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ABSTRACT

Nanostructured materials, including nanoparticles, nanoplatelets and Metal Organic Frame-

works are promising platforms for numerous applications in the field of renewable energy.

Inorganic, semiconducting nanoparticles and nanoplatelets, for example, are ideal materials

for the design of novel photovoltaic devices due to optoelectronic properties that are tunable

through modification of their shape, size and composition. Much attention has been drawn

to improving efficiency and device performance through altering the character of the nano-

materials, but the discovery of design rules for optimal device performance is still an open

question. Due to challenges in controlling experimental techniques on an atomic scale, as well

as numerous combinations of size, shape, composition and surface termination, experimental

material design in this field is best complemented by accurate atomistic calculations. The

latter can help interpret experiments, predict new materials and offer physical understanding.

In this dissertation, we take a tour of three classes of nanomaterials that span different

dimensionalities and offer different opportunities for renewable energy material design. First,

we seek to understand the collective properties of a thin film of cubic lead sulfide nanopar-

ticles that display quantum confinement in all three directions and are used in solar cell

devices. We look at the combined effects of temperature and interactions between nanopar-

ticles, and show that at finite temperature, interacting nanoparticles are dynamical dipolar

systems with average values of dipole moments and polarizabilities substantially increased

with respect to those of the isolated building blocks. We also present a critical discussion

of various results reported in the literature for the dipole moments of nanoparticles. This

work has important implications for understanding the nature of charge transport through

nanoparticle thin films within a solar cell, as it is the interactions and spacing between

nanoparticles that govern the charge transfer behavior.

Next, we transition from the collective properties of a nanoparticle film to the optoelec-

tronic properties of individual quasi-two dimensional cadmium selenide nanoplatelets. We

use this quasi-2D material, quantum confined in only one direction, to develop a general,
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predictive computational protocol for calculations of 2D materials. Through building up this

framework, we provide an understanding of the optical gap of CdSe nanoplatelets, a main ex-

perimental observable essential for photovoltaic devices. Our investigation of the optical gap

is completed through disentangling the interplay between three main effects: biaxial strain,

quantum confinement, and dielectric contrast between the material and its environment. We

present the first calculations for these materials based on many-body perturbation theory,

of both the fundamental gap and exciton binding energies, validating models that enable

further investigation of larger and more complex systems. We discuss a series of models of

quasiparticle energies that allow for comparison with previous theoretical predictions and

provide the ability to directly probe the three key effects. These models provide a simple

method to estimate the gap of complex nanoplatelets, with potential implications for the

search of optimal nanomaterials for photovoltaic devices.

Finally, we end with a short investigation of a recently synthesized 3D Metal Organic

Framework that, while macroscopic in nature, exhibits a nanoporous structure ideal for

gas storage, separation and catalysis. In conjunction with experiment, we show that these

MOFs exist in an energetically favorable anti-ferromagnetic state, with the ferromagnetic

and non-magnetic spin configurations inaccessible due to structural rigidity. Together, our

first principles predictions of the optoelectronic properties of nanoparticles, nanoplatelets

and Metal Organic Frameworks, along with experimental characterization and synthesis of

similar materials, is expected to help guide the search for optimal nanomaterials for renewable

energy devices.
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CHAPTER 1

INTRODUCTION

The success of the field of nanoscience has been established through collaboration between

experiment, theory and simulation. While experimental chemists and physicists are consis-

tently improving synthesis and characterization techniques that allow for atomically precise

materials that can be visualized on an atomic scale, computational research is an essential

guiding force for understanding the underlying physics and making predictions that push the

field forward faster than would otherwise be possible. Particularly when viewing nanoscience

through the lens of engineering renewable energy devices to combat climate change and meet

increasing energy demands, the entanglement of experiment and computation is indispens-

able. Thus, a computational framework that can be used to both interpret experiments and

make predictions is essential.

Density Functional Theory (DFT) is a common, versatile first-principles computational

method that allows for the prediction of the structural and optoelectronic properties of ma-

terials from a microscopic scale. DFT, as well as other methods based upon it, is the tool

of choice for this dissertation to understand the electronic structure of three classes of nano-

materials spanning dimensionalities from “0D” nanoparticles to quasi-2D nanoplatelets to

3D crystalline bulk Metal-Organic Frameworks. In this dissertation, we seek to progress

the current understanding for the design of ideal nanomaterial-based photovoltaic devices

by demonstrating the importance of key features for both the collective properties of nano-

material films and individual properties of the nanomaterial “building blocks,” for example

highlighting the importance of temperature effects, interactions between nano-objects, and

the structure-function relationships in strongly anisotropic 2D nanomaterials.

We start in Chapter 2 by briefly introducing the topic of nanomaterials for renewable

energy applications by surveying the current landscape of the field. In particular, we devote

Section 2.2 and Section 2.3 to a discussion of the use of nanoparticles and nanoplatelets,

respectively, as thin films in solar cells that have the potential to be smaller, cheaper and
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more flexible than the prevalent silicon devices. Then, we transition to a short overview of

a very different class of nanomaterials, namely Metal Organic Frameworks (MOFs), which

are nanoporous, rigid 3D structures ideal for gas storage, gas separation and catalysis.

In Chapter 3, we present a summary of all of the first-principles computational methods

and theory that have been used in this dissertation. In Section 3.2 we provide an overview

and brief history of Density Functional Theory (DFT), the foundation of our electronic

structure calculations. We include a discussion of different approximations that can be made

and the trade-offs that are essential to consider, including approximations to the exchange-

correlation potential, the use of a plane-wave basis set, and selection of pseudopotentials to

represent the core electrons and nuclei. We end the section with an example of a study that

we performed to investigate the accuracy of two different pseudopotentials. In Section 3.3, we

show how the concepts of ground state DFT can be coupled to molecular dynamics to probe

the finite temperature, dynamical properties of materials through the use of First Principles

Molecular Dynamics (FPMD). Then, in Section 3.4, we describe two first principles methods

for calculating dielectric properties of materials through applied electric fields. In Section

3.5, we move from DFT-based methods to introduce Many Body Perturbation Theory, which

provides us with a way to calculate the electronic structure of materials with quantitative

comparison to experimental measurements such as the Ionization Potential and Electron

Affinity that probe the highest occupied and lowest unoccupied energy states, respectively.

Finally, in Section 3.6, we introduce another state-of-the-art method, namely the Bethe-

Salpeter Equation, which can be used to compare directly with experiments, absorption

spectra and related optical properties.

In Chapter 4, we present our first application of first-principles methods to nanomate-

rials, in particular using DFT and FPMD to probe the changes in electronic structure as

nanoparticles interact with one another in a thin film. After a brief introduction and dis-

cussion of the computational details, in Section 4.3 we begin by showing how the electronic

structure of isolated NPs change as a function of temperature, looking in particular at the
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fundamental band gaps, radiative lifetimes, and dipole moments of these nanocrystallites.

We also present a critical discussion of various results reported in the literature for the

values of dipole moments of nanoparticles. In Section 4.4 we take what we learned from

the isolated NPs at finite temperature and show how interactions between these NPs can

drastically change their properties. Of particular note, we show that at finite temperature,

interacting NPs act as dynamical dipolar systems, with average values of dipole moments and

polarizabilities substantially increased with respect to those of the isolated building blocks.

In Chapter 5, we turn our attention from the “zero”-dimensional nanoparticles, which

are quite established from computational, synthetic, and device-integration standpoints, to

quasi-two dimensional semiconducting nanoplatelets (NPLs) which are a class of nanoma-

terials that is newer and less understood but can be synthesized with remarkable precision.

Because of this atomistic-level control of the NPL thickness and thus enhanced tunability

of optoelectronic properties, these materials have the potential to out-perform nanoparticles

for use in solar cells as well as other applications such as lasing and LEDs. However, as

these materials are newer, many computational questions remain regarding how to accu-

rately calculate their properties, especially because physical models and assumptions have

not previously been probed and validated for this quasi-two dimensional regime. Thus, after

a brief introduction, in Section 5.3, we begin by discussing the structural properties of the

NPLs used in this study, looking in particular at the effect of biaxial strain. In Section 5.4,

we present calculations of the fundamental band gap and band structure calculated at differ-

ent levels of theory, comparing to available models in the literature and suggest a new model

that can estimate quasiparticle band gaps with near G0W0 accuracy using only calculations

of the bulk material. We include a brief discussion of the challenges related to calculating

or defining a dielectric constant for these materials, and we present a method for calculating

an effective dielectric constant of a quasi-2D material based upon the electrostatic potential;

we validate our method through hybrid functional calculations of the band gap, using a

functional whose definition contains the dielectric constant. In the final section, we move
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to a more direct comparison with experiments by probing the exciton binding energy and

calculating the absorption spectra of the NPLs using the Bethe-Salpeter Equation (BSE).

We compare our results to existing models, shedding light on the validity of a number of as-

sumptions from the models that have not been assessed for quasi-two dimensional materials.

Our work offers the first calculations of both the G0W0 fundamental gap and BSE exciton

binding energies, enabling further investigation of and improvement upon models that can

reduce the computational cost relative to first principles calculations.

Finally, in Chapter 6 we complete our computational investigation of nanomaterials for

renewable energy by presenting a short study on the stability of a class of 3D Metal Organic

Frameworks (MOFs). In conjunction with experiment, we show that these MOFs exist in an

energetically favorable anti-ferromagnetic state, with the ferromagnetic and non-magnetic

spin configurations largely inaccessible due to structural rigidity.

We conclude the dissertation in Chapter 7 with a summary and brief discussion of the

future directions to which our research could lead.
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CHAPTER 2

NANOMATERIALS FOR ENERGY APPLICATIONS

2.1 Introduction

The growing field of renewable energy is essential for reducing greenhouse gas emissions

and reducing the use of fossil fuels, which are currently the largest source of carbon dioxide

emissions in the United States [5]. Concerns over climate change and global warming, as

well as decreasing costs of renewable energy devices, have led to an increase in renewable

energy consumption in the past ten years, but currently non-renewable resources still make

up nearly 90% of the energy consumption in the United States [5]. In order to expand our

use of renewable energy and eliminate the reliance on fossil fuels, it is vital to continue

research into cheaper and more versatile materials that can be used in renewable energy

devices with suitable efficiency. Particularly in the area of solar energy, nanomaterials have

shown remarkable promise as alternative materials to produce cost effective photovoltaic

cells with competitive energy conversion efficiency that can be synthesized without the need

for large manufacturing facilities, offering a route to attainable solar energy in developing

countries. In addition to solar energy, nanomaterials have been prevalent in a wide variety

of renewable energy devices; for example, carbon nanotubes have been used to strengthen

the blades of windmills, and nanoparticles have been used to improve energy generation in

geothermal systems [50].

