES OF CHARGE FLUCTUATIONS

IN THE HYDROGEN BOND NETWORK OF LIQUID WATER

In the previous chapter, we described first-principles linear response and finite field methods

for first-principles calculations in the presence of electric fields and their implementation in

the Qbox Code. Starting from this chapter, we will describe the application of these methods

for the calculation of vibrational spectra of aqueous systems. In particular, we will present

results for Raman spectra of liquid water and sum-frequency generation (SFG) spectra of ice

surfaces in this and the next chapters, respectively. We used FPMD and the linear response

DFPT approach for Raman spectra simulations. For the SFG spectra calculation, we used

DFPT for the evaluation of dipole polarizabilities and refined MLWF methods for computing

quadrupole moments and quadrupole polarizabilities.

4.1 Introduction to Vibrational Spectroscopy

In this section we describe the basic theoretical formulations of vibrational spectroscopies,

with the most well studied ones being infrared and Raman spectroscopies. In general vi-

brational spectra can be computed using two approaches, by diagonalizing the dynamical

matrix to get normal modes or by computing time correlation functions (TCF). The dynam-

ical matrix is computed from the second derivatives of the total energy (first derivative of

the forces), obtained by finite differences. Within the TCF approach, spectra are obtained

as Fourier transforms of the TCF of dipole moments and polarizabilities for infrared and

Raman spectra, respectively. The normal mode approach is usually computationally less ex-

pensive than TCF approaches because it requires a small number of calculations at different

atomic geometries. But this approach can only be applied to solids, and the anharmonic ef-

fects are usually neglected. TCF approaches, on the other hand, can be used for disordered

systems, e.g. liquids, and they include anharmonic effects. However obtaining converged
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TCF requires long molecular dynamics simulations, and it may be computationally quite

demanding.

4.1.1 Normal Mode and TCF Approaches

Within the normal mode approach, the dynamical Matrix D is obtained for a geometrical

configuration corresponding to a local minimum of the potential energy surface. The size of

the matrix is determined by the number of the degrees of freedom (3Natom), and its elements

are given by:

Dpq =
1

√

MpMq

∂2E

∂Rp∂Rq
= −

1
√

MpMq

∂Fp
∂Rq

, (4.1)

where E is the total energy, Rq, Mq and Fq are the position, mass and force of the qth

degree of freedom. The qth eigenvalue and eigenvector of D are the squared frequency

ω2q and normal displacement Sq of the qth vibrational normal mode, respectively, within

the harmonic approximation. A generic spectral intensity I(ω), e.g. of infrared or Raman

spectra, can be computed using the intensity Aq of the qth normal mode:

I(ω) =
∑

q

Aqδ(ω − ωq), (4.2)

where δ(ω) is the Dirac function, which can be replaced by a Gaussian distribution function

to obtain smooth spectra. We shall show explicit expressions of Aq for infrared and Raman

spectra in Sections 4.1.2 and 4.1.3, respectively.

Making use of the Fermi’s golden rule, the infrared and Raman intensities may be com-

puted as Fourier transform of the TCF of the system’s dipole moments and polarizabilities,

respectively [31]. Within the TCF approach, a generic spectral intensity I(ω) is given by:

I(ω) ∝

∫

〈

B(0)B(t)
〉

exp(−iωt)dt, (4.3)

where B denotes total dipole moment or polarizability of the system for infrared or Raman

35



spectra calculations, respectively. In Eq. 4.3, 〈· · · 〉 denotes ensemble average and 〈B(0)B(t)〉

is called the TCF of the quantity B. Note that here we used a classical TCF to approximate

its quantum mechanical counterpart. In practice, a quantum correction factor [109] is often

used to correct classical TCFs for better reproduction of the behavior of the corresponding

quantum mechanical TCF.

One useful technique to analyze the spectra for molecular systems is to decompose B

into molecular quantities bi:

B =
∑

i

bi. (4.4)

Then the total spectra can be decomposed into intra- and intermolecular contributions:

IintraB (ω) ∝
∑

i

∫

〈

bi(0)bi(t)
〉

exp(−iωt)dt, (4.5)

IinterB (ω) ∝
∑

i 6=j

∫

〈

bi(0)bj(t)
〉

exp(−iωt)dt. (4.6)

Analysis on intra- and intermolecular contributions turned out to be very useful for studying

subtle intermolecular interactions, e.g. hydrogen bond interactions in aqueous systems [23,

35].

4.1.2 Infrared Spectroscopy

Infrared spectroscopy measures the absorption of infrared radiation at frequencies in reso-

nance with the system’s vibrational modes. A vibrational mode is infrared active if it has

a net change in dipole moment M upon adsorption of radiation. Within the normal mode

approach, the infrared intensity for the qth normal mode is given by [31]:

AIRq =
π

3cV

∣

∣

∣

∣

∂M

∂Sq

∣

∣

∣

∣

2

. (4.7)
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Using TCF instead, the infrared intensity is

IIR(ω) ∝

∫

〈

M(0) ·M(t)
〉

exp(−iωt)dt. (4.8)

Infrared spectra measurements of liquid systems usually report absorption coefficients per

unit length [23, 35, 110]:

a(ω) =
2πω2β

3cV n(ω)

∫

∑

ij

〈

Mi(0) ·Mj(t)
〉

exp(−iωt)dt. (4.9)

where β = 1/kT is the Boltzmann factor, c is the speed of light, n(ω) is the frequency-

dependent refractive index and the summation is performed over all molecular dipole moment

within a volume V . Here we use a harmonic approximation quantum correction factor [109].

4.1.3 Raman Spectroscopy

A Raman scattering effect occurs when the frequency of the scattered light is different from

that of the incident radiation. This change in frequency, called the Raman shift, arises from

the interaction between the incident radiation with vibrational modes of the system. Raman

spectra measures the intensity of the scattered light as a function of the Raman shift. Raman

intensities may be computed from polarizability (α) calculations [111]. First it is desirable

to decompose the polarizability tensor α into isotropic and anisotropic parts:

α = ᾱI+ β, (4.10)

where I is the identity tensor and ᾱI and β are the spherical and anisotropic parts of the α

tensor.

IRamanq = 45ã2q + 7b̃2q , (4.11)
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where

ãq =
∂ᾱ

∂Sq
, (4.12)

b̃2q =
3

2
Tr

(

∂β

∂Sq

∂β

∂Sq

)

(4.13)

=
1

2

(

(∂αxx
∂Sq

−
∂αyy
∂Sq

)2
+
(∂αyy
∂Sq

−
∂αzz
∂Sq

)2
+
(∂αzz
∂Sq

−
∂αxx
∂Sq

)2
(4.14)

+ 6
(∂αxy
∂Sq

)2
+ 6
(∂αyz
∂Sq

)2
+ 6
(∂αzx
∂Sq

)2
)

. (4.15)

Here ã2 and b̃2q correspond to the isotropic and anisotropic Raman intensities. Tr denotes the

trace operator. It can be clearly seen from the above expressions that the isotropic intensity

describes the Raman intensity arising from isotropic or spatially averaged polarizabilities,

obtained as the trace of the polarizability tensor, while the anisotropic one describes the

anisotropy of the tensor. We can also calculate the depolarization ratio:

η =
3b̃2q

45ã2q + 4b̃2q
, (4.16)

which describes the ratio between the intensities of the scattered light with polarizations

perpendicular (VH) or parallel (VV) to the that of the incident light.

In the TCF formulation, Raman intensities can be expressed in terms of the Fourier

transform of the TCF of the polarizability, similar to the infrared spectra in Eq. 4.8 [31]:

IRamaniso (ω) ∝

∫

dte−iωt
〈

ᾱ(0)ᾱ(t)

〉

(4.17)

IRamananiso (ω) ∝

∫

dte−iωt
〈

2

15
Trβ(0)β(t)

〉

. (4.18)

These two intensities correspond to the contributions of spatially averaged and anisotropic

polarizabilities, respectively. Alternatively we can derive the expression for the experimental
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measurable VV and VH spectra:

IRamanV V (ω) ∝

∫

dte−iωt
〈

ᾱ(0)ᾱ(t) +
2

15
Trβ(0)β(t)

〉

(4.19)

IRamanV H (ω) ∝

∫

dte−iωt
〈

1

10
Trβ(0)β(t)

〉

. (4.20)

4.2 Raman Spectroscopy for Liquid Water

Reproduced with permission from Q. Wan, L. Spanu, G. Galli, and F. Gygi, J. Chem. Theory

Comput. 9, 4124 (2013). Copyright 2013 American Chemical Society.

Raman spectroscopy was extensively employed to investigate the O-H stretching band

[3, 4, 112–115] and low-frequency translational and librational bands [5, 112, 116–123] of

liquid water at ambient conditions and under pressure [124–127], as well as the vibrational

properties of solvated ions [128–131] and biological molecules [132, 133] in solutions, and of

nano-confined water [134, 135].

Most of the theoretical studies carried out to interpret the measured Raman spectra of

water are currently based on classical simulations [132, 136–144], with Raman intensities

computed from the time-correlation function (TCF) of the polarizability tensor [31]. The

latter is obtained from molecular polarizabilities either derived empirically or calculated

from small water clusters using ab initio electronic structure methods. In principle quantum

TCFs are required for an accurate description of the vibrational excitations. However, in

most simulations [132, 136–141] quantum TCFs are approximated with classical ones, and

then multiplied by a so-called quantum correction factor [109]. The authors of Ref. [141–

144] proposed a method to compute quantum TCFs within a semi-classical approximation,

encompassing the generation of trajectories using classical molecular dynamics (MD) and

the calculation of Raman intensities of clusters extracted from MD trajectories. These

calculations yielded very good agreement with experiments, but they were restricted to the

analysis of the O-H stretching band. Most results for the low-frequency part of the Raman
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spectra were not as satisfactory [132, 136–138, 140], and a number of open questions remain

in the interpretation of the Raman spectra of liquid water at ambient condition.

In particular, the origin of the low-frequency bands at 60 cm−1 and 200 cm−1 are not fully

understood [145–147], and their interpretation calls for the use of ab initio calculations, where

electrons are treated explicitly. As pointed out in the case of infrared spectra [23, 35, 63], it

is important to properly account for dynamical changes in the electronic structure of water

molecules and of the HB network to accurately describe the vibrational properties of the

liquid.

In this chapter we report the first ab initio simulation of the Raman spectra of liquid

water, obtained by using density functional perturbation theory (DFPT) [43]. Ab initio

calculations of Raman spectra based on classical TCF and polarizabilities derived from the

modern theory of polarization were so far only reported for crystalline systems [40, 41], but

not for liquids. We also developed a systematic strategy to interpret the computed Raman

spectra, which is of general applicability to solid and liquid phases of molecular systems. Our

analysis is based on maximally localized Wannier functions (MLWF) [48], previously used

to compute the infrared spectrum of liquid water [23, 35, 62, 63, 148]. Our interpretation

of the high-frequency O-H stretching band is overall consistent with previous experimental

and theoretical studies. In the low-frequency region, our analysis of the isotropic spectrum

revealed intermolecular charge fluctuations accompanying HB stretching vibrations, despite

the absence of any Raman intensity. Such fluctuations, identified at 200 cm−1 in the infrared

spectra [22–24], exhibit signals on a wider frequency range in our calculations, up to 270

cm−1. We further defined molecular polarizabilities [107, 108, 149, 150], which may be useful

in the parameterization of polarizable force fields for classical MD simulations of water.

The rest of this chapter is organized as follows: in the next section we describe our

computational and analysis methods used in Raman spectra simulations of liquid water. In

the Results and Discussion section, first we compare the calculated Raman spectra with

experimental results; we then focus on the interpretation of the low frequency part of the
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spectrum, and we show evidence of intermolecular charge fluctuations using several comple-

mentary analysis tools. Finally, we present our conclusions.

4.3 Theoretical Methods

4.3.1 Simulation Details

We carried out Born-Oppenheimer ab initio MD simulations of liquid water using the Qbox

code [46] and the semilocal exchange-correlation functional PBE [59, 60]. Based on previous

studies with the PBE functional, we used a 64 heavy water sample at the experimental

density and an elevated temperature around 400K, to better reproduce the liquid radial

distribution functions and diffusion coefficient [10, 35]. We used a plane wave basis set with

a kinetic energy cutoff of 85 Ry, norm conserving pseudopotentials [71] of the HSCV type [72]

and only the Γ point to sample the Brillouin zone. Our MD simulations were carried out with

a time step of 10 a.u. (0.24 fs) in the NVE ensemble for 50 ps after a 5 ps equilibration in the

NVT ensemble, using the thermostat proposed in Ref. [151]. We adopted the diagonalization

algorithm of Ref. [93] to compute the MLWFs [48].

We computed the Raman spectra as the Fourier transform of the TCF of the system’s

polarizabilities [31]. In this paper, we report the Bose-Einstein (BE) reduced [152] isotropic

and anisotropic Raman spectra:

Riso(ω) ∝
~ω

kT

∫

dte−iωt
〈

ᾱ(0)ᾱ(t)

〉

, (4.21)

Raniso(ω) ∝
~ω

kT

∫

dte−iωt
〈

2

15
Trβ(0)β(t)

〉

. (4.22)

In Eqs. 4.21 and 4.22, ω is the frequency, Tr denotes a trace operator, T is the temper-

ature and k is the Boltzmann constant. ᾱ and β are defined in Eq. 4.10. The prefactor

~ω
kT in Eqs. 4.21 and 4.22 is the product of the BE factor [152], 1 − e−~ω/kT , and the har-

monic approximation quantum correction factor [109],
~ω/kT

(1−e−~ω/kT )
. The BE factor is useful
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in analyzing the low-frequency part of the Raman spectra, making features obscured by

the high-intensity Rayleigh scattering peak more easily identifiable [152]. The use of the

BE factor also ensures the correct temperature dependence of the Raman intensity in the

low-frequency region [112]. The quantum correction factor has been previously used in ab

initio simulations of infrared spectra [23, 35, 110] to approximate quantum time correlation

functions (TCF) by their classical counterparts.

4.3.2 Effective molecular polarizabilities

We computed the polarizability using density functional perturbation theory (DFPT) [43],

as implemented in the Qbox code [46] (see details in Section 3.1). In order to understand the

contribution of individual water molecules to the total polarizability, we defined the effective

molecular polarizability αeff
i of the ith water molecule by projecting the total polarizability

α onto MLWFs. By applying the MLWF transformation (see Section 3.2) to ∆Eψ and ψ̄µ,

we obtain the response wavefunctions ∆Ewn and w̄mun, corresponding to each MLWFs. By

replacing ∆Eψn and ψ̄n in Eq. 3.9 with ∆Ewn and w̄n, we obtain the projection of the total

polarization onto the nth MLWF:

P
µ
wn = −

4e

V
〈∆Ewn|w̄

µ
n〉. (4.23)

We then define the effective polarizability associated to each MLWF as:

VPwn = ∆Mwn = αeff
wn

E. (4.24)

In the case of water molecules, four valence MLWFs are associated to the four doubly occu-

pied valence eigenstates: two lone pairs (LPs) and two bond pairs (BPs). Thus the effective

molecular polarizability of each molecule is defined as:

αeff
i = αeff

i,LP1 +αeff
i,LP2 +αeff

i,BP1 +αeff
i,BP2. (4.25)
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The induced dipole ∆Mi corresponding to the ith molecule is therefore:

∆Mi = αeff
i E, (4.26)

where α =
∑

iα
eff
i , and αeff

i =
∑

cα
eff
i,c ; α

eff
i,c is the effective polarizability associated to each

of the four MLWFs (c) belonging to a water molecule (2 bond pairs and 2 lone pairs MLWFs,

constructed from a unitary transformation of valence eigenstates of the Hamiltonian).

The BE reduced Raman intensities (Eqs. 4.21 and 4.22) can be therefore be represented

using effective molecular polarizabilities:

Riso(ω) ∝
~ω

kT

∫

dte−iωt
〈

∑

i,j

ᾱeffi (0)ᾱeffj (t)

〉

, (4.27)

Raniso(ω) ∝
~ω

kT

∫

dte−iωt
〈

2

15
Tr
∑

i,j

βeffi (0)βeffj (t)

〉

, (4.28)

where ᾱeffi = 1
3Trα

eff
i and αeff

i = ᾱeffi I+ βeff
i . Here Tr denotes the trace operator. By sepa-

rating the i = j and i 6= j terms in the summation in Eqs. 4.21 and 4.22, we define the intra-

and intermolecular contributions to the total Raman spectra, similar to previous infrared

spectra studies [23, 35, 63]. The i = j terms, Rintraiso (ω) and Rintraaniso(ω), are contributions

from localized vibrations on each molecule or intramolecular terms, while the i 6= j terms,

Rinteriso (ω) and Rinteraniso(ω), are contributions from coupled vibrations on different molecules

or intermolecular terms.

4.3.3 Molecular Polarizabilities

Following Refs. [107, 108, 149, 150] we defined the molecular polarizabilities, αi, of the ith

water molecule in the liquid as:

∆Mi = αiE
loc
i , (4.29)
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where ∆Mi is the induced dipole of the ith molecule as defined in Eq. 4.26 and Eloc
i is the

local electric field acting on the ith molecule; note that Eloc
i contains the contribution of

both the applied field E and the field induced by the induced dipole ∆Mj (j 6= i) of all

other molecules in the system via dipole-induced dipole (DID) interactions [132, 137, 138,

140, 141, 153]. This method is widely used in classical calculations of Raman spectra to

obtain the total polarizability of the extended system from the molecular polarizabilities.

In principle, higher multipoles also contributes to Eloc
i , but these effects are usually small

compared to DID interactions [154]; hence Eloc
i can be approximated by

Eloc
i = E+

∑

i 6=j

Tij∆Mj , (4.30)

where Tij is the DID interaction tensor:

T
µν
ij =

r2ijδµν − 3r
µ
ijr

ν
ij

r5ij
, (4.31)

and µ and ν denote Cartesian axis; r
µ
ij and r

ν
ij are the µth and the νth Cartesian components

of the vector between molecular positions rij and δµν is the Kronecker delta. The numerical

evaluation of the second term on the right hand side of 4.30 was carried out using Ewald

summation techniques [155–158].

We note that αeff
i (Eq. 4.26) and αi (Eq. 4.29) are fundamentally different quantities:

αi is an intrinsic molecular property depending solely on the electronic structure of the

molecule in the system, that is if we carved a molecule out of the extended system, keeping its

wavefunctions (and hence MLWFs) and coordinates unchanged and we placed it in vacuum,

its polarizability would be exactly αi. Instead αeff
i is deduced from the projection of the total

polarization onto each molecule. Thus it contains also induced polarization terms arising

from the environment:

αeff
i = αi +αDID

i , (4.32)
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where αDID
i denotes the DID contributions from the environment.

4.4 Results and Discussion

4.4.1 Calculated Raman Spectra: Comparison with Experiments

Our calculated isotropic and anisotropic Raman spectra are presented in Fig. 4.1a, together

with several experimental results. In the case of the low-frequency anisotropic spectrum, we

compared our results with measurements for hydrogenated water since it has been shown

experimentally that the anisotropic spectra of H2O and D2O are essentially the same in this

region [122].

As expected, the position of the calculated high-frequency O-D stretching band is red-

shifted by about 200 cm−1 compared with the experimental band, and it is broader. This

error is mainly due to the use of the semilocal functional PBE as discussed in Refs. [10, 20, 35]

in the case of infrare spectra, where it was shown that the use of the PBE0 functional can

greatly improve the description of the position of the water stretching band, as well as

its width. The use of some van der Waals functionals (see Ref. [20]) may also lead to an

improvement of the position of the band.

There are three main features in the measured isotropic Raman spectrum: two intense

peaks at 2400 cm−1 and 2500 cm−1 and a shoulder at 2700 cm−1. The intensities of the two

peaks vary as a function of temperature from 0 to 100 ◦C [3, 4]. As shown in the upper panel

of Fig. 4.1b, the peak at 2200 cm−1 arises mainly from intermolecular contributions, while

the one at 2400 cm−1 has an intramolecular nature. Although the peak positions are red

shifted in our simulations and their separation is overestimated, due to the use of the PBE

functional, our results are consistent with experiments and with those of previous studies

[16, 114, 143, 144]. In our calculations, the position of the shoulder is in better agreement with

experiments than that of the two main peaks; this shoulder is predominantly determined by

the vibrations of non-hydrogen-bonded (NHB) species, with both inter- and intramolecular
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contributions. In the isotropic spectrum, in agreement with experiments [113], we did not

detect any significant signal at frequencies lower than those of the stretching band.
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Figure 4.1: (a) Calculated isotropic (upper panel) and anisotropic (lower panel) Raman
spectra (black lines) compared with several experiments. Red, blue and green curves are
experimental Raman spectra of heavy water measured at 283K [3], 293K [4] and 303K [3]
respectively. Orange and purple curves show experimental Raman spectra of hydrogenated
water at 278K and 308K [5]. (b) Calculated isotropic (upper panel) and anisotropic (lower
panel) Raman spectra (black lines) decomposed into intra- (red lines) and inter- (green lines)
molecular contributions.

4.4.2 Low-Frequency Bands

In the region below 300 cm−1, the isotropic Raman spectrum (upper panel of Fig. 4.1a) shows

no features; the anisotropic spectrum (lower panel) exhibits instead two distinct peaks at

60 cm−1 and 200 cm−1, in remarkable agreement with experiments [5] and at variance with

previous theoretical studies [132, 136–138, 140] based on classical models. The slight devia-

tion between theory and experiments (broad band over 300 cm−1) in the librational region is

likely due to the different mass of the hydrogen atom in experiments and calculations. The

weak peak around 1200 cm−1 arises from the water bending mode. The origin of the peaks
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at 60 cm−1 and 200 cm−1 has been greatly debated [145–147]. Some studies [112, 123, 146]

assigned the peaks to transverse and longitudinal acoustic modes respectively, others to HB

bending and stretching modes [112, 127]. Ref. [123] related the peak at 60 cm−1 to bifur-

cated HB. Recent ab initio simulations of the infrared spectrum of liquid water, where two

peaks were detected at the same frequencies (although with different intensities), suggested

that the 200 cm−1 peak arises from intermolecular charge fluctuations [23, 24] and from the

presence of the tetrahedral HB network [23]. It was also suggested that the peak at 60 cm−1

corresponds to localized vibrations, while the peak at 200 cm−1 corresponds to coupling

between HB molecules [63, 153].

We analyzed the 60 and 200 cm−1 peaks in terms of intra- and intermolecular contribu-

tions (Fig. 4.1b) and found that the former comes mainly from intramolecular vibrations,

while the latter shows a significant intermolecular contribution, in agreement with previous

studies [63, 153]. In addition, we found that at 270 cm−1, positive intra- and negative in-

termolecular contributions cancel each other (see upper panel of Fig. 4.1b), with the total

spectra showing no significant intensity. This indicates the presence of anti-correlated vibra-

tions on different molecules, that are in anti-phase but have the same amplitude. As shown

below such anticorrelation signal the presence of intermolecular charge fluctuations between

HB water molecules, consistent with the correlation between the polarizability of the water

molecules and the bond order of the HB O-D bond recently reported in Ref. [108].

In order to identify charge fluctuations, we used the sum of the spreads of the MLWFs

centered on a given molecule to describe the charge transfer from that molecule to neighbor-

ing ones. The spread Swn of MLWFs is defined as [48]:

Swn = 〈wn|r
2|wn〉 − 〈wn|r|wn〉

2, (4.33)

and describes the spatial extension of each MLWFs. To analyze the spectral properties of

the charge density, we computed the power spectrum of the spread using Eq. 4.21, where
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Figure 4.2: (a) The spectrum (black line) calculated from the spread of the MLWFs (see
text) is decomposed into intra- (red line) and inter- (green line) molecular contributions.
The vibrational density of states of the relative speed between oxygen atoms of HB wa-
ter molecules is also shown (orange line). (b) Distribution of different components of the
molecular polarizabilities of water molecules obtained in the simulation, compared with the
polarizability of an isolated water molecule in different directions (vertical bars): black, red
and blue lines represent polarizabilities along the dipole axis, the axis perpendicular to and
the axis within the molecular plane, respectively.

we replaced ᾱ by the sum of the spreads of the MLWFs. We further decomposed the spread

power spectrum into intra- and intermolecular contributions, and we found (Fig. 4.2a) the

same anticorrelation behavior at 270 cm−1as observed in the isotropic Raman spectrum.

To understand the origin of the charge transfer feature at 270 cm−1, we analyzed the

vibrational density of states (VDOS) obtained from the relative speed between the oxygen

atoms of HB molecular pairs:

I =

∫

dte−iωt
〈

|vO−O(0)||vO−O(t)|
〉

. (4.34)

Eq. 4.34 includes only the HB stretching vibrational motion, and rotations of water pairs are

ignored. As shown in Fig. 4.2a, the resulting spectra exhibits a peak at 250 cm−1, very close

to 270 cm−1, indicating a clear relation between HB stretching and intermolecular charge

fluctuations.

In summary, our analysis showed that in liquid water at ambient conditions, intermolec-
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ular HB stretching mode, centered at 270 cm−1, are accompanied by intermolecular charge

fluctuations. While there is no peak at this frequency in the isotropic Raman spectrum be-

cause of the anticorrelation nature of intermolecular charge-fluctuations, a peak is present in

the anisotropic Raman spectrum and also in the infrared spectrum [23, 24], albeit at a slightly

lower frequency of 200 cm−1. This difference in frequency is probably caused by different

selection rules determining isotropic Raman, anisotropic Raman and infrared spectra. We

note that so far the study of charge transfer between water molecules had been restricted to

gas-phase molecules and small clusters using either molecular-beam scattering experiments

[159] or quantum chemistry calculations [160–163]. Although various studies including clas-

sical [24, 164] and ab initio [23, 108] simulations suggested the presence of intermolecular

charge fluctuations in liquid water, most classical water models, such as SPCE [165, 166]

and TIP4P [167], completely neglected this effect. Only very recently, water models that

incorporated intermolecular charge transfer have been reported [168–170].

4.4.3 Molecular Polarizabilities

We now turn to the analysis of the molecular polarizabilities of water molecules in the liquid

[107, 149]. We first compare them with the polarizability of water in the gas phase and

we then estimate the contribution of molecular polarizabilities to Raman spectra. We then

separate and analyze contributions from individual molecules and the environment .

The ensemble average of the isotropic molecular polarizability of water molecules com-

puted from our simulations is 1.60, the same as for an isolated molecule. The experimental

value of the molecular polarizability in the liquid is 1.47, again the same as in the gas phase;

it was estimated from the measured refraction index n using the Lorentz-Lorenz equation:

n2−1
n2+2

= 4π
3 NᾱM , where N is the number of molecule per unit volume and ᾱM is the isotropic

molecular polarizability. Although the calculated values overestimate experiments, due to

the use of the PBE functional [99, 111], our results show that the molecular polarizability of

water is the same in the liquid and for an isolated molecule, in agreement with experiments
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and consistent with previous calculations [107, 108].

The distribution of the different components of the αi tensor computed for liquid water

is shown in Fig. 4.2b. The polarizability projected on the molecular dipole axis is the same

as in the isolated molecules, while that perpendicular to the molecular plane is significantly

enhanced and the one on the in-plane axis decreased. The out-of-plane axis represents the

direction least sensitive to the screening of the nuclei and thus the polarizability component

on this axis is the most affected by the environment [107], and its distribution is broader.

The in-plane component is, instead, smaller than in the gas phase and displays a narrower

distribution. This indicates that, not surprisingly, the molecular polarizability of water is

more anisotropic in the liquid than in an isolated molecule, consistent with previous classical

simulations [132, 139, 140]. We note that while in qualitative agreement with results reported

in the literature [107, 108], the distribution of αi shown in Fig. 4.2b is broader and the

anisotropy is larger compared to previous studies. This is probably due to the use of different

functionals (PBE versus BLYP).

We also note that many polarizable force fields adopted in the literature to simulate

water (see a description of selected water models, e.g. in Ref. [171]) use a value of the

polarizability smaller than the experimental one [101] in order to reproduce structural and

diffusive properties of the liquid; in addition most often it is assumed that the polarizability

tensor is isotropic [172], although models with different polarizability components [173] have

been suggested. Hence no parameterization of existing force fields is consistent with the ab

initio results reported here, and in previous first principles studies [107, 108]. Our first prin-

ciples results may be useful for tuning the parameters of polarizable water models, although

absolute values of polarizabilities should probably be obtained using hybrid functionals [99].

We now turn to analyzing the contribution of molecular polarizabilities to Raman inten-

sities. We compared our results with the total Raman spectra, as shown in Fig. 4.3a. The

difference between the two spectra represents the environmental part of the polarizability

αDID
i . The αi contribution is approximately proportional to the total Raman spectra in the
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Figure 4.3: (a) Isotropic (upper panel) and anisotropic (lower panel) Raman spectra (scaled;
black lines) compared with the spectra computed from molecular polarizabilities αi (blue
lines) and their intra- (red lines) and inter- (green lines) molecular contributions (see text).
(b) Raman spectra arising from the αi (black lines) and α′

i (polarizability of a single, isolated
water molecule at the geometry of the molecule in the liquid (see text); red lines)

bending and stretching regions over 1000 cm−1, however it differs substantially from the to-

tal one below this frequency. This can be understood by observing (see Eqs. 4.26, 4.29, 4.30

and 4.31) that the difference between αeff
i and αi is a function of intermolecular distances,

rij (Eq. 4.31). At high frequencies, rij can be assumed constant since water molecules move

much slower than the O-D stretching motions, and αi is therefore proportional to αeff
i . At

low frequencies, however, rij may not be assumed constant, and the DID interactions in-

duced by the collective molecular motions contribute to the difference between the spectra

computed from αeff
i or αi. This analysis suggests that the practice of assuming constant

molecular polarizabilities of molecules, as in previous studies [132, 136, 137, 139, 140] of Ra-

man spectra, may yield good predictions in the high-frequency stretching region, but rather

inaccurate results for the low-frequency bands.

The low-frequency part of the anisotropic αi spectra (Fig. 4.3a) is particularly interest-
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ing. It shows a peak at around ∼ 300 cm−1, i.e. in the same region where we identified

intermolecular charge fluctuations. In fact, charge fluctuations are a major contribution to

this peak, as charge transfer between molecules is responsible for a change of αi, a mere

molecular property. As shown in Fig. 4.3a, the intra- and intermolecular contributions of

the isotropic αi spectrum also show an anticorrelation behavior, proving that the feature

identified in the Raman spectra at 270 cm−1 does not arise solely from environmental effects

(DID interactions), but from the fluctuation of molecular polarizabilities induced by inter-

molecular charge fluctuations. The peak at 200 cm−1 in the anisotropic Raman spectrum is

instead a combination of intermolecular charge fluctuations, which contributes to αi, and of

environmental effects. Since no feature is present in the αi spectra at 60 cm−1, we conclude

that the peak at this frequency mostly originates from DID interactions, which correspond

to collective motions of the system.

In order to understand how molecular polarizabilities are modified by the environment

in the liquid, we computed the polarizabilities of a single isolated water molecule at the

geometry of the molecule in the liquid. We call such polarizability α′
i. Therefore, the

difference between α′
i and αi accounts for the difference in electronic structure induced by

the environment. Because of the high computational cost, we calculated α′
i for several but

not all water molecules in our simulation, and we computed the α′
i spectra by replacing

α by α′
i in Eqs. 4.21 and 4.22. In Fig. 4.3b, we show the comparison of the αi and α′

i

spectra for only one of the water molecules in our sample. While the two spectra agree

well in the high-frequency O-D stretching region, we observed clear differences in the low

frequency region. The difference between the two spectra is therefore caused by the change

of the electronic structure of the water molecules by the environment in the liquid, namely

by intermolecular charge fluctuations.