A road map for cheaper and more versatile materials for solar energy devices has been

in progress since the first silicon solar cell was sold commercially in 1955 with an efficiency

of only 4% [136]. Since then, the advancement in solar cell technology has been included a

variety of designs including amorphous and polycrystalline silicon thin films, polymer films

with inorganic nanostructure components, and more recently nanoparticle and perovskite

films [166]. Traditional silicon-based solar cells are the earliest commercial solar cells, though

these are still the most efficient solar cells available commercially and make up the majority
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Figure 2.1: The solar energy spectrum compared to the theoretical maximum amount of
energy that could be converted to electrical energy in a silicon solar cell. The gray area
shows the total sunlight that reaches the earth, while the colored spectrum is the radiation
that reaches sea level. Figure from Ref. [4]

of all of the devices that have been sold. The success of silicon solar cells can be attributed

to its abundance as well as an ideal band gap of 1.12 eV which means that this material

absorbs light at the maximum of the solar spectrum, as shown in Fig. 2.1. The energy range

in which a material can absorb is tied closely with its conversion efficiency in a photovoltaic

(PV) cell: PV cells work by absorbing some portion of solar radiation (sunlight) in the

form of photons, which generate electron-hole pairs in the semiconductor materials that can

then generate electrical currents and usable energy [50]. The greater percentage of the solar

spectrum that the material (or materials) can absorb, the higher the device efficiency since

less sunlight is wasted. However, there is a theoretical limit, called the Shockley-Queisser

Limit [157], of approximately 33% for a PV cell made from a single (pristine) material. In

the later generations of solar cell evolution, overcoming this theoretical limit has been a
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primary goal through combining materials into multi-junction solar cells, doping materials

with specific impurities, and using combinations of nanoparticles, nanoplatelets and other

nanomaterials that can be uniquely tuned to have band gaps that cover the full range of the

solar spectrum depending on their size and composition.

2.2 Nanoparticles for Solar Energy Applications

Solution-processed semiconductor nanoparticles (NPs) are a promising material class for PV

cells to overcome the Shockley-Queisser limit, due to their tunable electronic and optical

properties. Particularly combined with perovskites (which efficiently absorb high energy

photons) or other unique materials, NPs have the potential to capture the full solar spectrum

[4]. However, finding materials that absorb in the optimum energy range is not the only factor

to consider for efficient devices.

When designing PV devices, in addition to an optimum band gap, a high carrier mo-

bility is desired to maximize the apparatus efficiency. With the most NP devices, however,

electron mobility is not competitive with bulk silicon since in the former, electron transfer

occurs between different nano-objects with barriers between them due to ligands, packing

density, etc [124, 86]. Thus, experimental and computational scientists are designing cre-

ative alternatives that maximize electron transport in NP arrays. One such option includes

self-assembled superstructures, called nanoparticle solids or nanoparticle films, which have

been realized experimentally using many different techniques and could be made from not

only nanoparticles but other nano-objects as well. These NP solids are the “artificial atom”

equivalent of a crystalline solid in which NPs are arranged in a grid-like fashion and therefore

maintain their quantum properties while also improving long-range order and enhancing the

migration of charge carriers. Although it is difficult to avoid disorder in NP size, position,

orientation, and ligand arrangement, many groups have made breakthroughs in approaching

the synthesis of a perfect NP solid as shown in Fig. 2.2 [124, 86].

As with an ordinary crystal lattice, the periodicity of the NPs in a perfect NP solid
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Figure 2.2: Figure and caption from Ref. [86]. a-c, Low-resolution (inset, high-resolution)
SEM micrographs (a), and large-area GISAXS probing (b,c) of glassy, PbTe QD thin films.
d,e, TEM (d) and GISAXS (e) images of PbS QD assemblies. f-n, CdSe QD superlattices
for < 111 > SL projection (f-h), < 100 > SL projection (i-k) and < 101 > SL projection
(l-n),shown as low-resolution TEM images (f,i,l), high-resolution TEM images (g,j,m) and
small-angle electron diffraction images (h,k,n). In f,g,i,j,l,m, each QD is 4.8 nm. o, Cross-
sectional SEM image of CdSe QD solids. NCs, nanocrystals. p, Cross-sectional SEM image
of PbSe QD solids. Figure reproduced with permission from: a-c, ref. [172], American Chem-
ical Society; d,e, ref. [180], American Chemical Society; f-n, ref. [124], Annual Reviews; o,
ref. [105], Nature Publishing Group; p, ref. [167], AAAS

may lead to the formation of energy bands due to interactions between atoms, with elec-

tronic wavefunctions delocalized over the whole solid and thus high electron mobilities on

the order of 10-20 cm2V 1s1 may be obtained [124]. While some recent experimental studies

[38, 86, 100] have demonstrated the existence of energy bands, in most cases the inherent

disorder in particle size and alignment in a NP solid can cause localization of the wavefunc-

tions on one or a few NPs, thus changing the way electrons are able to move throughout the

solid [185] and decreasing the electron mobility. To summarize, moving from a perfectly or-

dered to a disordered structure affects the carrier mobility and these two extremes represent

two completely different transport regimes: that of “band” transport, where electrons travel

through the delocalized states (bands) of a crystal, and “hopping” transport, in which elec-

trons tunnel between neighboring sites (NPs). Understanding the electronic structure and
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optoelectronic properties of pristine and disordered interacting NPs, both from experimental

and computational perspectives, is thus of vital importance for the design of efficient PV

devices.

2.3 Nanoplatelets for Solar Energy Applications

While NP or QD films have been successfully integrated into solar cells with efficiencies in

excess of 12% [101, 2], a vast collection of other nanomaterials are being considered to further

improve these devices. One such class of nanomaterials includes strongly anisotropic, quasi-

two dimensional nanoplatelets (NPLs), which have gained interest recently due to synthetic

advancement [84, 77] that has greatly enhanced their ability to tune the optoelectronic

properties. One such synthetic technique is colloidal Atomic Layer Deposition (c-ALD)

[84, 77], which is similar to the gas-phase ALD technique used to deposit thin films of

dielectric oxides, semiconductors and metals onto silicon wafers and other substrates. This

method has been revolutionary in improving synthetic control, eliminating polydispersity,

and creating nanoplatelets with atomic precision. c-ALD has even been used to create a

library of complex semiconductor NPL heterostructures, in which individual layers of a NPL

are made from different materials such as CdSe, CdS, and ZnS, as seen in Fig. 2.3c-d. These

endless combinations of core/shell materials illustrate the unique role NPLs could play in

the design of solar cell devices with precisely tunable absorption properties.

In addition to their tunable properties, NPLs also differ from NPs due to their strong

anisotropy that leads to biaxial strain profiles (illustrated in Fig. 2.3b) which can change

the relationship between structure and function compared to what one would expect in

a spherically symmetric NP. In biaxial strain profiles, present in both single-material and

heterostructured NPLs, a compressive strain (lattice contraction) in either the in-plane or

axial direction is partially offset by a tensile strain (lattice expansion) in the other direction.

This illustrates one reason that NPLs stand out among other nanomaterials: the biaxial

strian in NPLs has a unique effect on the optical properties such as the band gap. Specifically,
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it leads to an interplay between strain and quantum confinement that is not necessarily

straightforward: the biaxial strain in CdSe NPLs, for example, leads to a reduction in the

band gap compared to an ideal “unstrained” NPL regardless of whether the axial lattice

constant is compressed or expanded. A competing effect is quantum confinement (QC),

arising by expanding or compressing in the axial direction which either reduces or increases

the band gap, respectively. For NPL heterostructures, the strain profiles can become more

complex due to the presence of interfaces. Thus, the generation of NPL heterostructures

with layers of different materials can be synthesized to precisely engineer the strain profiles

and thus their interplay with quantum confinement.

Figure 2.3: Figure and captain from Ref. [77]. Strain and tetragonal unit cell distor-
tion in NPL heterostructures. (A, B) Comparison of strain caused by the lattice mis-
match in coreshell nanostructures with spherical and NPL morphology. In a spheri-
cal QD, the core is hydrostatically strained while the NPL core is under biaxial strain:
the lattice is compressed along the x and y coordinates and expanded along the z-axis,
which is also the direction of strong quantum confinement. (C) HAADF-STEM image
of 2CdS/2ZnS/2CdS/4CdSe/2CdS/2ZnS/2CdS and (D) the interplanar distances for this
structure

In general, due to the synthetic control of these CdSe-based quasi-2D materials, their
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optical absorption and photoluminescence (PL) spectra can be tuned with even greater

precision than other nano-objects, with impressively narrow PL linewidths of less than 40

meV [77], almost half of what is typically observed in QDs [34]. This highly controlled

tunability through the NPL thickness and layer-by-layer composition promises successful

integration as photoabsorbers in PV devices. In fact, films of CdSe NPLs have already been

demonstrated in PV devices [110], but these materials are much less established than their

NP counterparts. Similarly to NP solids, NPLs are expected to be most successful in PV

devices as assembled films where electrons can rapidly and efficiently move throughout the

layer [144, 59]. NPLs have the additional benefits over NPs of straightforward 2D packing

into a grid-like thin film and a unique relationship between quantum confinement and biaxial

strain that introduces an additional level of control over their optoelectronic properties.

2.4 Metal-Organic Frameworks for Hydrogen Storage

Away from solar energy and nano-objects, we draw attention to a class of nanoporous ma-

terials called Metal Organic Frameworks (MOFs). Metal-Organic Frameworks are porous

compounds that consist of an array of metal ions or clusters linked together by organic lig-

ands, forming a unique cage-like structure. These vast two- or three- dimensional networks

can be created in numerous shapes and patterns, with a wide variety of metal centers and

organic materials, tuned depending on the desired optoelectric or magnetic properties and

applications.