52



4.5 Summary and Conclusions

In summary, we computed the Raman spectra of liquid heavy water from ab initio MD

simulations using DFPT. These calculations represent the first ab initio study of the Ra-

man spectrum of a molecular liquid. Our results are in good agreement with experiments,

especially in the low-frequency region of the anisotropic spectrum. We analyzed the Raman

spectra by decomposing the intensities into intra- and intermolecular contributions using

MLWFs. In the case of the high-frequency O-D stretching band of the isotropic spectrum,

our findings indicate that the intense feature found experimentally at 2500 cm−1 arises from

intramolecular vibrations, while the one at 2400 cm−1 stems from intermolecular coupling;

the higher frequency shoulder at 2700 cm−1originates from NHB species, with both inter- and

intramolecular contributions. Overall our results for the high frequency band are consistent

with previous studies [143, 144].

In the low-frequency part of the Raman spectra, we identified the presence of intermolec-

ular charge fluctuations at 270 cm−1, accompanying intermolecular HB stretching modes.

To support such an identification, we combined a decomposition analysis in terms of intra-

and intermolecular contributions, with that of the spread of MLWFs and of molecular po-

larizabilities. In the anisotropic Raman spectrum, we found that the peak at 200 cm−1 has

an intermolecular nature and it originates partly from the charge fluctuations and partly

from environmental effects. The peak at 60 cm−1 is instead due to intramolecular modes

determined by DID interactions.

Overall our simulations showed the importance of ab initio methods to accurately describe

and interpret the Raman spectra of liquid water, especially in the low-frequency region where

intermolecular charge transfer is involved.

Following previous studies [107, 108, 149], we defined the molecular polarizabilities of

water molecules in the liquid, and we found that its average value is the same in the liquid and

in an isolated molecule, while the polarizability anisotropy of water molecules is enhanced

in the liquid. These results may be helpful for the parameterization of polarizable force
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fields of liquid water. We also investigated the contributions of the molecular polarizability

αi to the total Raman spectra and compared it with the spectra computed using α′
i, i.e.

the polarizability of water molecules extracted from the liquid with their geometry kept

unchanged. The comparison showed that using constant polarizabilities (or α′
i to replace

αi) in computing Raman spectra, as in many classical simulations [132, 136, 137, 139–141],

may be a good approximation for predicting the stretching band of the Raman spectra, but

not for the low-frequency region.

Our simulation elucidated the role of intermolecular charge fluctuations in the low-

frequency Raman spectra and provided a comprehensive interpretations of the spectra in

this region. We note that our ab initio methods to calculate and interpret the Raman

spectra can be readily used to study aqueous solutions and in general other non-metallic

systems. In addition, only simple modifications are needed to extend our methods to study

other vibrational probes such as the surface specific sum frequency vibrational spectroscopy

[27, 174].
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CHAPTER 5

A FIRST-PRINCIPLES FRAMEWORK TO COMPUTE

SUM-FREQUENCY GENERATION VIBRATIONAL SPECTRA

OF SEMICONDUCTORS AND INSULATORS

Reproduced in part with permission from Physical Review Letters, submitted for publication.

Unpublished work copyright 2015 American Physical Society.

5.1 Introduction

The determination of the atomistic structure of surfaces and interfaces is a central problem in

materials physics and in nanoscience [175, 176]. Among surface sensitive probes, non-linear

optical spectroscopies such as sum-frequency generation (SFG) have been widely used for

decades to study the structure and dynamics of surfaces and interfaces [26, 27]. However the

interpretation of experimental data is often difficult and, in many instances, controversial

[29, 177, 178]; in addition most theoretical models adopted to interpret experiments have

been based on multiple approximations and on the use of empirical force fields [174, 179].

In an SFG experiment (see Fig. 5.1), an interface is illuminated by two beams, of fre-

quency ω1 in the visible and ω2 in the infrared range, and the emitted sum-frequency (SF)

light with frequency ωs = ω1 + ω2 is detected. The total emitted SFG intensity is propor-

tional to the square of the complex effective second-order nonlinear (or SFG) susceptibility

χ
(2)
eff of the medium. Indeed, within the dipole approximation, the SFG signal of centrosym-

metric bulk regions vanishes, and the intensity of the emitted SF light originates only from

atoms or molecules present at the interface, where centrosymmetry is broken. We note that

it is the absence of quadrupole and higher order contributions that ultimately determines

the surface specificity of SFG spectroscopy. Experimentally, it is difficult to validate the

dipole approximation, and to establish whether quadrupole contributions are negligible in

SFG signals; only part of quadrupole contributions may be identified experimentally, by com-
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Figure 5.1: Representative geometry of of a Sum Frequency Generation (SFG) experiment
(left panel) where an interface between two media α and β is illuminated by two light beams
of frequency ω1 and ω2 (the corresponding wavevectors k are also indicated); I, R and T
indicate incident, reflected and transmitted light, respectively. The emitted SF light has
frequency ωs = ω1 + ω2 (right panel).

paring the intensities detected in transmission and reflectance optical geometries [180–182].

Hence to fully understand and interpret SFG signals, a robust and predictive computational

framework is required.

The theoretical foundation of SFG vibrational spectroscopy dates back more than two

decades [181–184]; nevertheless calculations of SFG intensities (including quadrupole contri-

butions) and comparisons between computed and measured spectra remain challenging tasks

for several reasons: (i) The explicit inclusion of quadrupole contributions requires the calcu-

lation of both interfacial and bulk terms to obtain the total susceptibility (unlike the case of

the dipole contribution, where only interfacial terms are to be evaluated). In atomistic simu-

lations using slab geometries to model interfaces, the consistent and non-empirical evaluation

of bulk and interfacial terms is an extremely demanding task, from a computational stand-

point. (ii) The calculation of quadrupole contributions requires the evaluation of quadrupole

moments, whose calculation requires special care in the case of dipolar molecules, in order
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to avoid origin dependent results. (iii) The evaluation of SFG susceptibilities encompasses

the calculation of local dielectric functions, necessary to properly evaluate the variation of

the electric field at the interface; in many studies such variation was simply ignored.

Recently, Shiratori and Morita [98] proposed a computational framework for the evalu-

ation of SFG spectra, using mixed quantum and molecular mechanics methods to compute

dipole and quadrupole contributions from molecular non-linear polarizabilities; they consid-

ered local field correction factors to account for the variation of the electric field at the inter-

face, hence effectively including a spatial dependent dielectric function in their calculations.

These authors also suggested a way to solve the origin dependence problem encountered

in the calculation of quadrupole moments of dipolar systems. However their method was

applied only to a non-polar molecular liquid [185]. Byrnes et al. [186] proposed instead a

technique relying on cancellation between interface and bulk contributions, where the varia-

tion of the electric field at the interface was ignored. As most of the theoretical investigations

on SFG appeared in the literature[174], the study of Ref. [185] used empirical force fields.

To our knowledge only one ab initio simulation of SFG spectra has been reported so far,

on the surface of liquid water [42], which however contained numerous approximations. The

authors did not include quadrupole contributions, nor the variation of the electric field at

the surface; in addition, they made use of possibly severe approximations in evaluating the

time correlation functions (TCF) [42].

In this chapter, we propose a first principles theoretical framework to predict SFG spec-

tra, which is based on density functional theory and includes both dipole and quadrupole

contributions arising from surface and bulk regions. We computed SFG susceptibilities us-

ing Maximally Localized Wannier functions (MLWFs) [48, 93], within a general formulation

valid for semiconductors and insulators. Our framework included the evaluation of local

dielectric functions to account for the variation of the electric field across the interface, and

the calculation of quadrupole moments with a technique yielding origin independent results.

We present an application of the method to the study of the SFG spectra of the ice Ih
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basal surface and discuss the importance of considering the local dielectric constant and

quadrupole contributions when interpreting experiments. [7, 8, 28, 187–189]. To our knowl-

edge our study represents the first ab initio simulation of SFG spectra including quadrupole

contributions and the electric field variations at the interface, as well as the first ab initio

simulation of the SFG spectra of ice [187, 190].

5.2 Basic Theories of SFG Spectroscopy

Both infrared and Raman transitions are involved in an SFG process (see Fig. 5.1): a system

in its vibrational ground state first absorbs an infrared photon of frequency ω2 and it is

then further excited to a virtual state by absorbing a visible photon (ω1). When the system

decays, it emits a photon of frequency ωs = ω1 + ω2. The SFG susceptibility tensor χ
(2)
eff

relates the effective induced polarization of the system P
(2)
eff (ωs) to the electric fields of the

incident beams, E0(ω1) and E0(ω2):

P
(2)
eff,ν(ωs) = χ

(2)
eff,νµξE

0
µ(ω1)E

0
ξ (ω2), (5.1)

where νµξζ denote Cartesian coordinates. For a specific combination of incident angles

and polarization directions of the beams, χ
(2)
eff = es · χ

(2)
eff : e1e2, where es, e1 and e2 are

the polarization directions of the SF, visible and infrared lights, respectively. Experiments

usually report χ
(2)
eff (ω2), and ωs and ω1 are kept constant. Hereafter for simplicity we do not

explicitly show the frequency dependency (ω2) of the second-order nonlinear susceptibilities.

SFG spectra are surface-specific probes if χ
(2)
eff is determined only by dipolar transitions.

If quadrupole transitions are included to describe one of the three processes shown in Fig. 5.1,

then χ
(2)
eff ≃ χD

eff + χ
Q
eff where in this expression non-resonant background, magnetic mul-

tipole terms and higher electric multipole terms are neglected. The dipole contribution

χD
eff describes the response to a uniform electric field perturbations while χ

Q
eff includes the

response to electric field gradients.
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5.2.1 Interfacial and Bulk Contributions

Using an approach similar to that of Ref. [98], we further decompose χD
eff and χ

Q
eff into inter-

facial (I) and bulk (B) contributions: χD
eff = χID

eff +χBD
eff , and χ

Q
eff = χ

IQ
eff +χ

BQ
eff . Note that

χBD
eff = 0 for an isotropic bulk system, e.g. bulk ice Ih. This decomposition is conceptually

not necessary but of key importance in any simulation with slab geometries to represent

interfaces or surfaces: computing both bulk and interface terms in the same simulation cell

with periodic boundary conditions only in the x and y direction (z is perpendicular to the

slab) would require samples prohibitively large and simulation time prohibitively long for

any ab initio simulation.

The ID term χID
eff is often considered the major contribution to χ

(2)
eff and has been the

focus of most studies in the literature [174, 179]:

χIDeff,νµξ =

∫ ∞

zb

dzLνν(ωs, z)χ
D
νµξ(z)Lµµ(ω1, z)Lξξ(ω2, z), (5.2)

where we assumed that the system is homogeneous in the x and y directions. The position zb

is supposed to be well beneath the surface so that the integral in Eq. 5.2 includes the whole

interfacial area. χD(z) is the second-order nonlinear susceptibility for dipole transitions at

position z (see below). We also assumed that the wavelength of the light is much larger

than the size of the interfacial region so that the phase associated to the electric field can

be neglected. The Fresnel coefficients L(ω, z) are the elements of a diagonal tensor which

relates the electric field at position z, E(ω, z), at the interface to E0(ω):

E(ω, z) = L(ω, z)E0(ω). (5.3)
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The explicit expression of the Fresnel coefficients are:

Lxx(ω) =
2ǫα(ω)k

β
z (ω)

ǫβ(ω)kαz (ω) + ǫα(ω)k
β
z (ω)

Lyy(ω) =
2kαz (ω)

kαz (ω) + k
β
z (ω)

Lzz(ω, z) =
2ǫα(ω)ǫβ(ω)kαz (ω)

ǫβ(ω)kαz + ǫα(ω)k
β
z (ω)

1

ǫz(ω, z)
.

(5.4)

Here ǫγ(ω) and kγ(ω), γ = α, β, are the dielectric constant and light wavevector in the bulk

region of phase γ (the interface is between two systems, α and β, see Fig. 5.1). The coefficient

L(ω) also depends on the incident angles of the light beams and its value depends on the

optical geometry chosen in experiments. Only Lzz(ω, z) is position dependent, through the

function 1/ǫz(ω, z), while Lxx(ω) and Lyy(ω) are position independent [7]. Our definition

of Fresnel coefficients is slightly different from the definition in Ref. [7], which is based on

the local field correction factors. We note that Fresnel coefficients, and ǫ(ω, r), are of key

importance to account for the variation of the electric field across the interface.

The interfacial quadrupole (IQ) contribution includes response to the electric field as well

as the electric field gradient. The latter, ∇E(ω, r), comes solely from the gradient of the

Fresnel coefficient, dL(ω, z)/dz (see Eq. 5.3). The expression of the interfacial quadrupole

contributions is [98, 181]:

χ
IQ
eff,νµξ =

∫ ∞

zb

dz

{

Lνν(ωs, z)χ
Q1

νµξz(z)
d

dz
Lµµ(ω1, z)Lξξ(ω2, z)

+ Lνν(ωs, z)χ
Q2

νµξz(z)Lµµ(ω1, z)
d

dz
Lξξ(ω2, z)

+
d

dz
Lνν(ωs, z)χ

Qs

νµξz(z)Lµµ(ω1, z)Lξξ(ω2, z)

}

+Lνν(ωs, zb)χ
Qs,B
νµξz(zb)Lµµ(ω1, zb)Lξξ(ω2, zb),

using (5.5)

where χQ1(z), χQ2(z) and χQs(z) are quadrupole second-order nonlinear susceptibilities,

which are rank-4 tensors, and describe the response to both the electric field and the electric
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field gradient at position z. We note that the first three terms on the rhs arise from the electric

field (dielectric constant) gradient across the interface, and we call the sum of these terms

χ
IQI
eff . The fourth terms on the rhs, which arises from integration by part, depends solely on

the property of the bulk region, despite the fact that it is obtained as part of the interfacial

contribution. We call this contribution χ
IQB
eff . Therefore we have χ

IQ
eff = χ

IQI
eff +χ

IQB
eff where:

χ
IQI
eff,νµξ ≡

∫

int
dz

{

Lνν(ωs, z)χ
Q1

νµξz(z)
d

dz
Lµµ(ω1, z)Lξξ(ω2, z)

+ Lνν(ωs, z)χ
Q2

νµξz(z)Lµµ(ω1, z)
d

dz
Lξξ(ω2, z)

+
d

dz
Lνν(ωs, z)χ

Qs

νµξz(z)Lµµ(ω1, z)Lξξ(ω2, z)

}

,

(5.6)

χ
IQB
eff,νµξ ≡ Lνν(ωs, zb)χ

Qs

νµξz(zb)Lµµ(ω1, zb)Lξξ(ω2, zb).
(5.7)

When computing the bulk quadrupole contribution (BQ), we can simplify its expression

by considering L(ω, r) as a position independent quantity, since ǫz(ω, z) can be approximated

as the bulk dielectric constant in the isotropic bulk region (see Eq. 5.4). Because the light

wavelength are smaller than the size of the bulk region, the electric field phase factor exp(ik ·

r) has to be explicitly considered in the evaluation of χ
BQ
eff . The expression of the bulk

quadrupole contributions for both reflection (R) and transmission (T) geometries (G = R,

T) is [98, 181]:

χ
BQ
eff,νµξ =

1

kT1,z + kT2,z − kGs,z
Lνν(ωs)Lµµ(ω1)Lξξ(ω2)

∑

ζ

χ
Q1

νµξζ(zb)k
T
1,ζ + χ

Q2

νµξζ(zb)k
T
2,ζ

− χ
Qs

νµξζ(zb)(k
T
1,ζ + kT2,ζ).

(5.8)

Note that due to the different signs of kRs,z and kTs,z (see Fig. 5.1), χ
BQ
eff is different for

reflection and transmission optical geometries while χID
eff and χ

IQ
eff are the same. Therefore

χ
BQusing
eff can be experimentally determined by comparing spectra measured in the two

different optical geometries [182]. On the contrary the χ
IQB
eff term cannot be determined
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experimentally.

In sum in our calculation the SFG susceptibility is decomposed as:

χ
(2)
eff = χID

eff + χ
IQI
eff + χ

IQB
eff + χ

BQ
eff , (5.9)

where the first two terms on the rhs are obtained by carrying out calculations in slab geome-

tries and the last two terms are instead evaluated by bulk calculations with 3D periodicity.

5.2.2 The Calculation of the linear and nonlinear susceptibilities

In order to compute each contributions to χ
(2)
eff from first principles, we first computed the

local frequency-dependent dielectric constant ǫ(ω, z) entering the definition of the Fresnel

coefficients (Eq. 5.4) and hence the first-order linear susceptibility χL(ω):

ǫ(ω, z) = ǫ∞(z) + 4πχL(ω, z), (5.10)

where ǫ∞(z) is the local high-frequency dielectric constant used to approximate ǫ(ωs, z)

and ǫ(ω1, z) since the dispersion of ǫ(ω, z) may be neglected in the visible frequency range.

Ignoring anharmonic effects, all the linear and nonlinear susceptibilities share the same form:

χX(ω, z) =
∑

q

AX
q (z)

ω − ωq + iΓq
, (5.11)

where X = L,D,Q1,Q2,Qs and ωq, Γq and AX
q (z) are the frequency, lifetime and amplitude

of the qth vibrational normal mode. Hence the calculation of total SFG signals reduces to the

calculation of AX
q (z), which are computed using quantities defined within the entire system

(slab or bulk models), not in terms of molecular quantities, such as molecular polarizabilities
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[98]:

AL
q,νµ(z) = −

1

2ωqV

∂Mν

∂Sq

∂Mµ

∂Sq

AD
q,νµξ(z) = −

1

2ωqV

∂Mξ

∂Sq

∂Πνµ
∂Sq

A
Q1

q,νµξζ(z) = −
1

2ωqV

∂Mξ

∂Sq

∂(∂Qζµ/∂Eν)

∂Sq

A
Q2

q,νµξζ(z) = −
1

2ωqV

∂Qξζ
∂Sq

∂Πνµ
∂Sq

A
Qs

q,νµξζ(z) = −
1

2ωqV

∂Mξ

∂Sq

∂(∂Qζν/∂Eµ)

∂Sq
,

(5.12)

where Sq is the qth normal mode, E, M, Q and Π are the total electric field, dipole,

quadrupole and effective polarizability, respectively, within a volume V in the vicinity of

the position z. We note that Π represents the electric dipolar response to the total electric

field E, δMν = ΠνµδEµ, which is to be distinguished from the response to the local electric

field, represented by the molecular polarizabilities (used, e.g., in Ref. [98]). The expressions

of the AX
q (z) coefficients may be recast into TCFs and computed using molecular dynamics

simulations [98]. It is important to choose the volume V big enough to obtain a smooth

susceptibility profile but small compared to the length scale of the entire system so as to

include the variation of E. In a system with well defined molecular units, it is reasonable

to choose V to include only one molecule, e.g. one water molecule in the ice system studied

here. using Four MLWFs are associated to each water molecule, if only valence electrons

(1s for H and 2s2 and 2p4 for oxygen) are considered. In practice we used V to be the

average volume of a molecule in the bulk material (V = Vcell/Nmol = 32.7 Å3 for ice Ih),

to approximate V for both the slab and the bulk system assuming that the volume of water

molecules does not change significantly in bulk and surface environments. Then M reduces

to a molecular dipole moment that can be computed using MLWFs [23, 48, 62, 93], and

Π reduces to an effective molecular polarizability, as defined in Ref. [2]. The latter can be

evaluated efficiently by projecting the polarizability obtained from DFPT onto MLWFs (see

Chapter 4). The quadrupole moment Q can be computed using the formula reported in the
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Appendix of Ref. [91]. However, instead of the position operator [87, 191] used in Ref. [91],

we adopted a real-space scheme [49] to evaluate the position and second moment of the nth

MLWF, 〈rµ〉n and 〈rµrν〉n (see Section 3.2). The latter quantitie converges much faster with

respect to the size of the simulation cell, and their value is more accurate for the system sizes

used in our study [49], than with the scheme used in Ref. [91]. The choice of the origin in the

quadrupole moment calculation will be discussed below. In practice, we used the same origin

to compute the quadrupole moment for all molecules in the system (see Section 5.4.6). We

calculated the derivatives of quadrupole moments ∂Qζν/∂Eµ using finite differences (FD)

and an electric enthalpy functional [45].

Using MLWFs, we could obtain the value of AX
q (z) for each molecule by summing over

all MLWFs in one molecule. The intermolecular contributions [2, 35] were properly included

in our calculation. For example, the amplitude for the linear susceptibility, including intra-

and intermolecular contributions of the ith molecule, is

AL
q,i,νµ = −

1

2ωqV

∑

j

∂Mi,ν

∂Sq

∂Mj,µ

∂Sq
,

whereMi is the dipole of the ith molecule, and the summation is performed over all molecules

in the system. Similar expressions were used to compute the amplitudes in Eq. 5.12 for each

molecule. The linear and nonlinear susceptibilities and the local dielectric constant can be

calculated, for each molecule, from the corresponding amplitudes using Eqs. 5.10 and 5.11.

The Fresnel coefficient tensor can be defined for each molecules as well, as it is directly

related to the local dielectric constant (see Eq. 5.4). Thus all quantities needed to compute

the ID, IQ and BQ contributions (see Eqs. 5.2, 5.6, 5.7 and 5.8) can be defined for each

molecule. When computing these contributions, we performed summations (for ID and IQI)

or averages (for IQB and BQ) over the corresponding molecular quantities instead of carrying

out an explicit integration or an average over the position z, respectively.
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5.2.3 The Origin Dependence Problem in the Calculation of Quadrupole

Moments

The calculation of the quadrupole moment in AX
q (z) requires special care. For a system with

zero dipole moment, the total quadrupole moment tensor Qνµ = 1
2

∫

ρ(r)rνrµdr (ρ(r) is the

total charge density of the system) is well defined and origin independent. Likewise, only if

χD = 0, second-order nonlinear susceptibilities for quadrupole transitions are well defined

and origin independent. Hence to properly compute quadruple contributions from isotropic

bulk regions, we used the total charge density of the supercell; we avoided summations

over quadrupole contributions associated to single molecular units, at variance from several

formulations presented in the literature [98, 186]. The essence of our method is that we

consider the entire simulation cell as the smallest unit in the calculation, instead of individual

water molecules. It is key to use properties of the entire system, such as the total charge

density, to evaluate χQ1, χQ2 and χQs, thus insuring that, as long as the entire sample

under consideration is centrosymmetric (χD = 0), the results are origin independent.

In principle, the exact same formulation as adopted here for ice (see below) could be

applied to disordered systems consisting of polar molecules, such as liquid water. Indeed

in an isotropic liquid χD = 0 and hence χQ1, χQ2 and χQs are guaranteed to be origin

independent when a fixed origin in the lab coordinates is used, instead of a moving one

such as the center of mass of molecules. However in practice for a liquid, the second-

order nonlinear susceptibilities need to be defined in terms of TCFs; obtaining χDνµξ ∝
∫

〈Mξ(t)Πνµ(t + ∆t)〉dt exp(iω2∆t) ≃ 0 (and hence recovering the origin independence of

χQ1 χQ2 and χQs) requires simulations of the order of nanoseconds, which are not yet

affordable with ab initio calculations.
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5.2.4 Polarization Combinations

In experimental measurements, specific polarization directions of the SF, visible and infrared

light beams are usually reported. Commonly used polarization combinations include ssp

and ppp, where s-polarization is in the y direction and p-polarization is in the xz plane (see

Fig. 5.1). The explicit expressions for χ
(2)
eff in terms of different polarization combinations

are [7]:

χ
(2)
eff,ssp =sin(θ2)χ

(2)
eff,yyz

χ
(2)
eff,ppp =sin(θs) sin(θ1) sin(θ2)χ

(2)
eff,zzz

− cos(θs) cos(θ1) sin(θ2)χ
(2)
eff,xxz

+ sin(θs) cos(θ1) cos(θ2)χ
(2)
eff,zxx

− cos(θs) sin(θ1) cos(θ2)χ
(2)
eff,xzx,

(5.13)

where θs, θ1 and θ2 are the incident angles of the SF, visible and infrared light, respectively.

If we only consider the dipole contributions, the above expression becomes:

χ
(2)
eff,ssp =

∫

int
dzLyy(ωs)Lyy(ω1)Lzz(ω2, z) sin(θ2)χ

D
yyz(z) + · · · (5.14)

χ
(2)
eff,ppp =

∫

int
dzLzz(ωs, z)Lzz(ω1, z)Lzz(ω2, z) sin(θs) sin(θ1) sin(θ2)χ

D
zzz(z)

−Lxx(ωs)Lxx(ω1)Lzz(ω2, z) cos(θs) cos(θ1) sin(θ2)χ
D
xxz(z)

+Lzz(ωs, z)Lxx(ω1)Lxx(ω2) sin(θs) cos(θ1) cos(θ2)χ
D
zxx(z)

−Lxx(ωs)Lzz(ω1, z)Lxx(ω2) cos(θs) sin(θ1) cos(θ2)χ
D
xzx(z) + · · · .

(5.15)

For symmetry reasons, χDxzx(z) = χDzxx(z) and in most experimental setup, θ1, θ2 and θs are

usually close to 45◦ [7, 8]. Therefore the last two terms on the rhs of Eq. 5.15 nearly cancel

each other. The local dielectric constant ǫ(ω, z) enters the definition of the z component of

the Fresnel factor in Lzz(ω, z) as shown in Eq. 5.4. Therefore, Eq. 5.14 and 5.15 may be
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Figure 5.2: Computed z component and x and y components of the high-frequency dielectric
constant tensor ǫ∞ as a function of the distance z in the direction perpendicular to the surface
(a); local frequency-dependent dielectric constant, ǫz(ω), averaged over the first (1st), second
(2nd) and third (3rd) BLs (b) in one of the ice slab models studies in this work. The latter
is compared with experimental measurement of ǫ(ω) for bulk ice Ih [6].

approximated as:

χ
(2)
eff,ssp ∼

C1

ǫz(ω2)
χDyyz

χ
(2)
eff,ssp ∼

C2

ǫz(ω2)ǫ2∞
χDzzz −

C3

ǫz(ω2)
χDxxz ,

(5.16)

where C1, C2, C3 are constants. Note that, changing the incident angles θ1, θ2 and θs may

lead to a change in the relative intensities of different features in ppp spectra, but not in ssp

spectra (see Eqs. 5.14 and 5.15). No approximate expressions have been used in this work.

5.3 Computational Details

We simulated ice Ih basal surfaces using slab models and periodic boundary conditions. Since

bulk ice Ih is proton disordered, we created 8 slabs, four with proton ordered surfaces and

four with proton disordered surfaces, to accumulate statistics. Each slab contained 6 bilayers

(BLs) and a total of 144 water molecules. The proton disordered slabs were generated using

the algorithm described in Refs. [190, 192]. All of the 6 BLs were proton disordered in the

four slabs with proton disordered surfaces. The four slabs with proton ordered surfaces (in
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the Fletcher’s striped phase, which was predicted to be one of the most stable phases of ice

Ih basal surfaces [190]) were built by manually ordering water molecules in the surface BLs,

starting from each of the four slabs with proton disordered surfaces. Hence the slabs with

proton ordered surfaces turned out to have four proton disordered BLs within the slab. In

total we sampled 8 proton disordered and 8 proton ordered surfaces (2 surfaces per slab). We

used a rectangular supercell of size 13.55 Å×15.65 Å×47.63 Å. We carefully checked that our

results for the SFG spectra were converged as a function of the cell and slab size to ensure

the convergence of the computed spectra. We computed the interfacial contributions χID
eff

and χ
IQI
eff using the slab models just described. We computed the bulk contributions χ

BQ
eff

and χ
IQB
eff using four bulk proton disordered ice Ih models, each with 96 water molecules in

a rectangular supercell of size 13.55 Å×15.65 Å×14.76 Å.

To compute the amplitudes AX
q (z) for linear and nonlinear susceptibilities (Eq. 5.12), we

obtained the dynamical matrix by computing derivatives of forces by FD with a displacement

of atomic position of 0.01 a.u.. Normal modes were obtained by diagonalizing the dynamical

matrix. We compared our results with those computed from ab initio molecular dynamics

simulations and found small differences in peak positions and intensities (see Section 5.4.5).

This indicates that anharmonic effects are small in the vibrational spectra of ice Ih basal

surfaces and justifies our use of FD techniques to compute SFG spectra. The details of the

computation of multipole moments and polarizabilities are reported in Section 5.2.2. We

carried out all these calculations with the Qbox Code [47] using the PBE functional [59, 60],

HSCV pseudopotentials [71, 72] and a planewave basis set with a kinetic energy cutoff of 85

Ry. The optical geometries, i.e. incident angles, for computing the Fresnel coefficients were

adapted from Ref. [7].

Note that the calculations of Πνµ and ∂Qνµ/∂Eξ with slab models includes the local

dielectric constant since within DFPT the applied perturbation in the z direction is that of

the electric displacement field D rather than the total electric field E [193]. Therefore the

ratio between Πνz(z) and the polarizability computed from DFPT, ΠDFPT
νz (z), is given by
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the inverse of the local high-frequency dielectric constant ǫ∞,z(z):

Πνz(z) = ΠDFPT
νz (z)/ǫ∞,z(z). (5.17)

For bulk models Πνµ(z) = ΠDFPT
νµ (z) due to the absence of any surface polarization.

5.4 Tests and Validation of the Method

5.4.1 Local Dielectric Constant Profile

In Fig. 5.2 we show the computed ǫz(ω) profile of a representative slab sample, showing

good agreement with experiment. It was computed taking into account corrections for the

spurious electrostatic interactions between slab images [194]. The expression we used to

compute ǫ∞,z is:

ǫ∞,z(z) =
Dz
Ez(z)

=
Dz

Dz − 4πPz(z)
=

1

1− 4πΠDFPT
zz (z)/V

. (5.18)

Our computed ǫ∞ ∼ 1.8 was also in good agreement with the experimental value (∼ 1.7). We

note however that the local dielectric constant ǫ∞,z(z) of the dangling OH bonds of surface

water molecules was estimated to be about 1.31 [7] from experiments, a value smaller than

the average presented in Fig. 5.2a. This apparent discrepancy is likely due to the fact that

ǫ reported Ref. [7] is defined in terms of the local field correction factors, different from our

definitions. Nevertheless we note that we observe a modest decrease of ǫ∞,z(z) (of about

0.1) in approaching the surface from the bulk region.

We found that the x, y and most of the z components of the local high-frequency dielectric

constant ǫ∞(z) show very little variations throughout the slab, although the z component

decreases significantly at the top half of the surface BL (see Fig. 5.2a). The behavior of the

local frequency-dependent dielectric constant ǫz(ω) of the surface BL is significantly different

from that of subsurface ones as well (see Fig. 5.2b). The variation of ǫz(ω, z) as a function

69



of the z coordinate may affect weights of surface and subsurface contributions to χID
eff since

ǫz(ω, z) enters the denominator in the definition of Lzz(ω, z) in Eq. 5.4.

Because of the small variation in ǫz(ω, z) in the subsurface BLs, the gradient of the

Fresnel coefficient dLzz(ω, z)/dz in this region can be neglected (see Eq. 5.3). Therefore in

the calculation of χ
IQI
eff , which is proportional to dLzz(ω, z)/dz (see Eq. 5.6), we only need

to include the surface BL. Given dǫ∞,z(z)/dz estimated from Fig. 5.2a, we estimate that

dLzz(ω, z)/dz ≃ 0.05Lzz(ω, z) at the surface BL. Although this is a very rough estimate, it

is sufficient to predict the order of magnitude of χ
IQI
eff . Since χ

IQI
eff is a minor contribution

to the SFG susceptibility, we expect that the error associated with our estimate will not

significantly affect the total computed χ
(2)
eff . More accurate predictions of dǫ∞,z(z)/dz may

be obtained by computing the change in the electrostatic potential under an applied electric

field. We also note that the IQI contribution is partly included in the ID one [98]. For slab

samples, Π as obtained within DFPT already includes the response to both the electric field

and the electric field gradient, since the total field perturbation applied in DFPT in not

constant (see Eq. 5.17).