Due to the porous nature of these materials as well as their high surface area, they

are a natural choice for applications such as gas storage [126, 121, 54], separation [29, 23],

and heterogeneous catalysis [113, 187] because “guest” particles such as gas molecules can be

absorbed into the pores. Depending on the composition of the metal centers and ligands, the

MOF can be tuned to absorb different types of molecules, making it a particularly versatile

class of materials. In addition to the common applications of hydrogen storage or catalysis,

MOFs have been successfully used for the capture of carbon dioxide and other greenhouse
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gases, potentially paving the way for the design of more efficient materials to capture carbon

from the atmosphere or even from fossil fuel power plants to fight the greenhouse effect

[122, 47].
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CHAPTER 3

FIRST PRINCIPLES CALCULATIONS

3.1 Introduction

In this chapter, we present the theoretical background for the first principles methods that

have been used in this dissertation to calculate the electronic structure of nanomaterials.

First, we will provide an overview of Density Functional Theory (DFT), the framework for

which the majority of our calculations are based upon. Then, we will discuss First Princi-

ples Molecular Dynamics (FPMD), which allows one to extend DFT to finite temperature

simulations. Next, we will introduce Many Body Perturbation Theory (MBPT), and in par-

ticular the G0W0 approximation, which is a first principles technique that is more accurate

yet more computationally demanding than DFT. Finally, we will discuss the application of

first principles techniques to optical properties such as absorption spectra, through the use

of the Bethe-Salpeter Equation.

3.2 Calculations of Ground State Properties using Density

Functional Theory

3.2.1 Kohn-Sham Formulation

In non-relativistic Quantum Mechanics, the Schrödinger equation mathematically defines the

wavefunctions of a system and thus fully describes the state of that system at each point in

space and time. However, for all but the simplest systems (such as a single Hydrogen atom)

it is impossible to analytically solve the Schrödinger equation exactly. Thus, a number of

computational techniques and approximations have arisen over the past 50 years in an at-

tempt to overcome this limitation and be able to accurately describe the electronic structure

of complex many-body systems (i.e. systems containing more than one electron). Among

the most popular and versatile of these methods is Density Functional Theory (DFT), which
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is based upon the assertion that the ground state properties of a quantum-mechanical sys-

tem can be fully described by their electron density rather than their wavefunctions. The

popularity and success of DFT can be traced back to 1965, when the theorems of Pierre

Hohenberg and Walter Kohn [80] gave DFT the theoretical and computational grounding

necessary to potentially compete with other electronic structure methods. The Hohenberg-

Kohn Theorems state the following:

1. The ground state of any interacting many particle system with a given fixed inter-

particle interaction is a unique functional of the electron density n(r).

2. The electron density that minimizes the energy of the overall functional is the true

electron density corresponding to the full solutions of the Schrödinger equation.

Essentially, the ground state wavefunction, and thus its energy, can be written as a unique

functional of the ground state electron density (where a functional is defined as a function of

a function). If this functional is known, then one can find the ground state energy by varying

the electron density and finding where the energy is a minimum. However, the seminal paper

by Hohenberg and Kohn provided no form for the universal functional.

One year after the Hohenberg-Kohn Theorems were published, Walter Kohn and Lu Jeu

Sham [94] provided the final piece necessary to make DFT feasible and kick-started the

modern era of electronic structure calculations. The Kohn-Sham Ansatz [94] stated that the

ground state electron density of the many-body system can be written as a fictitious system

of noninteracting particles with the same ground state electron density. Thus, it became

possible to use a set of single particle equations that look like the Schrödinger equation and

can be solved numerically. The Kohn-Sham Equations are:

(
−1

2
∇2 + vh(r) + vxc(r)

)
φi(r) = εiφi(r) (3.1)
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where n(r) is the electron density, vh(r) is the Hartree potential (the classic electrostatic

potential), εi is the single particle energy, φi(r) is the single particle wavefunction, and

vxc(r) is the so-called exchange-correlation potential (the functional derivative of the related

exchange-correlation energy). While the Hartree potential is easy to calculate, the exact form

of the exchange-correlation potential is unknown. Many different methods of approximating

this exchange-correlation potential exist, and an overview of these choices will make up the

next section of this chapter.

3.2.2 Approximations for the Exchange-Correlation Functional

On a basic level, the Exchange-Correlation potential is the term in the Kohn-Sham Equations

that attempts to approximate the interactions between electrons that are not otherwise

incorporated into the single particle equations. The Exchange interaction and Correlation

interaction, which together make up this term, can be understood by the Pauli Exclusion

Principle that is well known in chemistry: the exchange part comes from the repulsion energy

between two electrons with parallel spins, and the correlation part includes the additional

lowering of energy due to the electrons avoiding each other.

The simplest approximation to the Exchange-Correlation potential, which was introduced

initially by J.P. Perdew and A. Zunger in 1981 [135], is the Local Density Approximation

(LDA) which assumes that the electron density can be treated locally as a uniform electron

gas. This approximation can be accurate for very uniform systems, but fails in cases where

the density changes rapidly in different parts of the material. An improvement on the

LDA, and what is used throughout most of this dissertation, is the Generalized Gradient

Approximation (GGA) [102, 16], which instead of only using the local density also includes

the gradient of the electron density at a given point in space:

EGGAxc =

∫
drρ(r)εGGAxc (ρ(r),∇ρ(r)) (3.2)
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where ρ(r) is the electron density and εGGAxc is the exchange-correlation energy per electron.

In particular, in this work we use the parametrization of GGA by Perdew, Burke, and

Enzerhof (PBE) [134], although others such as BLYP [16, 104] are common as well.

GGA is widely used throughout the computational physics, chemistry and even biology

communities, and it is well known that this fairly inexpensive approximation can accurately

describe structural properties such as bond lengths and satisfactorily predict trends in elec-

tronic structure properties such as band gaps. However, for quantitative comparisons to

experiment, GGA is often not sufficient and more computationally expensive alternatives

must be used.

One method for improving the quantitative accuracy of electronic structure calculations

is the use of hybrid functionals, which combine GGA with a fraction of the Hartree Fock

(HF) exchange, also known as the exact exchange self-energy (EXX). The HF method has

been widely used in the chemistry community for longer than DFT. The general hybrid

potential used in the KS equations of DFT is defined as:

v
hybrid
xc (r, r′) = αΣx(r, r′) + (1− α)vx(r) + vc(r) (3.3)

where Σx is the HF exact exchange, vx is the GGA exchange potential, vc is the GGA

correlation potential, and α is the fraction of exact exchange used in the given hybrid func-

tional. In practice, numerous suggestions for the best choice of α have been proposed. The

commonly-used PBE0 functional [8] uses a constant α = 0.25, while other more complex

hybrid functionals select α based on material parameters such as the dielectric constant (see

Section 3.2.3 below).

Further approximations to the exchange-correlation functional to improve the accuracy

of DFT include range-separated hybrids and meta-GGAs, the latter of which depend on

the kinetic energy density in addition to the electron density and density gradient [114].

In general,the trade-off between computational complexity and accuracy is something that

drives many of the decisions made in the field of electronic structure calculations.
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3.2.3 Dielectric-Dependent Hybrid Functionals

While numerous flavors of hybrid functionals exist, one particularly successful and physically

motivated option is the dielectric-dependent hybrid functional, which was first introduced for

solids in 2014 [158]. In this case, rather than using a constant fraction of exact exchange, for

example α = 0.25, the fraction is chosen as the inverse of the macroscopic dielectric constant

of the material. The dielectric constant can be calculated self-consistently by calculating

the dielectric screening using, for example, the method of Density Functional Perturba-

tion Theory or the application of finite fields, as described in Section 3.4. Self-consistent

dielectric-dependent hybrid calculations have been shown to be more accurate than PBE0

for many materials [26] and in excellent quantitative agreement with experiment.

The dielectric-dependent hybrid functional has been generalized to finite systems [28]

such as molecules or nanoparticles, where the dielectric constant of the system is ill-defined.

To overcome this limitation, the authors instead proposed that the fraction of exact ex-

change is defined as the ratio of the screened and unscreened exchange energies. It can be

shown mathematically that, for bulk materials, this ratio reduces to the inverse of the di-

electric constant. While this definition works for both finite and three-dimensional systems,

its validity for the intermediate regime of two-dimensional materials, as well as a unifying

functional spanning dimensionalities, has not been previously explored and is the subject of

future work.

3.2.4 The Planewave Pseudopotential Method

So far in this chapter, we have discussed the foundations upon which the field of Density

Functional Theory is built, but we have yet to address the computationally efficient, nu-

merical techniques that make such calculations possible on real systems. In general, such

techniques revolve around representing the Kohn-Sham orbitals with a basis set. While

there exist a number of options of basis sets to use, the work in this dissertation has been

performed using a planewave basis set with periodic boundary conditions, which is the ideal
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option for condensed matter systems and can be used for isolated systems as well. The

planewave basis set is a Fourier expansion of the wavefunction:

ψi,k(r) =
∑
G

ci,k,Ge
i(k+G)·r (3.4)

where the sum is over G, the reciprocal lattice vectors, ci,k,G are the Fourier coefficients, and

k is the k-point vector in the first Brillouin zone. The number of k-points included in the

summation depends upon the system of interest; for isolated systems such as nanoparticles,

there is no k-dependence and a single k-point (k={0,0,0}, known as the Γ point) is used, but

for 3D or 2D periodic systems such as bulk solids or 2D nanoplatelets, convergence of the

electronic structure as a function of the size of the k-point grid is essential. Convergence with

respect to the number of G vectors is required as well, with this number typically represented

as an energy cutoff, Ecut.

One downside to the use of planewave basis sets in DFT is that the sharp features of the

wavefunctions of the core electrons are prohibitively expensive to represent in this manner

since doing so would require a massive number of planewaves. To overcome this limitation,

planewave basis set calculations are coupled with pseudopotentials, in which the nuclei and

the core electrons, which do not participate in chemical bonding, are not treated explicitly

and are instead replaced by an effective potential. Doing so allows the valence electrons to be

described by pseudowavefunctions that have fewer nodes than their all-electron counterparts.

Each type of atomic species has its own pseudopotential, and there exist numerous forms of

pseudopotentials such as Norm-Conserving [75], where the norm of the pseudowavefunction

is required to be equal to the norm of the all-electron wavefunction within a cutoff radius,

or Ultrasoft [174], where the norm-conserving requirement is relaxed in order to reduce the

number of plane waves needed by splitting the valence electron density into “soft” (few

nodes) and “hard” (many nodes) contributions. However, the choice of which electrons to

include in the valence for a pseudopotential is not always straightforward, and this has led to

the development of numerous different pseudopotentials that have been used throughout the
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literature with varying levels of success for different systems and different levels of theory.