5.4.2 Electrostatic Correction for Slab Models

The ID contribution to the spectra reported in Figs. 5.7 and 5.6 were computed without

the corrections for the spurious electrostatic interactions between periodic images. Although

without correction the dielectric constant turns out to be ǫ∞,z ≈ 2.2 is much larger than

the corrected value of about 1.8, the spectra computed with and without corrections are

very similar (see Fig. 5.3), due to the fact that in our models the vacuum region between

slabs is sufficiently large so as to properly converge the electronic structure of the system.

Inaccuracies in ǫ∞,z have little effect on the computed ssp spectra, since the dependences

of Lzz(ω2, z) (see Eq. 5.4) and χD (see Eqs. 5.10, 5.12 and 5.17) on ǫ∞,z approximately

cancel in the expression of ssp spectra given in Eq. 5.14. Instead in the expression of ppp

spectra, Eq. 5.15, there is an explicit dependence on ǫ∞,z through the term χDzzz(z) (see
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also Eq. 5.16). However the signal contributing to χDzzz(z) arises mainly from the free OH

stretching vibrations in the frequency region at about 3700 cm−1. Therefore increasing ǫ∞,z

only reduces the intensity of the free OH stretching peak, but does not significantly change

the shape of the main peaks of the ppp spectra in the range of 3100 – 3500 cm−1. We note

that setting ǫz(ω, z) = 1 in our calculations (violet curves in Fig. 5.7) enhances the weight

of χDzzz(z) in the expression of χDeff,ppp(z) in Eq. 5.15 and therefore significantly changes the

shape of χDeff,ppp(z).

5.4.3 Effect of Incident Angles Used in Different Experiments

The incident angles of the input and output light beams in the two experimental mea-

surements we compared our calculations with (see Fig. 4 in manuscript) [7, 8] are slightly

different. Wei et al. [7] used θ1 and θ2 values of 45◦ and 57◦, respectively, while Bisson and

Shultz [8] used 50◦ and 60◦, respectively. These parameters enter the final expression for the

spectra in Eq. 5.14 and 5.15. The angles θs can be inferred from θ1 and θ2 using the equality

k1,x + k2,x = ks,x and the phase matching condition |k1| + |k2| = |ks|. All of our spectra

were computed using the optical geometry of Ref. [7]. As shown in Fig. 5.3 the difference

between spectra computed with the incident angles of Ref. [7] and Ref. [8] are negligible.

5.4.4 Convergence of SFG spectra with respect to the slab thickness

In our calculation of χIDeff , we used ice slabs consisting of six BLs, three BLs for each surface.

We show the ID contribution to the SFG spectra computed by including one, two or three

surface BLs in Fig. 5.7. We found that χIDeff computed from two or three surface BLs are

very similar. This indicates that at least two surface BLs (about 7 Å) are needed in surface

calculations in order to converge the computed spectra.
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Figure 5.3: Imaginary part of the χID
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(right) polarization combinations] computed for one proton-disordered surface with (black)
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5.4.5 SFG spectra from FPMD simulations

In order to assess the importance of anharmonic effects on the computed SFG spectra of ice

Ih basal surfaces, we carried out Born-Oppenheimer AIMD simulations on two slab samples

(one with proton ordered and one with proton disordered surfaces). We used the same atomic

geometries and cell parameters as used in FD calculations, with the PBE functional [59] and

a time step of 5 a.u. (0.12 fs). After equilibrating the two samples for 20 ps in the NVT

ensemble, we performed 70 ps production runs in the NVE ensemble. Then we computed

χD from χDνµξ ∝
∫

〈Mξ(t)Πνµ(t + ∆t)〉dt exp(iω2∆t). The χID spectra computed from

AIMD simulations and FD calculations are compared in Fig. 5.4. Note that to simplify the

comparison, all spectra reported in Fig. 5.4 were computed by setting the Fresnel coefficients

to the identity tensor. We observed small differences in the peak positions and intensities

of AIMD and FD results, indicating that the contribution of anharmonic effect to the SFG

spectra is small.

5.4.6 The Origin Dependency of Quadrupole Contributions

In this section, we discuss the accuracy of our method in solving the origin dependence prob-

lem in the calculation of the quadrupole contributions. As discussed in Section 5.2.2, we used

the total charge density to compute the quadrupole moment and nonlinear susceptibilities

χQ1, χQ2 and χQs, from which we computed the IQB and BQ contributions using Eqs. 5.7

and 5.8. In Fig. 5.5, we show how the computed |χ
IQB
eff |2 varies as the origin is changed

when computing quadrupole moments. We observed only small changes that do not affect

the total computed spectra. The small origin dependency found here comes from a small

deviation from centrosymmetry in our model bulk ice samples, which is expected due to our

representation of proton disordered ice with a relatively small finite sample (96 molecules).

This error can be reduced by using a larger sample so as to better recover centrosymmetry.
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Figure 5.4: Imaginary part of the computed χID
eff contribution to the SFG spectra of ssp and

ppp polarization combinations, as obtained from AIMD (black) and finite difference (FD,
blue) calculations. The upper two panels show spectra computed for two proton disordered
surfaces; the lower two panels for two proton ordered surfaces. All AIMD and FD spectra
were obtained by including three surface BLs in the calculation and setting the Fresnel
coefficients to the identity tensor.

5.5 Results and Discussion

The various contributions to the imaginary part of χ
(2)
eff in the OH stretching region are shown

in Fig. 5.6, for two polarization combinations ssp and ppp (see Section 5.4.1). The gradient

of the Fresnel coefficients used in the calculation of χ
IQI
eff is estimated from the dielectric

constant profile in Fig. 5.2 (see Section 5.4.1). Because χ
IQI
eff is much smaller than χIDeff (see

below), the errors arising from its approximate evaluation are expected to be negligible. In
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the upper and middle panels of Fig. 5.6, we show the real and imaginary part of the χIDeff

and χIDeff + χ
IQB
eff contributions to the SFG spectra. The results computed from the proton

ordered and proton disordered ice Ih basal surface samples show similar features. It may be

difficult to distinguish between the two surfaces based on these spectra. Interestingly, we

found that in the ppp spectra, χ
IQB
eff is the only significant quadrupole contribution, mostly

influencing the peak at about ∼ 3150 cm−1. This finding is in agreement with previous

speculations [188] that such peak includes significant quadrupole contributions. This high

frequency peak has been previously assigned [188, 195] to a “bilayer-stitching mode”, i.e. a

stretching mode of the OH groups hydrogen bonded to water molecules in neighboring BLs,

, which are vibrating along the z direction. These vibrations should indeed result in a large

zzz component of χ
IQB
eff , which is an important contribution to ppp spectra. Instead the

contribution of χ
IQB
eff to ssp spectra is less intense since it has only yyz components.

In Fig. 5.7, we present the computed SFG intensities |χ
(2)
eff |2 averaged over several surface

models and compared with different experiments. The difference in the measurements [7, 8]

likely originates from different temperatures and surface cleanness (slightly different incident
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Figure 5.6: Real (top panels) and imaginary (middle panels) part of χIDeff spectra computed
for the proton ordered (black line) and proton disordered (red line) ice Ih basal surfaces.

The corresponding χIDeff + χ
IQB
eff spectra for the two types surfaces (blue and green dashed

lines) are shown as well. Imaginary part of the χ
IQB
eff , χ

BQ
eff and χ

IQI
eff are shown in the

bottom panels. The spectra for ssp and ppp polarization combinations are shown in left
and right panels, respectively. The computed spectra were red-shifted by 100 cm−1 to align
them with experiments at 3100 cm−1. The discrepancy in peak positions is ascribed to a
combined effect of the neglect of quantum effects [9] and the use of the PBE functional [10].
Anharmonic effects were not found to be significant for this system (Fig. 5.4).
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Figure 5.7: SFG intensities for ssp (left panels) and ppp (right panels) polarization combi-
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Ref. [8]; top panels) and computed results (as averages for proton disordered surface models
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were computed by including the ID contribution originating from the top one (green), two
(blue) or three (black) surface BLs (see text). Violet curves show only the ID contribution
from three surface BLs obtained by setting ǫ(ω, z) = 1 in the calculation. The total spectra

|χ
(2)
eff |2, including ID contribution from three surface BLs as well as IQI, IQB and BQ con-

tributions, are shown by the red curve. The computed spectra were red-shifted by 100 cm−1

to align them with experiments at 3100 cm−1.

77



angles used in the two experiments are not expected to significantly change the spectra

as explained in Section 5.2.4). The dipole contribution to computed SFG intensities was

considered converged when including three BLs, with the first two BLs (≃ 7 Å) yielding

most of the total contribution (see Section 5.4.4). Similar to our results for Imχ
(2)
eff spectra,

we found that quadrupole contributions are only significant in the ppp spectra. We also

found that it is important to properly include the frequency dependent dielectric constant

(shown in the right panel of Fig. 5.2) in computing the ppp spectra, as it is seen by comparing

calculations with ǫ(ω, z) set to 1 (violet curves in Fig. 5.7) with those including the proper

ǫ(ω, z). As shown in Eq. 5.16, χ
(2)
eff,ssp and χ

(2)
eff,ppp have different dependencies on ǫ(ω) and

the former is largely unaffected when setting ǫ(ω) = 1.

Our results show that the proton ordered and disordered surfaces do exhibit different

contributions to the SFG spectra arising from the first BL: in the ssp spectra (Fig. 5.7), the

proton disordered surfaces show a feature about 100 cm−1 higher in frequency than proton

ordered ones. However, when including three BLs and quadrupole contributions, the total

spectra of proton ordered and disordered surfaces cannot be unambiguously distinguished.

Our results are consistent with results reported by Ishiyama et al. [195], who found significant

contributions originating from subsurface BLs. As shown in the top panels of Fig. 5.7, both

experimental ssp spectra show a major peak at∼ 3100 cm−1 and a shoulder at ∼ 3200 cm−1;

however the spectrum measured at a lower temperature (100 K) and better surface conditions

[8] show a weaker shoulder than the one taken at higher temperature (173 K) [7]. Overall

our results appear to point to a proton ordered surface at low temperature, in agreement

with the prediction of Ref. [190].

5.6 Conclusion

In summary, we developed a theoretical and computational method to compute SFG spectra

from first principles. We consistently took into account the varying electric field across the

interface and we included dipole and quadrupole contributions from both surface and bulk
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regions. We also provided a simple computational framework to avoid origin dependent

terms in the calculation of quadrupole contributions. We used the method to compute the

SFG spectra of the ice Ih basal surface and obtained good agreement with experiments.

Our results highlight the importance of including electric field gradients and quadrupole

contributions to properly describe the SFG spectra of the ppp polarization combinations.

The first principles methodology developed here is general and applicable to ordered and

disordered semiconductors and insulators.
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CHAPTER 6

SOLVATION PROPERTIES OF MICROHYDRATED SULFATE

ANION CLUSTERS: INSIGHTS FROM AB INITIO

CALCULATIONS

In addition to water and ice, we used electronic structure calculations and FPMD to study

the properties of ions in water. In particular, in this chapter we present a study of the

solvation (surface vs internal) of sulfate anions in small water clusters, which may affect

the nucleation process of sulfate-containing aerosols. We show the results for our FPMD

simulation of sulfuric acid aqueous solutions in the next chapter, where we discuss the energy

level alignment between ion and water states and the implication of our results for the

mechanism of oxygen evolution reactions in water splitting experiments.

Reproduced with permission from Q. Wan, L. Spanu, and G. Galli, J. Phys. Chem. B

116, 9460 (2012). Copyright 2012 American Chemical Society.

6.1 Introduction

Sulfate-water clusters play an important role in industrial and environmental processes, such

as nucleation sites in clouds [196–199], and the formation of aerosols and thus of acid rain.

In addition, sulfate-water clusters are prototype systems for the investigation of the complex

structural and dynamical properties of anion solvation [200, 201]. For these reasons, small

hydrated clusters of the sulfate dianion, SO2−
4 · (H2O)n, have been extensively investigated

both experimentally [11, 202–208] and theoretically [209–214]. Isolated sulfate dianion does

not exist in the gas phase, due to the strong repulsion between its two negative charges and at

least three water molecules are necessary to stabilize the excess charge [209, 215]. Blackbody

Infrared Radiative Dissociation (BIRD) experiments [207] have shown that SO2−
4 ·(H2O)6 and

SO2−
4 · (H2O)12 clusters are more stable, compared to neighboring ones, and their stability

has been interpreted as indicating the presence either of a complete solvation shell or of
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particularly strong hydrogen bonds. However a recent theoretical study [214] found several

new structures for n=6-7, that are iso-energetic with the internally solvated anion. Infrared

[11] and photodetachment [202, 203] experiments on SO2−
4 · (H2O)12 have been interpreted

as signatures of a complete, symmetric solvation shell around the anion, although neither

experiment could lead to unequivocal structural assignments.

Sulfate ions are believed to be absent from air-aqueous solution interfaces [216]. Clas-

sical molecular dynamics (MD) simulations of sulfate-water cluster consisting of 60 water

molecules suggests a preference for internal solvation of the sulfate dianion [211].In addition,

a joint experimental and theoretical study based on sum frequency generation (SFG) spec-

troscopy and empirical MD simulations of ammonium and sodium sulfate aqueous solutions

[217], and of sulfuric acid [218] in water indicated that at room temperature, the sulfate ion

is absent within at least 6Å from the interface with air, in all solutions. However, for small

size clusters, such a clear preference for internal solvation is yet unclear.

In this chapter we investigate the stability, vibrational and electronic properties of

SO2−
4 · (H2O)n, with n = 12 and 13, using ab initio molecular dynamics [32, 46] and elec-

tronic structure calculations [219] based on Density Functional Theory (DFT), with semilocal

[59, 60] and hybrid functionals [68]. We considered 12 water molecules, as SO2−
4 ·(H2O)12

is the most stable among the small sulfate clusters and it was expected to be the first in

the series with a complete solvation shell [11, 207]. Both internally and surface solvated

structures were investigated. We then added an additional water molecule to investigate in

detail the competition between water-water and ion-water interactions. For both 12- and

13-water anion clusters, we studied the stability of different geometrical configurations by

computing total energies and vibrational free energies from harmonic frequencies. We then

computed infrared (IR) spectra using both MD simulations and finite difference calculations

and compared our results with available infrared multi-photon dissociation (IRMPD) exper-

iments [11]. We found a more complex potential energy surface for the13 water cluster than

previously recognized and obtained similar vibrational signatures for clusters with different
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structures, making it difficult to use IR spectra to unequivocally assign cluster geometries.

Finally we computed the electronic properties of the internally and surface solvated 12-water

sulfate dianion clusters and found very similar electronic density of states and vertical ion-

ization potentials. Our findings are consistent with IR and photodetachment experiments

and show that a surface solvated anion configuration is energetically favored, compared to

an internally solvated one. We suggest that mixtures of surface and internally solvated

configurations may be present in experimental samples, with metastable configurations ki-

netically trapped in the fast cooling process at low temperature in the case of IRMPD exper-

iments. While structural and stability properties obtained with PBE and PBE0 functionals

are similar, the use of a hybrid functional is necessary to obtain quantitative agreement with

measured vibrational frequencies and to compute ionization potentials.

The rest of the paper is organized as follow: in the next section we describe our com-

putational methods and then we present our results, discussing IR spectra of the 12 and

13 water hydrated sulfate anion first, followed by an analysis of their electronic properties.

Finally we present our conclusions in the last section.

6.2 Theoretical Methods

We performed ab initio Born-Oppenheimer (BO) MD simulations of SO2−
4 (H2O)n and

SO2−
4 (D2O)n clusters with n=12 and 13, with the generalized-gradient exchange-correlation

functional PBE [59, 60] and the hybrid functional PBE0 [68], using the Qbox code [46]. We

simulated isolated clusters in a cubic super cell of length 30 atomic units (a.u.). The negative

charge of the anion was neutralized by a positive uniform background [44]. We used plane

waves basis sets with a cutoff of 80 Ry and norm-conserving pseudo-potentials [71, 72]. Our

simulations were carried out at 100 K in the NVE ensemble, after equilibrating the system

in the constant volume and temperature ensemble (NVT), where the temperature was con-

trolled with a stochastic velocity rescaling thermostat [151]. We used a time step of 5 and

10 a.u. (10 a.u. = 0.24 fs) for light and heavy water, respectively.
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Starting from selected configurations from MD trajectories, we optimized the cluster ge-

ometries. In the calculation of total energies we included zero-point vibrational energies,

obtained using vibrational frequencies determined from harmonic finite difference calcula-

tions. We also computed the vertical ionization potential (IP) of selected configurations,

defined as IP = E
SO2−

4
·(H2O)n

− ESO−

4
·(H2O)n

, with both energies computed at the opti-

mized dianion cluster geometry, and using the Makov-Payne correction [220] implemented

in the Quantum Espresso code [219].