Throughout this dissertation, the pseudopotentials used in each study are explicitly stated,

and are chosen based on the level of theory and elements involved in each case.

3.3 First Principles Calculations at Finite Temperature

Density Functional Theory is an optimal electronic structure method to calculate static,

ground state properties of a vast range of materials at T=0. However, when comparing

calculations directly to experimental measurements, the inclusion of temperature effects is

crucial because measurements are often performed at room temperature or above. Further-

more, probing structural dynamics, phase transitions or vibrational spectra of a system is

only possible through the use of a dynamic calculation. Molecular dynamics offers a tool to

simulate such dynamical properties of materials.

3.3.1 First Principles Molecular Dynamics

In Molecular Dynamics (MD) simulations, the positions and velocities of atoms in a system

are calculated by numerically solving Newton’s equation of motion:

miR̈i = Fi (3.5)

where mi is the mass of the ith nuclei, R̈i is the acceleration of the ith nuclei, and Fi are

the forces (a derivative of the total energy). The forces acting upon each atom at each

point in time are generally calculated in one of two ways: using an empirical interatomic

potential, or using first principles techniques. Interatomic potentials or force fields are often

computationally inexpensive to evaluate, but they are not easily transferable between systems

(since force fields are designed for individual systems), may not adequately simulate changes

in chemical bonding, and usually they are not as accurate as when the forces are calculated

from first principles.
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An alternative to classical force fields is First Principles Molecular Dynamics (FPMD),

which offers a non-empirical method to calculate the forces and propagate the atomic tra-

jectories with greater accuracy. While FPMD comes in two flavors, Born-Oppenheimer

MD [118] and Carr-Parrinello MD [33], in this dissertation we will focus only on Born-

Oppenheimer MD. At each time step in FPMD under the Born-Oppenheimer approxima-

tion, the energy, and thus the forces, are calculated using DFT and the KS equations. The

derivative of the total energy, which allows one to calculate the forces, is evaluated by using

the Hellmann-Feynman theorem [117], which relates the derivative of the total energy to the

expectation value of the Hamiltonian. While FPMD is a much more accurate and flexible

method than MD with interatomic potentials, due to its high computational cost it is only

feasible for smaller systems and much shorter simulation times (up to a few hundred pi-

coseconds, while nanoseconds of data can easily be collected using MD with empirical force

fields).

3.4 Calculations of Dielectric Properties

In the previous two sections, we have presented a framework for calculating the electronic

structure of materials at zero temperature and finite temperature using DFT and FPMD,

respectively. In general, these methods allow us to calculate properties such as the most

stable configuration of atom positions as well as the distribution of charge density and the

positions of the energy levels (including band gaps and other energy differences, ionization

potentials, etc). Of additional interest is an understanding of the way a system responds

to perturbations from the environment - for example, the response to an external electric

field, which opens up the possibility to calculate numerous dielectric properties such as

the dielectric constant, polarizability, polarization, and dipole moment. These dielectric

properties can be calculated in two different ways, both of which will be presented below.
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3.4.1 Density Functional Perturbation Theory

The first commonly used method for calculating dielectric properties of materials from first

principles is Density Functional Perturbation Theory (DFPT), which is used to study the

linear response to an external perturbation and is implemented, for example, in the Quantum

Espresso DFT code [61]. In addition to dielectric properties such as the polarizability or

dipole moments, DFPT can be used to calculate the phonons in the system or its Raman

spectra. In the DFPT formalism of Baroni [13, 12], the response to the external perturbation

is calculated using the so-called Sternheimer equation:

(
H(0) − ε(0)i

)
|ψ(1)i 〉 = −

(
H(1) − ε(1)i

)
|ψ(0)i 〉 (3.6)

where H(0), ε
(0)
i , and ψ

(0)
i are the unperturbed Kohn-Sham Hamiltonian, eigenvalues and

Kohn-Sham orbitals, and H(1), ε
(1)
i , and ψ

(1)
i are the first-order perturbations of the same

quantities. In its simplest formulation, DFPT is valid for insulating and semiconducting

materials with perturbations in the linear regime, although extensions of the method have

been proposed to account for metallic systems [44] or to go beyond the linear response by in-

cluding higher order perturbations [65]. Furthermore, the response to external perturbation

includes the calculation of a local field correction term that is nontrivial and computationally

demanding to compute for orbital-dependent hybrid functionals due to their explicit depen-

dence on ψi, and thus for hybrid functionals the method of Finite Fields is often preferred

(see Section 3.4.2) over DFPT.

3.4.2 Finite Field Method

The second common method for calculating dielectric properties of materials is through the

use of explicitly applied external electric fields. Due to its explicit nature, the so-called Finite

Field Method is more versatile than DFPT as it can be used to study the response to external

electric fields in both the linear and nonlinear regimes through varying the strength of the
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applied field. Furthermore, as mentioned in Section 3.4.1, the implementation of DFPT

coupled with orbital-dependent functionals such as hybrid functionals is not straightforward,

and thus the Finite Field method provides a simpler option to calculate highly accurate

dielectric properties using hybrid functionals. Although both DFPT and Finite Field are

used throughout this dissertation for benchmarking and comparisons, the latter technique

has been chosen for most computations due to its flexibility. The Finite Field method is

implemented, for example, in the Qbox code [3].

The dipole moments, polarization, and polarizability of a material are obtained through

the use of maximally localized Wannier functions (MLWF) [119, 120] which allow one to

calculate the position operator even in 2D- or 3D-periodic systems where it cannot be cal-

culated directly as it is for isolated systems. MLWFs are localized linear combinations of

Bloch orbitals; in contrast to the delocalized Bloch orbitals, however, the localized nature of

MLWFs allow them to frequently be used as visualization tools for chemical bonding. As the

simplest depiction, the center of charge for a MLWF gives one an indication of the “location”

of an electron or electron pair. The position of the Wannier centers is defined as:

r0n,i =
Li
2π

Im ln 〈wn|e
i2πLi

ri|wn〉 (3.7)

where Li is the ith cell dimension, and the Wannier functions wn are obtained by applying

a unitary transformation to the occupied Kohn-Sham eigenstates in order to minimize their

spread [72].

For an isolated system such as a nanoparticle, the total dipole is defined as:

µ = −2
∑
n

(r0n + ∆rn) +
∑
n

Znrn,ion (3.8)

where Zn is the ionic charge, rn,ion are the positions of the ions, r0n is the position of the

nth Wannier center and ∆rn is a correction to the position of the nth Wannier center due to

the refinement procedure of M. Stengel and N. Spaldin [162, 179]. The factor of 2 accounts
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for spin multiplicity.

For 3D- or 2D-periodic systems such as bulk materials or nanoplatelets, the dipole mo-

ment is ill-defined. Instead, The Modern Theory of Polarization [140, 175, 89] offers a method

for the calculation of differences in polarization with respect to an origin. The polarization

is calculated as:

P = − 2

Ω

∑
n

(r0n + ∆rn) +
1

Ω

∑
n

Znrn,ion (3.9)

where Ω is the unit cell volume, and r0n are again the positions of the Wannier centers.

By analyzing the change in position of the MLWFs upon application of an electric field,

the polarizability and dielectric constant of the material can easily be calculated. The

polarizability tensor is defined as:

αij = Ω
Pi(+∆Ej)− Pi(−∆Ej)

2∆Ej
(3.10)

where Pi(∆Ej) denotes the polarization in the ith direction in response to an applied field

∆Ej in the j th direction. ∆E should be chosen to be small enough so as to ensure calculations

are carried out in the linear response regime.

Finally, the dielectric tensors for solids can be obtained using finite differences with the

same applied electric field:

ε∞,ij = δij +
4παij

Ω
(3.11)

where δij is the Kronecker delta, Ω is the unit cell volume, and αij is from Eq. 3.10. The

high-frequency dielectric constant is then typically calculated as the trace of the dielectric

tensor.
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3.5 Many Body Perturbation Theory

Although Density Functional Theory has been widely successful at predicting structural and

electronic properties of materials, especially when combined with the use of hybrid function-

als, in several cases this level of theory is not sufficient to accurately describe excited state

properties that compare well with experimental measurements. Many Body Perturbation

Theory (MBPT) offers a method to calculate the excited state properties of materials with

high accuracy. In particular, the GW method developed by Lars Hedin in 1965 [78] has

become the premier electronic structure method for quantitative comparison to experiments

such as direct and indirect photoemission, which measure the energy of the highest occupied

and lowest unoccupied energy states through addition or removal of an electron [64].

MBPT starting from DFT single particle states has been shown to give energy levels,

band gaps and other properties in close agreement with experiment for numerous classes

of complex systems [81, 82, 55]. Particularly in the field of photovoltaics, which include

solar energy conversion processes, GW has become a crucial technique to study the excited

state properties of nanomaterials. However, until recently the high computational cost of

this method has been prohibitive for all but the smallest systems or the most powerful

computational resources. [66]

In the GW approximation, one can obtain quasiparticle (QP) states, Ψ
QP
i , and QP

energies, E
QP
i , using an equation similar to the Kohn-Sham equation (Eq. 3.2.1):

ĤQP |ΨQP
i 〉 = E

QP
i |ΨQP

i 〉 (3.12)

Here, the QP Hamiltonian, ĤQP includes the self-energy operator Σ, rather than the exchange-

correlation potential, vxc, from Eq. 3.2.1:

Σ = iGWΓ (3.13)

where G is the interacting one-particle Green’s function and W is the screened Coulomb
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Figure 3.1: a) Convergence of the QP band gap of a 2ML CdSe nanoplatelet as a function of
the number of PDEPs used in West, for 2x2, 3x3, and 4x4 unit supercells b) Comparison of
the QP band gap using extrapolated values of infinite PDEP from supercells and direct cal-
culations using k-points, where the number of electrons was reduced due to using a primitive
unit cell.

interaction. Γ is the vertex operator [82], which in many approximations is taken to be the

identity.

The work in this dissertation in particular uses the G0W0 approximation, in which the

Green’s function, G, and the screened Coulomb interaction, W, are calculated non-self-

consistently from DFT wavefunctions. G0W0 calculations have been performed with the

WEST code [66], which is optimized for large-scale calculations. We have also used Yambo

[145, 115] in the cases where large k-point meshes were required.