Vibrational Infrared (IR) spectra were obtained both from finite difference calculations

and from dipole dipole correlation functions computed over MD trajectories. The IR intensity

(Iq) of a normal mode (Sq) is proportional to the square of the derivative of the cluster’s

dipole moment with respect to the normal mode coordinate [221]:

Iq ∝ |
∂M

∂Sq
|2. (6.1)

The normal modes can be obtained by finite difference calculations of the atomic positions.

IR spectra can also be derived from the Fourier transform of the dipole auto-correlation

function computed over an MD trajectory:

I(ω) ∝ QQC ·

∫ ∞

−∞
dte−iωt〈M(t) ·M(0)〉, (6.2)

where the so called quantum correction term QQC corrects for the use of the classical ex-

pression of the dipole correlation function instead of the quantum mechanical one. Here we

adopted the harmonic approximation with QQC = β~ω/[1 − exp(−β~ω)] [109, 222, 223],

which has been extensively used in calculations of IR spectra of bulk water [23, 35]. Our

results are presented in the next section.
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6.3 Results and Discussion

6.3.1 Structural Properties of 12-Water Sulfate Clusters

We focused on the solvation of the dianion; we did not include solvation studies of HSO−
4

since both IRMPD [11] and photodetachment [202, 203] experiments did not detect any

signal of OH−, thus ruling out the occurrence of reactions of SO2−
4 with water to form

HSO−
4 and OH−. We considered the two different geometries of SO2−

4 · (H2O)12 proposed

in Ref. [11, 207, 210, 212] and shown in Fig. 6.1. In the 12A structure [11, 207, 210] the

sulfate ion is at the center of the cluster, i.e. it is internally solvated, whereas in the 12B

configuration [212] all water molecules are on one side of the anion which is thus at the

surface of the cluster. The 12A geometry belongs to the T symmetry group. Each water

molecule is hydrogen bonded to one oxygen atom of the sulfate ion and to two neighboring

water molecules, forming four membered rings, each composed of three molecules. All water

molecules reside in a single coordination shell, maximizing the number of hydrogen bonds.

On the contrary the 12B structure has only mirror symmetry, with 8 molecules directly

hydrogen-bonded to the anion, forming two four-membered rings (no three-membered rings

are present). In these four-membered rings, each molecule has three hydrogen bonds with

oxygens of the sulfate anion, and one with another water molecule. We note that both three-

and four-membered ring structures have been reported in the stable geometries of 6-water

sulfate cluster based on IR exprements by Bush et al.[205]; they have also been recently

found by Lambrecht et al.[214] in some of the many low-energy geometries of 6- and 7-water

sulfate clusters in an exhaustive search for cluster geometries.

In our ab initio MD simulations, we found that both 12A and 12B geometries are stable

at 100K (with light and heavy water), for over 20ps, consistent with the observed stability

of 12-water sulfate clusters in BIRD experiments [207]. An analysis of hydrogen bond length

and bond angles showed that the 12B structure exhibits shorter hydrogen bonds and larger

bond angles than the 12 A, indicating the presence of stronger hydrogen bonds than in 12A
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12A 12B

Figure 6.1: Internally (12A) and surface (12B) solvated configurations of the SO2−
4 (H2O)12

cluster. Oxygen, hydrogen and sulfur are represented in red, white and yellow, respectively.
Red dotted lines indicate hydrogen bonds.

(see Table 6.2).

In Ref. [11] based on the comparison of measured and computed IR spectra, the geometry

of the 12A cluster was considered as the most probable one. Photodetachment experiments

[202, 203] were also interpreted as suggesting the stability of internally solvated configura-

tions for the SO2−
4 (H2O)12 cluster, although these measurements do not permit to make

unequivocal structural assignments. However DFT calculations [212] using the B3LYP ex-

change and correlation functional found that the 12B geometry is energetically favored over

that of 12A by about 0.2eV [212]. Our total energy calculations with the PBE and PBE0

functionals, inclusive of zero point energies, confirm these findings, as shown in Table 6.1.

In order to investigate the apparent disagreement between theory and experiments on the

cluster stability, we computed IR spectra for the 12A and 12B configurations and compared

our results with available IRMPD experiments carried out at 17K [11] (see Fig. 6.2). We

note that IRMPD data are representative of linear IR absorption spectra only under the

assumption of fast internal vibrational redistribution [200]. The accuracy of this hypothesis

is difficult to assess and thus the comparison with experiments presented here is not expected

to provide a one-to-one correspondence between computed and measured peaks and it is

considered to be qualitative. IR spectra were obtained both from finite difference calculations
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Figure 6.2: Infrared spectra of 12-water sulfate clusters SO2−
4 (H2O)12 . The uppermost

panel shows the experimental IRMPD spectra[11]. The middle and lower panels show com-
puted spectra for the 12A and 12B clusters, respectively (see Fig. 6.1), obtained using finite
differences (FD) and molecular dynamics (MD) simulations, with either the PBE or PBE0
functional.

and from the Fourier transform of the time correlation function of the cluster dipole moment

over a ∼20 ps long MD trajectory with light water. In the region between 600-800 cm−1,

calculated IR spectra for the 12A cluster show a satisfactory agreement with the experimental

data. The broad peak within 600 − 800 cm−1 arises from the superposition of the sulfate

bending mode at ∼ 600 cm−1 and water librational modes at ∼ 800 cm−1. In this region of

the spectrum we did not find significant differences between results obtained with the PBE

and PBE0 functional. IR spectra from MD simulations using PBE show broader features,

with librational modes shifted at slightly lower frequencies, compared to those computed

from finite differences with the same functional; these differences stem from the inclusion of

anharmonic effects in the MD simulations, resulting in a better agreement with experiment.

Below 800 cm−1, the agreement between experiments and the computed spectrum of the
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12B structure is only fair, and inferior to that found for the 12A cluster. However in the

higher frequency region, 1000-1200 cm−1, we found that our results for 12B compare better

to experiments than those for 12A. While the 12B structure exhibits peaks both at ∼1100

and 1050 cm−1, similar to experiment, only one sharp peak and a very weak shoulder (close

to the main peak) are observed for the 12A cluster. The intense peak at ∼ 1100 cm−1

corresponds to a sulfate stretching mode, which is split in the non symmetric 12B cluster; its

position is underestimated in PBE calculations by about 80 cm−1, while it is well reproduced

using PBE0.

Table 6.1: Energy difference (eV) between cluster geometries represented in Fig. 6.1 and
6.3 for the 12 and 13 water hydrated sulfate dianion clusters. Calculations were carried out
using semilocal (PBE) and hybrid (PBE0) functionals, and adding the harmonic zero point
energy contribution (ZPE) computed from finite difference calculations.

Geometry PBE PBE+ZPE PBE0 PBE0+ZPE
12A 0 0 0 0
12B -0.23 -0.20 -0.19 -0.17
13A 0 0 0 0
13B -0.28 -0.23 -0.18 -0.14
13C -0.06 -0.04 -0.05 -0.04

These results suggest that a mixture of symmetric 12A and non symmetric 12B sulfate-

water clusters are likely to exist in the experimental samples, with the energetically less

favorable structure 12A being kinetically trapped under rapid cooling at very low tempera-

ture [205]. This conclusion is also supported by our electronic structure analysis, reported in

the electronic structure section. Before discussing the electronic properties, we report below

our results for the stability and IR spectra of SO2−
4 · (H2O)13.

6.3.2 Structural Properties of 13-Water Sulfate Clusters

We first considered the structure of the 13 water hydrated sulfate cluster denoted as 13A in

Fig. 6.3, proposed on the basis of IR experiments [11]; this configuration comprises a water

molecule residing in a separate, second solvation shell, while the other 12 molecules remain
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13A 13B 13C

Figure 6.3: Internally (13A and 13C) and surface (13B) solvated configurations of the SO2−
4

(H2O)13 cluster. Oxygen, hydrogen and sulfur are represented in red, white and yellow,
respectively. Red dotted lines indicate hydrogen bonds.

in the first shell. The calculated IR spectra for the 13A geometry reported in Ref. [11] shows

a relatively good agreement with the experimental data, suggesting that 13A may be the

stable structure for a 13-water sulfate cluster. The authors of Ref. [11] therefore concluded

that the addition of an extra water molecule to a 12-water sulfate cluster does not affect the

structure of the first solvation shell.

Table 6.2: Average bond lengths (Å) and average bond angles (◦) for water-ion and water-
water hydrogen bonds, computed over 20 ps ab initio MD trajectories. No results are shown
for 13A,which was found to be unstable in our simulations at finite temperature.

12A 12B 13B 13C
Bond length Ion-Water 1.97 1.84 1.84 1.94

Water-Water 1.96 1.94 1.92 1.92
Bond angle Ion-Water 165.5 168.4 167.7 166.4

Water-Water 157.0 163.3 164.8 162.9

We performed MD simulations of a 13-water cluster at 100 K starting from the 13A

configuration of Fig. 6.3 and we found that the 13A geometry is not stable. In Fig. 6.4

we report the distance of two water molecules in the first and second coordination shell,

respectively. After a short simulation time, one of the water molecules leaves the first

coordination shell. A similar result was found for both light and heavy water clusters. The

new structure found in our MD simulations, denoted as 13C in Fig. 6.3, has a lower energy
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Figure 6.4: Distance between the sulfur atom and three oxygen atoms (denoted as O3,
O10 and O13) belonging to solvating water molecules, during a ∼30ps ab initio molecular
dynamics simulation at 100K. The starting (13A) and final (13C) configurations are shown
as insets. The bond lengths between S and oxygen atoms 3, 10 and 13 are denoted by black,
red and blue lines respectively. A jump of O10 from the first to the second solvation shell
can be observed from the change in sulfur-oxygen distance: the affected hydrogen bonds are
highlighted in orange in both the starting and final configurations.

than the starting one, 13A (see Table 6.1), after geometry optimization and inclusion of zero

point energy. In Fig. 6.5 we report the simulated IR spectra for 13A and 13C, which turn

out to be very similar. Zhou et al.[11] assumed the existence of 13A under experimental

conditions based on the peak at 965 cm−1, attributed to a vibrational mode localized on

the water molecule outside the first solvation shell. Our results show that rather different

geometries of the solvation shells exhibit almost identical IR spectra, in particular the same

peak at 965 cm−1. These findings indicate that the geometry of the solvated dianion cannot

be unequivocally determined based solely on IR experiments.

To further investigate the stability of the first solvation shell, we simulated a 13-light-

water cluster starting from the 12B geometry with one extra water molecule (see Fig. 6.6).

We started our simulation by placing the extra water molecule close to the bare side of the

anion. After a short simulation time (∼ 2 ps), the extra water molecule (circled in green
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Figure 6.5: Infrared spectra of 13-water sulfate anion clusters SO2−
4 (H2O)13 . The uppermost

panel shows the experimental IRMPD spectra[11]. The remaining panels show computed
spectra for the 13A, 13B and 13C clusters, respectively (see Fig. 6.3), obtained using finite
differences (FD) and molecular dynamics (MD) simulations, with either the PBE or PBE0
functional.

in Fig. 6.6) migrates to the opposite side of the cluster, leaving the anion at the surface.

The new surface-solvated configuration is labeled 13B in Fig. 6.3. The extra water molecule

does not bind to the anion, but rather it prefers to form hydrogen bonds with the other

water molecules (see also Table 6.2). This preference for water molecules to bind with water

rather than the sulfate anion was also predicted by calculations [212, 214] of smaller sulfate

clusters. The configuration 13B is energetically favored with respect to 13A and 13C (see

Table 6.1) by about 0.15 eV, an energy difference of the same order as that found between

12A and 12B.
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Simulated IR spectra for 13B are shown in Fig. 6.5. Similarities are evident in the

IR features of 12B and 13B, especially in the splitting of the sulfate streching mode in

the 1000-1100cm−1 region. All the three structures investigated here, 13A, 13B and 13C,

show IR spectra with features that match experimental measurements. Overall our findings

indicate that for SO2−
4 · (H2O)n clusters with n=12 and 13, configurations where the anion

is at the surface are expected to be present in experimental samples, likely in a mixture

of internally and surface solvated geometries. We now turn to the discussion of the cluster

electronic properties and show that our results on surface solvation are also consistent with

photodetachment data, although photodetachment experiments have been interpreted as

showing internal solvation of the anion in SO2−
4 · (H2O)12.

0ps 1ps 2ps

Figure 6.6: Structural changes observed during the first 2 ps of an ab initio MD simulation
of a 13-water hydrated sulfate anion cluster (see text).

6.3.3 Electronic Properties

The description of the electronic properties of solvated anions is in general more complex

than that of simple cations. For example, it has been shown [66, 67] that local and semilocal

exchange and correlation functionals incorrectly describe the charge distribution around

negative ions in water, e.g. Cl−, yielding a delocalized charge distributed over the first

shell of solvating water molecules. The use of hybrid functionals, that include a portion of

Hartree-Fock exact exchange, may alleviate this problem and lead to a better localization of

the charge around the anion.
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We computed:

∆ρ = ρ
SO2−

4
·(H2O)n

− ρSO−

4
·(H2O)n

, (6.3)

where ρ
SO2−

4
·(H2O)n

is the charge density of the original cluster and ρ
SO−

4
·(H2O)n

the charge

density of a cluster with one eletron removed. Our results are reported in Fig. 6.7. ∆ρ

may be regarded as the probability distribution of the quasi-particle HOMO of the system

and describes the most probable distribution of the electron that is removed from the dou-

bly charged cluster in a vertical ionization process. This charge distribution is in general

different from that of the Kohn-Sham orbital corresponding to the highest eigenvalue in a

DFT calculation. Similar to results reported for Cl− [66], when using PBE ∆ρ is partially

delocalized over the water molecules around the anion, for both the 12A and 12B configura-

tions (see left panel of Fig. 6.7). The use of PBE0 leads instead to a more localized charge

distribution around the sulfate (see right panel of Fig. 6.7).

One expects a higher bond order for the S-O bond and an higher vibrational frequency

for its stretching mode when the electronic charge is more localized on the anion. Indeed our

calculated IR spectra (Fig. 6.2 and 6.5) obtained with the PBE0 functional show a sulfate

stretching mode at a higher frequency than PBE calculations, and in much better agreement

with experiments. We note that the position of the sulfate stretching mode at 1100 cm−1

is a good indicator of the accuracy of the theory, as this peak appears to be decoupled from

other water and sulfate vibrational modes. In addition, nuclear quantum effects may be

regarded as negligible in this case, as only S and O atoms contribute to the mode.

Table 6.3: Calculated vertical ionization potential (eV) of 12A and 12B sulfate dianion
clusters (see Fig. 6.1), obtained with semilocal (PBE) and hybrid (PBE0) functionals.

Functional 12A 12B
PBE 2.9 2.6
PBE0 3.9 3.6

In Table 6.3 we report the calculated vertical ionization potential (IP ) of the 12 water

cluster, defined as IP = E
SO2−

4
·(H2O)n

−E
SO−

4
·(H2O)n

. As expected, the IP obtained within
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12A PBE 12A PBE0

12B PBE 12B BPE0

Figure 6.7: Charge density differences between the 12 water hydrated SO2−
4 and SO−

4 clusters
in the 12 A (two upper panels) and 12B (two lower panels) configurations (see Fig. 6.1),
obtained using the PBE (left panels) and PBE0 (right panels) functionals. Note the difference
in charge localization obtained with semilocal and hybrid functionals. The same value of
charge density is plotted in all cases.