G0W0 calculations in West are efficient in that there is no need to compute virtual

electronic states and hence no need to converge QP gaps and energies as a function of

the number of empty states that enter the calculation; in addition, one can go beyond

the common plasmon pole approximation [63, 53, 161]. West uses the method of spectral

decomposition of the static dielectric matrix (ε) through an algorithm called “Projective

Dielectric Eigenpotential” (PDEP), in which the Sternheimer equation is solved iteratively

using Density Functional Perturbation Theory (see Section 3.4.1) [148], in order to find the
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eigenvectors of the dielectric matrix. While convergence with empty states is not necessary,

it is essential to converge QP energies with respect to the number of PDEPs included in

the spectral decomposition of the dielectric matrix, as shown in Fig. 3.1 for a 2ML CdSe

nanoplatelet. In particular, the number of PDEPs required is proportional to the number of

electrons in the system, and typically a nPDEP/nelectron ratio of at least 1 or 2 is necessary

before extrapolations can be obtained (see Fig. 3.1a) [183].

3.5.1 Pseudopotential Considerations Using GW

As discussed in Section 3.2.4, the choice of pseudopotentials may strongly depend on the level

of theory used in a calculation. In particular, Scherpelz et al. [148] found that the accuracy

of G0W0 calculations depend on which electrons are included in the valence partition of

the pseudopotential. For a number of compounds with d electrons, G0W0 calculations

only gave band gaps in agreement with experiment when the valence partition included the

corresponding s and p electrons of the same shell as the d electrons, despite the s and p

electrons not participating in the chemical bonding. For example, for the element Cadmium

with electron configuration [Kr]4d105s2, it is essential to include the 4p6 and 4s2 electrons

in the valence as well as 4d10 and 5s2.

The selection (and development) of pseudopotentials can be further complicated, how-

ever, as we have found that even in cases where the valence configuration adheres to the sug-

gestions of Scherpelz et al. [148] the G0W0 quasiparticle band gaps can differ by over 0.5 eV

using different pseudopotential parametrizations. For example, Scherpelz et al. showed that

the gaps of CdS, GaAs and zinc compounds varied depending on the choice of two different

Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotentials: SG15 [74] and Pseu-

doDojo [173], derived with the same valence partition. In this dissertation, we have found

that CdSe additionally shows a similar discrepancy between ONCV SG15 and PseudoDojo.

The G0W0 quasiparticle gaps and experimental gaps for CdSe and CdS are summarized in

Table 3.1.
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Table 3.1: Summary of quasiparticle band gaps for CdSe and CdS computed using SG15
and PseudoDojo pseudopotentials

system SG15 PseudoDojo exp.
CdSe 0.48 eV 1.57 eV 1.70 eV
CdS 1.77 eV 2.23 eV 2.42 eV

To understand the source of this discrepancy, in Fig. 3.2 we plot the pseudowavefunc-

tions compared to their all-electron counterparts for the SG15 and PseudoDojo pseudopo-

tentials of Cd, S, and Se, the elements of interest for the nanoplatelets studied in Chapter

5. We note that, for Cd and S, the valence partitions are identical for SG15 and Pseu-

doDojo: 4s24p64d105s2 and 3s23p4 for Cd and S, respectively. For Se, however, the SG15

parametrization uses a valence partition of the full n=4 shell (4s24p4), while the Pseu-

doDojo parametrization additionally includes the lower-lying 3d electrons in the valence

(3d104s24p4). By comparing the quasiparticle gaps of CdSe in Table 3.1, we find that the

inclusion of the 3d shell in the valence is essential to reproduce a band gap within 0.1 eV of

experiment, whereas failing to do so underestimates the gap by 0.6 eV.

For the case of S, however, the distinction is not so clear as the valence configurations

are indistinguishable. By comparing the pseudowavefunctions of S for both SG15 and Pseu-

doDojo (Fig. 3.2, right column), we find that despite identical valence configurations,

the PseudoDojo S pseudopotential is configured with a 3d projector function which is not

present for SG15. Furthermore, for the Se pseudopotential, the SG15 parametrization is gen-

erated with a 4d projector (though the 4d electrons are not included in the valence), while

PseudoDojo uses both the 3d projector and 3d valence electrons. The subtle differences in

pseudopotential generation are found to significantly affect the band gaps of these materials

at the G0W0 level of theory; however, we note that the electronic and structural properties

at the PBE level of theory are not affected.

27



4s
4p
4d
5s

Cd (SG15)

Cd (PD)

Se (SG15) S (SG15)

Se (PD) S (PD)

4s
4p
4d

3s
3p

4s
4p
4d
5s

4s
4p
3d

3s
3p
3d

Figure 3.2: Pseudo- (dotted lines) and all-electron (solid lines) wavefunctions of Cd, Se, and
S for SG15 (top) and PseudoDojo (bottom) pseudopotentials.

3.6 Calculations of Optical Properties and Absorption Spectra

In addition to quasiparticle energies, in the field of photovoltaics an understanding of the

absorption spectrum of a material is crucial since the materials are targeted to absorb in a

certain energy range. For example the optical band gap, which is determined experimentally

by the onset of the absorption spectrum measured by i.e. UV-Vis spectroscopy, is different

from the so-called fundamental band gap calculated with DFT or GW (the difference be-

tween the highest occupied and lowest unoccupied energy levels) because the latter does not

include the interactions between the electron and hole formed through the excitation that

results from the incident light in spectroscopy measurements. The difference between the

fundamental band gap, Eg,fund, and the optical band gap, Eg,opt, is the exciton binding en-

ergy, Eb, which measures the energy it takes to form a bound electron-hole pair (an exciton)
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in a semiconductor or insulator:

Eg,opt = Eg,fund − Eb (3.14)

Especially for materials with strong excitonic effects, including the nanomaterials studied

in this dissertation, direct comparison with experiment cannot be done without an under-

standing of the optical as well as fundamental band gaps.

We thus conclude this chapter with a brief discussion on the calculation of absorption

spectra from first-principles, which enables one to determine the optical band gap and exciton

binding energy to compare calculations to experimental optical absorption measurements. In

optical absorption spectroscopy, the incident light excites electrons from occupied to empty

energy levels. For a periodic solid system, the absorption coefficient I(ω) is given by the

imaginary part of the macroscopic dielectric function, called ε2(ω), while for a finite system

the absorption spectrum is proportional to the trace of the dynamical polarizability tensor

α(ω) [141]. In the sections below, we will focus on methods used to calculate the absorption

spectrum for periodic systems, and thus present equations for calculating ε2(ω).

3.6.1 Independent Particle Approximation

Before considering excitonic effects, one can obtain a very basic approximation of the imagi-

nary part of the dielectric function of a material through the Independent Particle Approxi-

mation (IPA) which gives the transition rate between occupied and unoccupied energy states

using Fermi’s Golden Rule [186]:

εij =
1

ω2

∑
k

∑
i∈V

∑
j∈C
〈uj,k|ê · pij |ui,k〉2 δ

(
Ej(k)− Ei(k)− ω

)
(3.15)

where pij is the transition matrix element between two single particle Bloch functions ui,k

and uj,k with energies Ei(k) and Ej(k), considering interband transitions between states i

in the valence band, V, and states j in the conduction band, C,with transition energy ω.
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Figure 3.3: IPA spectrum of bulk CdSe calculated at the PBE level of theory, shifted by
the difference between experimental and PBE band gaps, compared to the experimental
spectrum [88]. Vertical dotted lines represent the calculated HOMO-LUMO transitions at
high-symmetry points.

Only transitions in which the electron momentum, k, is conserved are considered. The IPA

spectrum is closely connected to the Joint Density of States, which is simply the density

of the transition energies between occupied and unoccupied states, or in other words the

number of states per unit volume available for photons of a given energy to be absorbed or

emitted. For systems with negligible excitonic effects, i.e. small exciton binding energies, the

IPA spectrum can be in decent agreement with experimental measurements of the imaginary

dielectric constant, as shown in Fig. 3.3 for bulk CdSe which has an exciton binding energy

of approximately 20 meV [88].
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3.6.2 The Bethe-Salpeter Equation

The final method that we will discuss in this chapter is the solution of the Bethe-Salpeter

Equation (BSE) for the calculation of neutral excitations such as those involved in optical

absorption spectra or energy loss spectra. Much like GW, BSE is based upon MBPT and the

Green’s function formalism [137]. While GW techniques incorporate a single-particle Green’s

function to compute electronic excitations involving the addition or removal of an electron,

approximate solutions of the BSE are obtained with two-particle Green’s functions, where

the interaction between two quasiparticles – the electron and the hole – is described. Because

BSE includes interactions between the electron and hole (together forming an exciton), this

method has been widely successful in calculating optical band gaps and absorption spectra

in good agreement with experiment [107]. Of the methods discussed in this dissertation, the

complexity of BSE is the most computationally demanding. However, recent advances have

provided ways to reduce the computational cost, for example by eliminating the need to sum

over all empty states for both molecules [141] and solids [142].

In the two-particle Green’s function formulation, the correlation between the electron

and hole can be written as a product of single-particle Green’s functions [137]:

iL(1, 2; 1′, 2′) = −G(2)(1, 2; 1′, 2′) +G(1)(1, 1′)G(1)(2, 2′) (3.16)

where G(2)(1, 2; 1′, 2′) is the two-particle Green’s function and the second term is the product

of two single-particle Green’s functions and gives the independent evolution of the electron

and hole. The correlation function L can then be used for the Bethe-Salpeter equation:

L(1, 2; 1′, 2′) = L0(1, 2; 1′, 2′) +

∫
d3456L0(1, 4; 1′, 3)Ξ(3, 5; 4, 6)L(6, 2; 5, 2′) (3.17)

where iL(1, 2; 1′, 2′) = G(1)(1, 2′)G(1)(2, 1′) and Ξ is a kernel that gives the effective two-

particle interaction that is the sum of the derivative of the Hartree potential and the self-
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energy, Σ, from Eq. 3.13. Thus, the Bethe-Salpeter equation relates the correlation function

L to the variation of the self-energy with respect to G [137]. Practically, different approx-

imations can be made to the single-particle Green’s functions and kernel Ξ to be used in

modelling absorption experiments.

For the calculation of absorption spectra using BSE (as well as for GW calculations), the

dielectric matrix (a microscopic quantity) can be calculated using a plane-wave representa-

tion as:

ε−1(r,r’) =
1

Ω

∑
q,G,G′

ei(q+G)·rε−1
G,G′(q)e−i(q+G

′)·r′ (3.18)

where Ω is the volume, q is the transferred momentum, and G,G’ are the reciprocal lat-

tice vectors. The macroscopic dielectric function, the imaginary part of which gives the

absorption coefficient, is then:

εM = lim
q→0

1

ε−1
G=0,G′=0

(q, ω)
(3.19)

While Eq. 3.19 technically requires calculating and inverting the full matrix, in practice the

dielectric function can be calculated through an effective two-particle operator, where its

eigenvalues correspond to the excitation energies of the system [137].

As this method requires solving a large eigenvalue problem, there are often a number

of numerical techniques and choices to make this step feasible, for example the use of an

iterative Lanczos-Haydock algorithm [19]. In this dissertation, all BSE calculations have

been performed using the Yambo code [115] using the Lanczos-Haydock solver, as this code

has been optimized for extended systems such as bulk materials and 2D NPLs which are

the systems of interest in Chapter 5. Finally, we note that an additional method, Time-

Dependent Density Functional Theory (TD-DFT) has been shown to give absorption spectra

in decent agreement with experiment particularly when combined with the use of hybrid

functionals (Section 3.2.2) [103]. However, this method will not be discussed in detail here,
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as it has not been used in this dissertation. In Fig. 3.4, an example of a comparison of ε2

is presented for BSE, TD-DFT using LDA wavefunctions, and experiment.

Figure 3.4: Imaginary part of the macroscopic dielectric function of bulk Silicon, illustrating
the agreement between BSE and experiment and showing comparison to TD-DFT calcula-
tions. Figure taken from [18].
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CHAPTER 4

SIMULATIONS OF INTERACTING NANOPARTICLES AT

FINITE TEMPERATURE

4.1 Introduction

In this chapter, we use the methods presented in Chapter 3 to calculate the finite tempera-

ture electronic structure of isolated and interacting nanoparticles. We begin by introducing

the application of semiconducting nanoparticles for next generation photovoltaic devices,

and remark upon the current state of experimental and computational research in this area.

In Section 4.2, we lay out our computational strategy to investigate these nanomaterials, in-

cluding the electronic structure methods employed as well as the structural models we chose

to use. Next, in Section 4.3 we present our results of the optoelectronic properties of isolated

nanoparticles. We illustrate how these properties change as a function of temperature, and

analyze our calculated dipole moments of isolated nanoparticles in comparison to various

literature reports, showing that the vast discrepancies in the literature stem from sensitivity

to temperature fluctuations, ligands, and interactions between nearby nanoparticles even

in dilute systems. Finally, in Section 4.4, we compare the electronic structure and opto-

electronic properties of isolated nanoparticles to interacting nanoparticle solids, showing the

emergence of electronic and dielectric properties that are very different from their isolated

counterparts.

4.1.1 State of the Art of Calculations and Experiments for Semiconducting

Nanoparticles

Reproduced with permission from Arin R. Greenwood, Márton Vörös, Federico Giberti and

Giulia Galli, Nano Letters 18(1), 255-261 (2018). Copyright 2018 American Chemical So-

ciety.
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Semiconducting colloidal nanoparticles (NPs) are promising candidates for next gener-

ation photovoltaic devices due to their tunable electronic and optical properties [125, 143,

111, 156, 95]. In particular, lead chalcogenide quantum dots have a large exciton Bohr ra-

dius (18 nm for PbS), leading to strong quantum confinement and hence a band gap that

can be tuned over the solar spectrum by changing the NP size. Recently, halide-capped

PbS NPs [169, 190, 42, 101] have been successfully integrated into certified solar cell devices

with efficiency in excess of 12% [101, 2], which could be further improved and potentially

even pushed beyond the Shockley-Queisser limit by exploiting the efficient multiple exciton

generation observed in PbS NPs. [157, 76, 68, 152, 151, 90, 133, 127] In addition to tun-

able band gaps, the frontier orbital energies (or band edges) of these NPs may be tuned by

choosing appropriate ligands; [30, 98] for example they could be tuned with respect to the

redox potentials of water, CO2 or H2S, thus allowing for the design of novel and efficient

photoabsorbers for photoelectrochemical cells. [184]

In NP based solar cells, quantum dots are assembled into films [39, 25, 124] where charge

transport usually occurs via hopping, possibly leading to low mobilities [191, 9, 38, 185]. It is

often assumed that mobilities can be enhanced by precisely arranging the dots into ordered

solids, or by decreasing the distance between NPs [96, 35]. For example, epitaxially-connected

NP superlattices [147, 182] and ultrathin 2D sheets of PbS NPs [149] have been synthesized,

and the formation mechanisms of 2D and 3D NP superstructures have been studied using

X-ray scattering experiments, electron microscopy, and Monte Carlo simulations [181, 60].

Treml et al. used successive ionic layer adsorption and reaction (SILAR) to enhance interdot

coupling [171] in similar epitaxially-connected NP assemblies, while Dolzhnikov et al. [46, 85]

used composition-matched molecular “solders” to increase carrier mobilities between NPs.

Despite the importance of NP interactions to understand and predict the properties of

energy conversion devices composed of quantum dots, most theoretical and computational

studies to date have addressed isolated NPs at zero temperature (T). Only a few finite

temperature simulations of isolated Ge and Si NPs [56, 57] and of PbSe and CdSe [87,
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62] NPs have appeared in the literature. Recent studies on the interactions of 2D PbSe

nanoplatelets [93] and hydrogenated Si NP dimers [58, 67] and CdSe NP solids [178] have

neglected temperature effects altogether. To our knowledge, no atomistic studies have been

conducted previously on nanostructured lead chalcogenide solids that include at the same

time the effects of temperature, NP interactions and that consider realistic capping ligands.

4.2 Computational Framework

We present a first principles study of the finite temperature properties of PbS NPs assembled

into solids. We used First Principles Molecular Dynamics (FPMD) to investigate the modi-

fication of the electronic and dielectric properties of 1.6 nm iodine-capped lead sulfide NPs

(Pb32S28I8) upon formation of thin films. In order to assess the effect of interaction strength

on the optoelectronic properties of NPs, we compared the properties of isolated NPs to those

of interacting ones in two regimes: the first regime represents an assembly in which the NPs

are kept apart by the ligands (similar to what is observed in spin-cast or drop-cast experi-

mental films [111, 167]), and where the NPs are interacting but not covalently bonded; the

second regime is representative of chemically bonded NP solids, or “connected NP solids.”

[147, 15, 46, 182] The models built in this work, labelled “necked” and “fused” solids, are

illustrated in the two right-most panels of Fig. 4.1. The left-most panel represents the iso-

lated NP, while the second panel shows the weakly interacting regime. The subunits for the

necked solid remain largely intact, with the bonds between NPs occurring at the edges (or

“neck”) of the unit, whereas the NPs in the fused solid are strongly bound and they arrange

into a periodic sheet of units fused together. Although these models represent only two

possible bonding geometries, they are expected to be representative of epitaxially-connected

structures synthesized by several groups using techniques designed to enhance electronic

coupling [189, 108, 171, 147].

For each of our NP models, we chose to cover the surfaces with iodide ligands, as these are

employed in experiments to prevent oxidative attacks and thus improve air-stability [128].
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Figure 4.1: Ball and stick representation of the nanoparticles (NPs) considered in this work;
from left to right: isolated Pb32S28I8 NP; solid of weakly interacting NPs; necked and fused
solids of NPs forming bonds (simulation cell shown as inner black box). Black, yellow and
purple spheres indicate lead, sulfur, and iodine atoms, respectively.

Although smaller than those usually considered experimentally (often 3-10 nm in diameter),

the NPs studied here are representative models of experimental quantum dots, inclusive of

a core and a surface with cation excess, whose charge is compensated for by an appropriate

number of anionic ligands.

Finite temperature NP structures from FPMD were generated using the Qbox code [3, 71],

and electronic structure calculations were conducted with both Qbox [3, 71] and Quantum

Espresso, [61] using plane wave basis sets (with cutoff of 60 Ry) and ONCV pseudopotentials

[74]. In all cases, we used Density Functional Theory (DFT) under the Generalized Gra-

dient Approximation with Perdew-Burke-Ernzerhof (PBE) parametrization [134]. FPMD

simulations of the isolated NPs were performed in a unit cell with a lattice constant of 23 Å

(corresponding to a vacuum of at least 8 Å between periodic images). For the calculations

of the dipoles and polarizabilities, the lattice constant was increased to 30 Å (15 Å vacuum)

as the convergence of these properties as a function of cell size is slower than that of the

total energy [97]. FPMD simulations were performed using the Bussi-Donadio-Parrinello

thermostat [31] with a time step of 2 fs.

A summary of computational parameters for the simulations in the text are presented in

Table 4.1. The difference in structures between the fused and necked solid stems from using
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Table 4.1: Summary of simulation details for the higher temperature simulations (target
T=600 K), showing the only difference in initial parameters for the fused and necked solids.

System Equilibration T (K) Thermostat time constant (τ , fs)
isolated NP 511±39 200
fused solid 508± 43 200
necked solid 510± 42 20 for equilibration, 200 after 10 ps

two different coupling strengths of the thermostat during the initial phase of the simulations.

The fused solid was generated using a weak thermostat coupling (large thermostat time

constant), while the necked solid was generated with a stronger thermostat coupling, which

was then set to be equal to the one adopted for the fused solid during the equilibration

portion of the MD simulations.

After short simulation times of about 3 ps, we observed the NP building blocks merge

into connected units to form either the necked or the fused solid. For both simulations,

the temperature resulted to be approximately 510 K and configurations extracted from the

initial 3 ps were considered as representative of weakly interacting NPs.

We then continued the simulations of the solids at 510 K (for approximately 80 ps) to

investigate whether additional transformations would occur. After the initial, fast forma-

tion of the fused solid, we observed major structural changes. In particular, after 30 ps of

simulation time, the 2D NP film initially obtained formed a 3D network bridged by ligands

between the fused sheets, which then remained intact for the remainder of the simulation.

In contrast, after formation of the 2D necked solid, only minor structural reorganization

occurred with ligands migrating to and from the “neck” between NPs.