PBE0 is higher than the value obtained at the PBE level of theory and in better agreement

with the experimental value of ∼3.7 eV estimated from the position of the outermost peak

of the photodetachment spectrum [203].

The computed value for 12B appears to be in better agreement with experiments, sug-

gesting that this configuration may be the most probable one found in photodetachment

experiments. However it is unclear whether the accuracy of the theory at the PBE0 level

is sufficient for a definite assignment of the geometry based on computed IP compared to

experiments. In addition, the computed vertical IP s of 12A and 12B differ by only 0.3
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eV and the experimental peaks are rather broad (roughly 1eV), since the experiments were

performed at room temperature. Most likely the experimental samples contain an ensemble

of various configurations.
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Figure 6.8: Electronic density of states (EDOS) of the 12A and 12B (Fig. 6.1) computed using
the PBE (upper panel) and PBE0 (lower panel) exchange-correlation functionals. Green and
black arrows indicate the first three orbitals belonging to sulfate ion, water and sulfate ion
respectively (see text).

We also computed the electronic density of states (EDOS) of the 12A and 12B geometries:

these are shown in Fig. 6.8, where we drew green and black arrows in correspondence of peaks
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predominantly arising from anion states and from water states, respectively. PBE and PBE0

calculations yield similar EDOS distributions; however the energy separation between the

uppermost anion and water states is substantially larger at the PBE0 level, indicating, as

expected, a different level alignment between anion and water states at the two levels of

theory. Interestingly the EDOS of the 12A and 12B geometries are also rather similar: in

both cases the uppermost peak belongs to the anion, followed by water states, and then by

an anion states about 1.8 eV lower in energy than the outermost one. Although a direct

comparison between EDOS and photodetachment spectra is not possible (as no information

about escape barriers is contained in the computed EDOS), our results strongly suggest

that it is not possible to discern between internally solvated and surface solvated geometries

of the 12 water hydrated dianion on the basis of photodetachment experiments at room

temperature.

Finally we computed the vertical ionization potential using the PBE0 functional and the

PBE single particle orbitals and vice versa. The results showed insensitivity to the orbitals

used and a strong dependence on the functional, consistent with the findings of Ref. [67].

Therefore ∆ρ appears to be a reliable indicator of the accuracy of the theory for electronic

properties calculations. We note that despite inaccurate results for ionization potentials and

the fair predictions of vibrational frequencies, PBE can still provide qualitatively correct

results on the structural properties and the overall shape of IR spectra.

6.4 Conclusions

We revisited the interpretation of spectroscopic (IR) and photodetachment experiments on

hydrated sulfate anions with 12 and 13 water molecules. SO2−
4 · (H2O)12 is a particularly

stable cluster and was believed to be the first one of the series to present a full hydration

shell. We also considered an additional water molecule (that is SO2−
4 ·(H2O)13) to investigate

in detail the competing water-water and water-anion interactions. Using ab initio MD and

electronic structure calculations we found that at zero temperature, surface hydrated config-
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urations are more stable than fully solvated ones for both the 12 and 13 water clusters, by

about 0.15 eV. Computed IR spectra suggest that at low temperature, the samples produced

in IRMPD experiments are likely to contain an ensemble of surface and internally solvated

geometries, with the less stable ones being kinetically trapped. Computed electronic density

of states and ionization potentials for surface solvated and internally hydrated clusters are

both fully consistent with photodetachment experiments conducted at room temperature.

Therefore these experiments may not be used to discern between the different cluster ge-

ometries for the small cluster sizes considered here. Likewise, IR spectra may not be used

to make definitive structural assignments as we found that different geometries may have

similar vibrational signatures, with striking similarities especially in the case of 13 water

clusters. It was previously reported that adding a water molecule to SO2−
4 · (H2O)12 has

a negligible influence on its first solvation shell. However our MD simulations showed that

the presence of an extra molecule does affect the cluster. Our calculations indicate that it

is only in clusters larger than previously believed that one observes a clear preference for

internal solvation of the sulfate dianion, and that surface solvated geometries are likely to

be present, possibly as the majority population, in several experiments with small clusters.

Since internally and surface solvated clusters behave differently as nucleation sites in water

droplets, our results may have implications in understanding aerosol processes that involve

sulfate dianion. Finally we note that PBE0 calculations are superior to PBE ones in describ-

ing vibrational spectra and ionization potentials. However we found that PBE does provide

qualitatively correct results on the structural properties and overall shape of IR spectra.
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CHAPTER 7

ELECTRONIC STRUCTURE OF AQUEOUS SULFURIC ACID

FROM FIRST PRINCIPLES SIMULATIONS WITH HYBRID

FUNCTIONALS

Reproduced with permission from Q. Wan, L. Spanu, F. Gygi, and G. Galli, J. Phys. Chem.

Lett. 5, 2562 (2014). Copyright 2014 American Chemical Society.

7.1 Introduction

Aqueous solutions of sulfuric acid H2SO4 and hydrated sulfate SO2−
4 and bisulfate HSO−

4 an-

ions are of interest to several fields of chemistry [50, 51, 224–226]. For example, small clusters

of hydrated HSO−
4 and SO2−

4 play an important role in nucleation processes in the atmo-

sphere [224]. The sulfonic acid group -SO3H is the effective group of nafion ionomers suitable

for proton-exchange membranes in fuel cells [225, 226]. In addition, sulfuric acid solutions

have been widely used in photoelectrochemical water splitting reactions [50]. Recent studies

[50, 51] on the effect of electrolytes on the efficiency of oxygen evolution reactions (OER)

highlighted the importance of understanding the electronic structure of these solutions.

Several experimental investigations, including X-ray and neutron diffraction [227–230],

appeared in the literature in the last two decades, addressing the structural and electronic

properties of solvated sulfuric acid in water. Most studies focused on concentrated solutions,

e.g. above 5 mol/L, and found a water oxygen-oxygen distance ∼ 0.2 Å shorter than in

pure water [230] and a high proton mobility, i.e. one order of magnitude larger than that of

any other common ions in aqueous solutions [227, 228]. Photoelectron emission experiments

were employed to determine the ionization potential of SO2−
4 in aqueous solutions [231, 232],

and the degree of dissociation (αHSO
−

4 ) of HSO−
4 in sulfuric acid solutions [233], which was

also investigated by means of Raman spectroscopy [234, 235]. It was found that the value

of αHSO
−

4 is very sensitive to the temperature (e.g. αHSO
−

4 varies from 0.68 to 0.37 in the
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range 240 - 290 K at a concentration of 1.13 mol/L [235]). The values reported by different

experiments [233, 235] agree well at concentrations above 2 mol/L. However, photoelectron

measurements [233] overestimated Raman spectroscopy results [235] by about 10% at ∼ 1

mol/L.

Theoretical studies, in particular ab initio molecular dynamics (AIMD) simulations

[12, 236] with semilocal BLYP [236], HCTH/120 [236] and PBE [12] functionals, have so

far been focused on the structural properties of sulfuric acid aqueous solutions at 0.9 mol/L.

The values of αHSO
−

4 reported in these simulations varied from 0 in a PBE simulation at 302

K [12], 0.1 in a BLYP simulation at 326 K [236] to 0.2 or 0.5 in two HCTH/120 simulations

at 320 K [236], to be compared with 0.3−0.35 measured with Raman spectroscopy at ∼ 300

K [235]. The discrepancies with experiments may stem partly from the use of semilocal func-

tionals, which at the chosen simulation temperatures of 300− 320 K yield an overstructured

hydrogen bond network [20, 64] and sluggish water dynamics [236].

Despite recent progress in understanding the properties of sulfuric acid in water, a qual-

itatively correct ab initio description of the dissociation of sulfuric acid is not yet available,

and a thorough knowledge of the electronic structure of aqueous solutions of sulfuric acid is

still lacking, with no ab initio calculations of its electronic properties reported so far. One

difficulty in performing accurate first-principles simulations of solvated anions, i.e. HSO−
4

and SO2−
4 , is posed by the so called delocalization error [66] from which many semilocal

density functional approximations suffer. This error is especially pronounced for negatively

charged systems such as solvated anions [65, 237], leading to the prediction of an incorrect

localization of the charge density. One way to remedy the delocalization error is to use hybrid

density functionals which include a combination of semilocal exchange-correlation potentials

and Hartree-Fock non-local exchange (also known as exact exchange) [66]. The calculation

of the latter in condensed phases is computationally very demanding, and several techniques

[75, 238, 239] were proposed to reduce the computational cost. Among these, the recursive

subspace bisection algorithm [75, 76] was shown to be both efficient for water [76] and NaCl
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solutions [69] and is our method of choice.

In this chapter, we investigate the structural and electronic properties of a 0.87 mol/L

sulfuric acid aqueous solution, a concentration similar to that (∼ 1.0 mol/L) used in recent

OER experiments [51]. We present the first AIMD simulation of sulfuric acid in water carried

out with hybrid functionals (PBE0 [68]), and we compare our results with those obtained with

semilocal ones (PBE [59, 60]). We found that only PBE0 yields a qualitatively correct degree

of dissociation of the HSO−
4 ion in water, while PBE largely overestimates the concentration

of SO2−
4 in the solution. We also reported the first study of the electronic properties of the

solution, so far investigated only experimentally: based on the relative alignment between the

highest occupied molecular orbital (HOMO) of the anions and the valence band maximum

(VBM) of water, we discuss the possible mechanisms involved in OER experiments.

7.2 Computational Methods

We considered a cubic supercell of linear demension of 12.42 Å, containing one deuterated

sulfuric acid molecule and 62 heavy water molecules at the experimental density of 1.1

g/cm3. (For simplicity, deuterium atoms are referred to with the element symbol H instead

of D throughout the paper.) We carried out Born-Oppenheimer AIMD simulations with

the Qbox code [46] and a time step of 10 a.u. (0.24 fs). We used a planewave basis set

with a kinetic energy cutoff of 85 Ry, norm-conserving pseudopotentials [71, 72] and we

sampled the Brillouin zone with only the Γ point. In both PBE and PBE0 simulations

we considered that the total energy was converged in the electronic structure optimization

when the total energy difference between two consecutive steps was less than 1 × 10−7

atomic unit. When using the PBE functional, we collected statistics over a 38 ps NVE

simulation, after a 15 ps equilibration in the NVT ensemble with a target temperature of

380 K maintained by a Bussi-Donadio-Parrinello thermostat [151]. We chose an elevated

temperature to reproduce the measured structural properties of water at room temperature

[10]. Because of the high computational cost, when using the PBE0 functional, we utilized
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the recursive subspace bisection algorithm [75, 76] with a threshold of 0.02 to speed up the

calculations. We collected statistics on a 15 ps NVT trajectory, after 15 ps equilibration using

the same target temperature and thermostat as with PBE. We note that statistical averages

over trajectories obtained in the NVE and NVT ensembles yield the same results, provided

the simulations are carried out at the same average temperature and density. The PBE0

simulations were carried out in the NVT ensemble for reasons of efficiency, after comparing

the results obtained in the NVE and NVT ensemble for another solution containing anions

(see Fig. 3 and 4 of Ref. [69]. NVE and NVT simulations yielded indistinguishable results for

the structural and electronic properties examined in Ref. [69]). The averaged temperatures

over the production runs using PBE and PBE0 functionals were chosen to be the same and

they turned out to be 376± 18 K and 376± 21 K respectively.

7.3 Results and Discussion

7.3.1 Structural Properties

We first discuss the structural properties of the solution. The computed water oxygen-

oxygen and oxygen-hydrogen radial distribution functions (RDF) are compared in Fig. 7.1a

and 7.1b, in the presence and absence of the dissolved acid. Our results indicate that at the

concentration considered here, the presence of the sulfuric acid does not significantly alter

the average liquid water structure. We also found that the PBE0 simulation yields a less

structured water and ion-water RDF than PBE (see Fig. 7.1), consistent with the results

reported for solvated chloride ions [65] and recent simulations of water with PBE0+vdW

functionals [240]. Note that the RDFs obtained in our work with the PBE functional are in

better agreement with experiments than those of Ref. [12], where simulations were carried out

at a much lower temperature (∼ 300 K). We found a solvation shell of ∼ 8 water molecules

around the anion, with PBE0, compared to ∼ 10 obtained from PBE simulations (Fig. 7.1c).

A comparison with experiment is not straightforward, as the coordination number of SO2−
4

100



reported by X-ray diffraction experiments [229] varies between 7 and 12, due to difficulties in

defining a clear minimum in the correlation function of the anion and water molecules in the

liquid [241]. The oxygen-oxygen RDF obtained with PBE0 yields a better agreement with

that of recent X-ray diffraction experiments on pure liquid water [13] than the PBE one.

However, the optimal temperature required for PBE0 simulations to reproduce experimental

RDFs at ambient conditions is not known [10]. Considering that the computed PBE0 oxygen-

oxygen RDF is slightly understructured compared to experiment [13], such temperature is

estimated to be about 350 - 360 K, slightly lower than the one used here, i.e. 376 K, which

was chosen to be the same as that of our PBE simulations.

7.3.2 Dissociation of Sulfuric Acid

One common property of polyprotic acids is their ability to release multiple hydronium ions

in aqueous solutions. Sulfuric acid can release two hydronium cations in the following two

consecutive reactions:

H2SO4(aq) + H2O → HSO−
4 (aq) + H3O

+(aq), (7.1)

HSO−
4 (aq) + H2O → SO2−

4 (aq) + H3O
+(aq). (7.2)

At ambient conditions and at the simulated concentration, the reaction 7.1 is consid-

ered complete, i.e. the neutral species H2SO4 is not present in solution, and only the

HSO−
4 and SO2−

4 anions are. The degree of dissociation of HSO−
4 is defined as αHSO

−

4 =

[SO2−
4 ]/

(

[HSO−
4 ] + [SO2−

4 ]
)

. Raman [234, 235] experiments indicate that in sulfuric acid

aqueous solutions at 300K and a concentration equal to the simulated one, αHSO
−

4 is about

0.3 − 0.35. The values reported by photoelectron emission experiments were not used for

comparison due to errors arising from the low signal-to-noise ratio at this concentration [233].

We computed the value of αHSO
−

4 for both of our simulations. In order to distinguish

between HSO−
4 and SO2−

4 we used a simple geometrical criterion, where we assigned each

101



2 3 4 5 6

r [Å]

0

0.5

1

1.5

2

2.5

3

g O
-O

(r
)

(a) O
W

-O
W

 PBE solution
O

W
-O

W
 PBE solution [ref 16]

O
W

-O
W

 PBE0 solution
O-O PBE water [ref 34]
O-O water expt. [ref 32]

1 2 3 4 5 6

r [Å]

0

0.5

1

1.5

2

2.5

3
g O

-H
(r

)
(b) O

W
-H PBE solution

O-H PBE water [ref 34]
O

W
-H PBE0 solution

O
W

-H PBE solution [ref 16]

3 4 5 6

r [Å]

0

0.5

1

1.5

2

2.5

3

g S
-O

(r
)

(c)
S-O

W
 PBE solution

S-O
W

 PBE0 solution

Figure 7.1: Oxygen-oxygen (a) , oxygen-hydrogen (b) and sulfur-oxygen (c) radial distribu-
tion functions (RDF), gO−O(r), gO−H(r) and gS−O(r); OW denotes oxygen atoms belonging
to the water molecules in the liquid. Red and black solid curves denote our results for a 0.87
mol/L sulfuric acid solution obtained with simulations at 376 K using the PBE0 and PBE
functionals, respectively. We compare our RDFs with those reported in Ref. [12] (brown
curve). We also report the gO−O(r) of pure heavy water from a PBE simulation at 378 K
[2] (blue curve) and the experimental water correlation function obtained from recent X-ray
diffraction experiments at 295 K [13] (dashed green curve).

H atoms to its nearest neighboring oxygen atom, either a water oxygen or a sulfuric acid

oxygen. In agreement with experiments [235], we did not find any neutral H2SO4 species.