The simulations with a target temperature of 300 K were generated starting from initial

configurations from the 600 K simulations. The target temperature was then lowered to

300 K and allowed to equilibrate before calculation of the properties present in the text.

Similarly, the radiative lifetimes and band gaps for the solids presented at T=0 were achieved

by systematically lowering the target simulation temperature from 600 K to 300 and then

150, 50 and 0 to facilitate a smooth quenching of the structures.
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The dipole moments, polarization, and polarizability were obtained by calculating max-

imally localized Wannier functions (MLWF) [119, 120], as described in detail in Section

3.4.2.

4.3 Electronic Structure of Isolated Nanoparticles

4.3.1 Including Disorder Through Temperature Fluctuations

In experimental NP synthesis, one source of disorder in a NP film is due to the existence

of a multitude of possible NP structures, or microstates, that are accessible at a given tem-

perature. Furthermore, with even the most precise temperature control, small fluctuations

in temperature will introduce additional disorder. As NP films are neither synthesized nor

stored at zero temperature, it is impossible to eliminate this level of disorder and thus it is

essential to understand its effect on properties of interest from a computational standpoint.

In order to assess the effect of interaction strength on the electronic and dielectric prop-

erties of disordered NPs at finite temperature, we first investigated the electronic structure

of the isolated Pb32S28I8 NP at approximately 250 K and 510 K. At both temperatures,

simulations started from the 0 K relaxed geometry. To illustrate the effect of temperature

on the electronic structure of the isolated NP, the electronic energy levels and wave functions

were calculated in Qbox [71] using snapshots of the MD trajectories over 10 ps taken every

0.1 ps, for a total of 100 finite temperature structures per simulation (results obtained with

200 snapshots by decreasing the spacing between snapshots yielded the same average values).

The blue curve in Fig. 4.3a shows the calculated band gap (Eg) for the isolated NP. We

found that the band gap decreases linearly as a function of temperature, and we observed a

band gap decrease from 1.93 eV at 0 K to 1.75 ± 0.06 eV at 250 K and 1.54 ± 0.11 eV at

510 K. The calculated slope was found to be -0.8 meV/K. We remark that calculations were

performed using the PBE exchange correlation functional, which is known to underestimate

the magnitude of the fundamental band gap, but it is expected to accurately reproduce
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Figure 4.2: Left: Fundamental gaps as a function of temperature, computed as differences
between the energies of the lowest unoccupied and highest occupied single particle states
using DFT and the PBE functional. Right: Ratio of radiative lifetimes (τ) as a function of
temperature, where τ0 is the value computed at T=0; calculations were carried out at the
DFT-PBE level of theory (see text).

qualitative trends [106, 21]; we also note that the gaps of the small NPs considered here

correspond to an experimental gap of larger NPs. The decrease in band gap with increasing

temperature is in contrast to what is observed in bulk lead chalcogenides [131, 45, 43] and

for larger NPs with diameter of approximately 4 nm [165], but it is consistent with some

experimental reports [131, 112] of a negative
dEg
dT for PbS NPs below approximately 4 nm

in diameter. However, other experimental studies reported a positive
dEg
dT for PbS NPs with

diameter larger than 3 nm, with the magnitude of the slope decreasing as a function of

diameter [193].

To investigate the effect of NP size, we also calculated the electronic structure of a larger

NP (Pb62S55I14, which has the same cubic shape as Pb32S28I8 but includes one additional

layer of atoms leading to a diameter of 2.1 nm). The band gap of this NP was calculated as

an average value of results for 15 configurations taken over 7 ps during a 540 K simulation,

as well as at T=0. we found a similar trend in band gap as a function of temperature for

this system, with a slope of approximately -0.6 meV/K compared to -0.8 meV/K for the
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isolated Pb32S28I8 NP. We calculated the average band gap to be 1.15 ± 0.1 eV compared

to 1.48 eV at T=0.
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Figure 4.3: Fundamental gaps as a function of temperature, computed as differences between
the energies of the lowest unoccupied and highest occupied single particle states using DFT
and the PBE functional. The data for Pb62S55I14 (d=2.1 nm) are included in addition to
the isolated Pb32S28I8 NP (d=1.6 nm) and the two solids formed from Pb32S28I8 units.

4.3.2 Radiative Lifetimes of Isolated Nanoparticles

Due to the interest in PbS NPs for photovoltaic applications, we calculated Boltzmann-

averaged radiative lifetimes of the charge carriers, which include the transitions accessible

at the simulation temperatures:

〈τ〉 =

∑
if τife

−ωif/kBT∑
if e
−ωif/kBT

(4.1)

where τif was calculated in the dipole approximation [27, 32] with the Quantum Espresso

code: [61]
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τif =

4nαFSω
3
if

3c2
1

3

∑
r∈x,y,z

∣∣〈ψi|r|ψf 〉∣∣2
−1 (4.2)

Here, τif is the radiative lifetime of the transition from the occupied state i to the unoccupied

state f with energy ωif = εf − εi (εi is the energy of state i); n is the index of refraction;

αFS is the fine-structure constant; the matrix element is the transition dipole moment

between states i and f computed using density functional perturbation theory techniques

[12]. The ratio of radiative lifetimes τ to the value at T=0 are reported in Fig. 4.3b. For

the Boltzmann average, 100 empty states (up to about 3 eV above the LUMO) and 2000

transitions were considered. For the T=0 case, only the HOMO-LUMO transition was used

for the calculation of the lifetime.

Calculations for the radiative lifetimes were performed using 50 snapshots over the 10 ps

trajectory (results obtained with 100 snapshots by decreasing the spacing between snapshots

yielded the same average values). The lifetimes are inversely proportional to the rate of

radiative carrier recombination and are an important property to characterize optoelectronic

devices built from NP solids. We found that for isolated NPs, the radiative lifetime of the

transition between the highest occupied and lowest unoccupied molecular orbitals (HOMO

and LUMO, respectively) decreases by about two orders of magnitude from 0 K to 250

K, as can be seen in blue in Fig. 4.3b. This is due to symmetry breaking at finite T:

the high symmetry of the optimized structure at T=0 leads to degenerate, nearly forbidden

transitions that become allowed when the symmetry is broken due to thermal motion. When

analyzing the single particle wave functions we found that at 0 K both the HOMO and LUMO

are delocalized over the NP; at finite temperature the LUMO remains delocalized but the

HOMO localizes in different regions of the NP over the course of the simulation, leading to an

increase of the transition dipole moment and thus to a decrease of the radiative lifetime. The

trend in the lifetimes observed here is similar to that reported in the experiments by Maikov

et al. [112] for PbSe NPs of comparable size, and highlights the importance of including
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finite-temperature effects in predictive models of NPs.

4.3.3 Analysis of and Comparison to Nanoparticle Dipole Moments in the

Literature

Following our electronic structure calculations, we characterized the dielectric properties of

the NPs at different temperatures, which have been widely disputed in the literature and

are of great importance to understand assembly of NPs into solids. The magnitude of the

dipole for lead (and cadmium) chalcogenide NPs in particular is highly controversial in the

literature, i.e. with Klokkenburg et al. [91], Sashchiuk et al. [146], and Bertolotti et al. [20]

reporting dipole moments between 300 and 600 D for NPs above 2.5 nm in diameter, and

other groups [155, 22, 168] reporting values between 0 - 150 D for the same sized systems

using different experimental techniques and analytical expressions.

At T=0, we found a non-zero dipole moment (0.98 D) for the isolated Pb32S28I8 NP,

due to the asymmetric ligand arrangement on the surface. As a function of temperature, the

dipole moment increased to 4.16 ± 1.9 D at 250 K and 5.68 ± 3.0 D at 510 K. Importantly,

we observed that the dipole moment fluctuates on the order of 10 D with a maximum

magnitude of 16 D at 510 K, as shown in Fig. 4.4. The increase in magnitude and the

fluctuations are due to structural distortions at finite temperature, which increase with

increasing temperature, as well as to ligand migration at the NP surface, for example from

one facet to another. We also calculated the dipole moment of Pb62S55I14. We found that the

fluctuations of the dipole moment are similar to those found for the smaller NP. In particular,

the dipole moments of Pb62S55I14 and Pb32S28I8 averaged over 8 ps are 4.18 ± 1.6 D and

6.06 ± 3.2 D, respectively (without including the corrections for the induced electric field

described in Section 4.2 ); the maximum dipole moment calculated for Pb62S55I14 was 9.0 D,

with a minimum value of 1.0 D, compared to 17.0 and 1.0 D for the maximum and minimum

calculated values for Pb32S28I8.

Fig. 4.5 shows our calculated dipole moment of Pb32S28I8 compared to the values of
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Figure 4.4: Instantaneous dipole moment (µ) as a function of time for an isolated Pb32S28I8
NP over a 10 ps trajectory at T=510 K

dipole moments of lead chalcogenide (squares), cadmium chalcogenide (circles), and zinc

chalcogenide (triangles) NPs with radius between 7 and 50 Å, as reported in various pa-

pers in the literature. The dipole moment has been measured using a variety of methods,

including transient electric birefringence measurements [109], Stark Effect [153, 40, 41, 24],

impedance measurements [155, 22], and pair-interaction calculations [91]. Using the bire-

fringence method, a change in index of refraction (used to then calculate a dipole moment)

is measured as elongated particles such as nanorods rotate to align in response to an applied

pulsed electric field. Alternatively, using the Stark Effect one measures the change in optical

density of a sample as an electric field is applied, and the derivative of the optical density is

used to extract the dipole moment of the excited state. Impedance measurements on NPs

are the most direct method to obtain dipole moments, where the complex impedance of a

parallel plate capacitor is measured to obtain the complex dielectric constant of colloidal

NPs positioned in between the two parallel plates; the dipole moments are then obtained

from the Debye-Onsager equation relating the complex dielectric constant to the dipole mo-

ment of a dilute concentration of spherical dipoles [79]. Finally, the so-called pair-interaction

method analyzes transmission electron micrographs of dipolar NP chains using a 1D aggre-

gation model in which the concentration of dipolar chains and the chain lengths are used

to calculate the potential of mean force between nanoparticles, and from that (assuming a

dipolar interaction) the dipole moment. Dipole moments obtained using the Stark Effect

method were excluded from Fig. 4.5 as the Stark Effect measures the change in the dipole
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moment of excited states as a static electric field is applied, and this quantity is not the same

as the ground state dipole we calculated. Furthermore, we limited our study to the dipole

moments of spherical or cubical NPs, where it was straightforward to define a “radius,” and

we do not report birefringence results in Fig. 4.5 as this method requires systems with high

aspect ratios such as nanorods.
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Figure 4.5: Dipole moment data collected from the literature to show the range of values
that have been reported. [155, 22, 91, 168, 146, 20, 139, 154] In the legend, an asterisk
indicates computational results. “Klokkenburg 1” [91] uses the point-charge assumption,
while “Klokkenburg 2” uses the point-dipole assumption for the calculation of the dipole.