The computed values of αHSO
−

4 are 0.73 and 0.25, at the PBE and PBE0 levels respectively
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Figure 7.2: Computed oxygen-hydrogen (OS-H) (a) and oxygen-water oxygen (OS-OW)
radial distribution functions (RDFs), where OS and OW denote oxygen atoms belonging to
sulfuric acid and to water molecules, respectively. Red and black solid curves denote our
results for a 0.87 mol/L solution obtained with the PBE0 and PBE functionals, respectively.
We compare our OS-H RDF with that reported in Ref. [12] (brown curve).

(see top panels of Fig. 7.3). There is a sizable error associated to these computed values,

estimated to be of the order of±0.1; this it due to the size of our simulation cell and the length

of our simulations. But the comparison between the PBE and PBE0 results is meaningful.

Clearly, our PBE0 simulation gives a more reasonable estimate of αHSO
−

4 , in qualitative

(and possibly quantitative) agreement with experiments. The qualitatively incorrect result

obtained with the PBE functional is not surprising, and it is likely due to the delocalization

error [66] that causes an overstabilization of the species with the highest charged state, e.g.

SO2−
4 , and thus results in an overestimated αHSO

−

4 . Hybrid functionals partly correct the

delocalization error and give a qualitatively correct descriptions of the equilibrium between

HSO−
4 and SO2−

4 . We note that Choe et al. [12] reported αHSO
−

4 = 0 using AIMD and the

PBE functional at the same sulfuric acid concentration, most likely because they simulated

at a lower T (300 K), at which the PBE functional yields a severely overstructured liquid (see

Fig. 7.1 (a) and (b)) with slow diffusion. AIMD simulations [236] with BLYP and HCTH/120

functionals at ∼ 320 K may suffer from the same error as well. These simulations [12, 236]

yielded water self diffusion coefficients varying from 0.05× 10−5 to 0.5× 10−5 cm2/s, much

lower than the experimental value [242] of pure heavy water 1.9 × 10−5 cm2/s; instead the
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values computed in our simulations are ∼ 1.5×10−5 and ∼ 2.7×10−5 cm2/s at the PBE and

PBE0 levels of theory, respectively, in qualitative agreement with experiments. However we

note that definitive conclusions on the values of the diffusion coefficients may most likely not

be attained by using only a single trajectory of several tens of ps. Therefore only qualitative

comparisons are meaningful between the numbers reported here.
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Figure 7.3: Distances (top panel) and single particle energies (middle and bottom panels)
of a sulfuric acid aqueous solution (0.87 mol/L) computed from trajectories obtained at the
PBE (left panels) and PBE0 (right panels) level of theory. In the upper panel the red and
blue curves show the distance between the sulfur atom and the oxygen atom belonging to
its first and second hydronium ion neighbor, respectively (the blue curve is zero when only
one hydronium ion is present in the simulation). The middle and bottom panels show Kohn-
Sham eigenvalues of the highest eight occupied orbitals (black circles), with states localized
on the anion (HSO−

4 or SO2−
4 ) shown in red. The electronic structure was computed using

the PBE (middle panels) and PBE0 (bottom panels) functionals on samples extracted from
PBE (left) and PBE0 (right) trajectories. The orange and green boxes highlight several
typical portions of our simulations where the HOMO of the anion is significantly below or
above the water VBM, respectively.
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4 (blue) anions, with respect to the valence band maximum (VBM)

of water (black), as obtained in our simulations with the PBE and PBE0 functional.

7.3.3 Electronic Properties

We now turn to the discussion of the electronic properties of the sulfuric acid solutions.

We computed the Kohn-Sham eigenvalues of several single particle states near the VBM

of water, for various snapshots extracted from both PBE and PBE0 simulations (every 2

(0.5) ps in the case of PBE (PBE0) trajectories). We assigned single particle states to water

molecules or anions by establishing where the states are localized in real space.

In both PBE and PBE0 simulations (see Fig. 7.4), the energy of the HOMO of the doubly

charged anion SO2−
4 is well above the VBM of water (∼ 0.8 eV with PBE and ∼ 1 eV with

PBE0), while that of the singly charged anion HSO−
4 fluctuates close to that of the VBM

of water. Our results are also consistent with previous stability studies of the SO2−
4 anion

[209, 210, 215]. It was shown that a bare SO2−
4 is unstable unless coordinated by at least

three water molecules, while a bare HSO−
4 anion is stable [243].

At the PBE level of theory (see left panels of Fig. 7.3), we found that the SO2−
4 ion is the

majority species in the solution and the HOMO is mostly above the water VBM; this result is

in qualitative agreement with photoelectron emission experiments [232] placing the HOMO

of SO2−
4 about 1.4 eV above the VBM of water. The energy difference ∆EHOMO-VBM

between the HOMO of SO2−
4 and the water VBM predicted by the PBE0 functional is ∼ 1

eV, that is ∼ 0.2 eV larger than that obtained with the PBE functional (see right panels

of Fig. 7.3), and in better agreement with experiments. This difference between PBE and
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PBE0 functionals can be understood from the different localization properties of the HOMO

orbitals predicted by the two functionals, which can be characterized by computing the

inverse participation ratio (IPR). The IPR of an orbital σ is defined as IPRσ = 1
∫

|ψσ(r)|4dr
.

The IPR of a delocalized state tends to 1 and the larger the IPR, the more localized the

orbital. The IPR of the HOMO orbital averaged over configurations extracted from the

PBE0 simulation computed with PBE and PBE0 functionals are 712 and 774 respectively.

Not surprisingly the PBE functional predicts a more delocalized HOMO orbital than PBE0.

The discrepancies with experiments for the value of ∆EHOMO-VBM are not surprising due

to inaccuracies in describing band gaps and energy levels in water, both at the PBE and

PBE0 levels of theory [65, 244]. However the error found here for the position of the anion

SO2−
4 (∼ 1 eV versus a measured value of 1.4 eV) is much smaller than the one reported

for Cl− [65](∼ 0.2 eV versus 1.3 eV). This may be due to the fact that while SO2−
4 anions

are preferably solvated in the bulk of liquid water, Cl− may lie closer to the surface [30];

therefore the energies detected for Cl− in photoelectron experiments are more likely probing

the levels of the anions at the surface of water, not in the bulk [245].

The energy alignment between anions and water found in our simulations (Fig. 7.4) is

helpful to understand the oxidation reactions occurring at photoanodes in water splitting

reactions. As discussed by Mi et al. [51], sulfuric acid was used as the electrolyte for OER

on tungsten oxide, which is a promising photoanode material for water splitting. Instead

of oxidizing water to produce oxygen after electron-hole pairs were created by visible light

illumination, holes were found to oxidize anions to produce S2O
2−
8 [51]. This oxidation

reaction could follow one of the following two competing paths:

2HSO−
4 (aq) → S2O

2−
8 (aq) + 2H+ + 2e−, E◦ = 2.12 V, (7.3)

2SO2−
4 (aq) → S2O

2−
8 (aq) + 2e−, E◦ = 2.01 V, (7.4)

where E◦ indicates the standard redox potential of each half reaction. The difference in
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redox potentials between SO2−
4 and HSO−

4 is only 0.11 V. Because these two anions exist

under equilibrium in aqueous sulfuric acid solutions, and reactions 7.3 and 7.4 describe the

same equilibrium at different reaction quotients, they could both be directly involved in the

charge transfer reaction that scavenges holes in the photoexcited tungsten oxide electrode.

The competition between the two anions is determined ultimately by the kinetics of the

charge transfer from the anion to the surface. Our calculations showed that the energy

levels of SO2−
4 are better positioned to donate electrons. Therefore we expect reaction 7.4

to be favored over 7.3, although the details of the interface between tungsten oxide and

the aqueous solution need to be considered before one can make definitive conclusions on

the rates of charge transfer reactions. This analysis suggests that in future simulations of

photocatalyst-aqueous solution interfaces, SO2−
4 should be considered the focus of the study

in the electrolyte. We expect the same analysis to apply to triply charged phosphate anions

in water, as they share similar oxidation rates [50] and ionization thresholds [232] with SO2−
4 ,

although the fraction of triply deprotonated PO3−
4 becomes substantial only at pH > 12.

7.4 Conclusions

In conclusion, we carried out AIMD simulations of sulfuric acid in water at a concentration

(∼ 1 mol/L) close to that of electrolyte solutions used in photocatalytic water splitting

reactions. We presented the first ab initio simulation with hybrid functionals (PBE0) and

we compared our results with those obtained with a semilocal functional (PBE). We found

a qualitatively correct degree of dissociation of the HSO−
4 ion at the PBE0 level of theory,

while PBE severely overestimated its dissociation degree. Consistent with the results of

AIMD simulations of the halide ion Cl− in water [65, 69], our findings show that the use of

hybrid functionals is essential to obtain qualitatively correct results, when solvated anions

are present in water. We also investigated the electronic structure of the solution, which

previously had been studied only experimentally. We evaluated the relative energy alignment

between the HOMO levels of the SO2−
4 and HSO−

4 anions and the VBM of liquid water.
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Within PBE0 and PBE we found that the HOMO of SO2−
4 is about 1 eV and 0.8 eV above the

water VBM, respectively, consistent with the 1.4 eV value reported by photoelectron emission

experiments. The energy of the HOMO level of HSO−
4 , on the other hand, fluctuates around

that of the water VBM. Our findings indicate that SO2−
4 is more susceptible to oxidation

than HSO−
4 by photoanodes used in water oxidization experiments, and we expect the same

results would hold for a triply charged phosphate anion in water. Work is in progress to

improve on the electronic structure description of anions in water, by carrying out many

body perturbation theory calculations with the GW approximation, on snapshots extracted

from AIMD trajectories obtained using the PBE0 functional [65].
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CHAPTER 8

CONCLUSIONS

The work presented in this dissertation encompasses two main aspects: (1) the development

and implementation of first-principles methods to compute the response of ordered and

disordered condensed systems to applied electric fields, and their use to simulate, from first

principles, vibrational spectra of aqueous systems, including Raman and SFG spectra; (2)

the investigation of the structural, electronic and vibrational properties of aqueous systems,

including liquid water, ice surfaces and simple ions in solution.

In terms of method developments, I first implemented the density functional perturbation

theory (DFPT) method [43] in the FPMD simulation software Qbox [46] to compute the

linear response to electric fields in semiconductor and insulators, while carrying out ab initio

simulations. I then proposed an accurate first-principles method to carry out electronic

structure calculations in the presence of finite electric fields, by combining the refinement

scheme [49] based on MLWF [48] and an electric enthalpy functional [246]. This method

works equally well with GGA and hybrid functionals and can be used for the calculation of

multipole moments, e.g. quadrupole moments. I showed that the multipole moments and

polarizabilities computed using this method converge much faster with respect to cell size

than conventional approaches based on Berry phase and MLWF techniques, and the results

are in very good agreement with experiments.

The capability of computing multipole moments and their polarizabilities in the con-

densed phase allowed for the development of a robust computational framework to compute

SFG spectra of semiconductors and insulators from first principles. For the first time, we

were able to consistently take into account the varying electric field across the interface by

introducing a local dielectric constant. Higher multipole contributions from both surface

and bulk regions were also included, by simulating slab and bulk samples, respectively. In

addition I provided a simple solution to the origin dependence problem in the calculation of

quadrupole contributions, which had been an unsolved issue in previous studies.
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Using these methods, I carried out a series of first-principles simulations to model vi-

brational spectra of aqueous systems. I computed Raman spectra of liquid heavy water,

and the results obtained are in good agreement with experiments and previous simulations

[143, 144]. By studying intra- and intermolecular contributions to the Raman spectra, as

well as the power spectra of MLWF spread and of molecular polarizabilities, I identified the

presence of intermolecular charge fluctuations at 270 cm−1, accompanying intermolecular

HB stretching modes; finally I showed the importance of using explicit electronic structure

methods in obtaining the Raman spectra.

I carried out first principles simulations for SFG spectra of ice Ih basal surfaces and

obtained good agreement with experiments. I found that including three ice bilayers (BL)

in surface calculations is sufficient to converge the spectra, and the first BL contributes to

only about 50% of the total SFG intensities. The results show that bulk vibrations yield

contributions to the SFG spectra of the ppp polarization combinations. I found that failing

to take into account the varying electric field at the surface can substantially change these

spectra. These results provide guidance for future simulations of SFG spectra of aqueous

systems and the interpretation of experimental results.

In addition to vibrational spectra of water and ice, I also studied structural, electronic

and vibrational properties of simple ions in water. In particular, I investigated hydrated

sulfate clusters with 12 and 13 water molecules, and interpreted infrared and photoelectron

experiments. Our results showed that different configurations exhibit similar infrared and

photoelectron spectral features and may be difficult to distinguish based on these measure-

ments. Using hybrid functional calculations, we determined that a surface solvated config-

uration is energetically more stable than the internally solvated one. Since internally and

surface solvated clusters behave differently as nucleation sites in water droplets, our results

have implications in understanding aerosol processes that involve sulfate ions.

I also extended our study of ion-water interactions to the condensed phase and carried

out FPMD simulations of sulfuric acid with both GGA PBE and hybrid PBE0 functionals.
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We found a qualitatively correct degree of dissociation of the HSO−
4 ion at the PBE0 level of

theory, while GGA severely overestimated its dissociation degree, due to the delocalization

error [66]. With the PBE0 functional we found that the HOMO of SO2−
4 is about 1 eV

above the water VBM; the HOMO of HSO−
4 , on the other hand, fluctuates around that of

the water VBM. Our findings indicate that SO2−
4 may be more susceptible to oxidation than

HSO−
4 by photoanodes used in water oxidization experiments.

In summary, this dissertation presented both method developments and applications of

FPMD for the calculation of structural, electronic and vibrational properties of aqueous

systems. The methods developed here for Raman and SFG spectroscopies are general and

are applicable to ordered and disordered semiconductors and insulators. In addition they

may be applied using GGA and hybrid functionals and they are easily generalizable to

include van der Waals functionals as well [10, 20]. Future work includes the application

of the methods developed here to simulate SFG spectra of surfaces of water and aqueous

solutions, and the investigation of aqueous surfaces of relevance to atmospheric chemistry

[30, 247].
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[119] K. Winkler, J. Lindner, and P. Vöhringer, Phys. Chem. Chem. Phys. 4, 2144 (2002).

[120] E. W. Castner, Y. J. Chang, Y. C. Chu, and G. E. Walrafen, J. Chem. Phys. 102,
653 (1995).

[121] G. E. Walrafen, J. Phys. Chem. 94, 2237 (1990).

[122] K. Mizoguchi, Y. Hori, and Y. Tominaga, J. Chem. Phys. 97, 1961 (1992).

[123] G. E. Walrafen, M. S. Hokmabadi, W. H. Yang, Y. C. Chu, and B. Monosmith, J.
Phys. Chem. 93, 2909 (1989).

[124] A. Goncharov, N. Goldman, L. Fried, J. Crowhurst, I.-F. Kuo, C. Mundy, and J. Zaug,
Phys. Rev. Lett. 94, 1 (2005).

[125] J.-F. Lin, E. Gregoryanz, V. V. Struzhkin, M. Somayazulu, H.-k. Mao, and R. J.
Hemley, Geophys. Res. Lett. 32, L11306 (2005).

[126] T. Kawamoto, S. Ochiai, and H. Kagi, J. Chem. Phys. 120, 5867 (2004).

[127] G. E. Walrafen, Y. C. Chu, and G. J. Piermarini, J. Phys. Chem. 100, 10363 (1996).

[128] N. A. Chumaevskii and M. N. Rodnikova, J. Mol. Liq. 9697, 31 (2002).

[129] M. Baumgartner and R. J. Bakker, Mineral. Petrol. 95, 1 (2008).

[130] R. Li, Z. Jiang, Y. Guan, H. Yang, and B. Liu, J. Raman Spectrosc. 40, 1200 (2009).

[131] I. A. Heisler and S. R. Meech, Science 327, 857 (2010).

[132] L. Lupi, L. Comez, M. Paolantoni, D. Fioretto, and B. M. Ladanyi, J. Phys. Chem.
B 116, 7499 (2012).

[133] M. Paolantoni, N. F. Lago, M. Albert́ı, and a. Laganà, J. Phys. Chem. A 113, 15100
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