Although some [155, 22] reports claim to observe trends in the dipole moment as a

function of size, overall we did not observe a clear correlation between the NP radius and

the magnitude of the dipole moment from Fig. 4.5. Besides, as our calculations show,

any residual interactions that may occur between NPs would affect the value of the dipole

moment, making the interpretation of experimental data difficult. We conclude that the
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dipole moment of NPs is sensitive to changes in interactions (even non-bonding interactions),

ligands, and temperature fluctuations, thus small changes in synthesis conditions or NP

concentration could potentially lead to substantial changes in the dipole moment magnitude.

Figure 4.6: Computed dipole moments at T=0 for the lead selenide and lead sulfide NPs
with a variety of ligands (L=halides (F,Cl,Br,I), ethane dithiol (EDT), and cinnamic acids)

We further note that the comparison between the different values of dipole moments

reported in the literature is not straightforward, as experiments used different ligands as

well as NP shape. To shed light on this effect, we calculated the dipole moment for a

number of PbS and PbSe NPs at 0 K with different ligands, including replacement of the

iodine on Pb32S28I8 with ethane dithiol (EDT), and halide ligands (F, Cl, Br and I) and we

considered NP cores ranging from 1.5 - 2.1 nm. We also computed the dipole moments of

NPs previously investigated by Kroupa et al. [98], capped with cinnamic acid ligands. Our

results are reported in Fig. 4.6. We found that the magnitude of the dipole can be tuned by

ligand choice for a given NP core, an observation consistent with the claims of Rabani [139]
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and Shanbhag [154] that the dipole moment of a NP does not necessarily increase linearly

as a function of NP size. In our calculations, we did not observe that the longest ligands

(cinnamic acids) always provided the largest dipole. However, we did find that the choice

of ligand can have a significant effect on the magnitude of the dipole, despite the ligands

being often ignored in the literature. We caution that it may be necessary to revisit some

of the approximations made to fit and interpret experimental data, as NP structure, ligand

selection, and interactions between tightly packed NPs all contribute to the value of the

dipole moment, with even residual interactions between NPs playing an important role in

the interpretation of experimental data.

Finally, to relate directly to properties of the nanoparticle solids, we computed the elec-

tronic polarizability, α of the isolated NP using finite differences of the polarization under

application of an electric field, with the polarizability tensor defined as:

αij = Ω
Pi(+∆Ej)− Pi(−∆Ej)

2∆Ej
(4.3)

where Pi(∆Ej) denotes the polarization in the ith direction in response to an applied field

∆Ej in the j th direction. The ionic coordinates were not allowed to relax upon application

of the applied field.

As shown in blue in Fig. 4.7, for the isolated NP we found a surprisingly constant, nearly

temperature-independent polarizability of 398 ± 3 Å
3

at 250 K and 401.5 ± 2.5 Å
3

at 510

K, where we defined α to be the trace of the polarizability tensor. In contrast to the dipole

moments, the fluctuations in the polarizability were small.

4.4 Nanoparticle Solids

4.4.1 Optoelectronic Properties of Interacting Nanoparticles

Our analysis of the optoelectronic properties of finite temperature isolated NPs was carried

out so that the effect of interactions between NPs could be fully understood. Fig. 4.3a
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Figure 4.7: Computed polarizabilities as a function of simulation time at T=510 K for the
dilute (isolated NP) and weakly interacting solids of Pb32S28I8 NPs (see text)

shows the calculated band gap (Eg) of the two solid structures compared to the isolated NP.

We found that the band gap decreases with a similar slope as a function of temperature for

all three systems. When the NPs interact to form a solid, the band gap slightly decreases

by up to approximately 0.2 eV.

For the isolated NPs, we showed in Section 4.3.2 that the radiative lifetime of the

transition between the highest occupied and lowest unoccupied molecular orbitals (HOMO

and LUMO, respectively) decreases by about two orders of magnitude from 0 K to 250 K

due to the breaking of symmetry at finite T. We observed similar decreases in lifetimes for

the NP solids (green and red dotted lines in Fig. 4.3b) at finite T, though to a lesser extent,

with the lifetimes about 5 times smaller than at T=0. The calculated radiative lifetimes

were τ510K/τ0 = 0.19 and τ510K/τ0 = 0.52 for the fused and necked solid, respectively. The

trend in the lifetimes observed here is similar to that reported in the experiments by Maikov

et al. [112] for PbSe NPs of comparable size, and highlights the importance of including

finite-temperature effects in predictive models of NPs.
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In addition to a decrease of electronic gaps and lifetimes, in the case of the NP solids, we

found that instantaneous structural distortions at finite temperature lead to the emergence

of localized occupied orbitals within the gap. In Fig. 4.8a we plot the near-gap energy

levels as a function of time for a short (0.2 ps) portion of the 510 K simulation for the

fused solid, during which one can observe the periodic emergence of an occupied gap state,

shown in red in Fig. 4.8a. We found a similar electronic structure for the necked solid at

510 K. At 250 K, such a state was still present, although positioned closer to the valence

band maximum (VBM) and it did not occur as frequently throughout the simulations. On

average, these dynamic gap states occurred on a timescale of approximately 50 fs during

the entire simulation, and they were localized at times on the NP core and at times on

the ligands (wave functions are shown in the inset of Fig. 4.8a). This emergent gap state

may contribute to the decrease of Eg at finite T, although to a small extent: over a 10 ps

portion of the trajectory, we found that the intra-gap state is on average only 0.1 eV above

the state immediately lower in energy. It is expected that localized states could give rise

to trapping [6, 27], thus we speculate that these emergent localized occupied states may be

detrimental to hole transport in NP films. We have not observed any localized unoccupied

states, indicating the electron transport may not be affected by trap states.

4.4.2 Emerging Dipole Moments in Nanoparticle Solids

To shed light on the sensitivity of the dipole moment to the interactions between NPs, we

compared the dipole moment computed for the isolated Pb32S28I8 NP at 0, 250, and 510

K to those of the weakly interacting solids (See Section 3.4 for details on dipole moment

calculations). At T=0, we found a non-zero dipole moment (0.98 D) for the isolated NP,

due to the asymmetric ligand arrangement on the surface. As a function of temperature, the

dipole moment increased to 4.16 ± 1.9 D at 250 K and 5.68 ± 3.0 D at 510 K. Importantly,

we observed that the dipole moment fluctuates on the order of 10 D with a maximum

magnitude of 16 D at 510 K, as shown in Fig. 4.9b. The increase in magnitude and
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Figure 4.8: a) Emergence of intra-gap states (red dots, corresponding to the highest occu-
pied level (HOMO)) during a small (0.2 ps) portion of the 510 K simulation for the fused
solid. The size of dots indicates the value of the inverse participation ratio (IPR, defined as:∫
|ψi|4d3r(∫
|ψi|2d3r

)2 ; larger IPR indicated more localized wave functions). Ball and stick represen-

tations of the NP structures show where the HOMO is localized at specific snapshots (from
left to right, corresponding to #16, 29, 47, 61, and 72 of the 100 snapshots spaced evenly
over the 0.2 ps window). b) Distribution of IPR for the HOMO wave function (intra-gap
state) over a 10 ps simulation for the fused solid. Dotted line represents the average value.

the fluctuations are due to structural distortions at finite temperature, which increase with

increasing temperature, as well as to ligand migration at the NP surface, for example from

one facet to another. We also calculated the dipole moment of Pb62S55I14. We found that
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the fluctuations of the dipole moment are similar to those found for the smaller NP, and that

the band gaps and lifetimes follow the same trends. In particular, the dipole moments of

Pb62S55I14 and Pb32S28I8 averaged over 8 ps are 4.18 ± 1.6 D and 6.06 ± 3.2 D, respectively;

the maximum dipole moment calculated for Pb62S55I14 was 9.0 D, with a minimum value

of 1.0 D, compared to 17.0 and 1.0 D for the maximum and minimum calculated values for

Pb32S28I8.

For the necked and fused solids, the absolute dipole moment is ill-defined as these systems

are periodic. Hence analysis of the dipole moments was limited to the weakly interacting

systems (Fig. 4.9c). We found that weak interactions lead to an increase in the dipole

moment even in the absence of bond formation between neighboring NPs. Here, the dipole

fluctuations were again significant, with values up to 77.5 D and as low as 5 D at 510 K.

Figure 4.9: a) Instantaneous dipole moment (µ) as a function of time for the weakly interact-
ing NPs over two short trajectories of 2 and 3 ps at T=510 K. b) Difference in polarization
with respect to the origin of the trajectories for two interacting NP solids (necked and fused;
see text) at T=510 K

For the necked and fused solids, in Fig. 4.9d we plot the difference in polarization, with

respect to the initial configurations where bonds were not yet present, as a function of time,

showing again a fluctuating behavior. These results indicate that for all solid structures

studied here, the NP building blocks acted as dynamic, fluctuating dipolar systems rather

than static point-dipoles.

In contrast to the dipole moments, the fluctuations in the polarizability were small,
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Figure 4.10: Computed polarizabilities as a function of simulation time at T=510 K for the
necked and fused solids of Pb32S28I8 NPs (see text)

however increasing in magnitude with the interaction strength. While the increase in α from

700 to 800 Å
3

seem in Fig. 4.9 between the weakly interacting systems and the solids is in

part due to the increased number of bonds upon formation of the solid, the increase from

400 to 700 Å
3

from the isolated NP to the weakly interacting solid corresponds solely to

non-bonding interactions. These results indicate that it may not be sufficient to use a fixed

polarizability value (such as the polarizability of bulk PbS) for models of self-assembly of

PbS NP solids, as the electronic part varies substantially. Furthermore, we compared our

computed polarizabilities with that calculated from the commonly-used Clausius-Mossotti

relation:

αCM =
3Ω

4π

(ε∞ − 1)

(ε∞ + 2)
(4.4)

where the dielectric constant of the solid, ε∞, was obtained by applying a finite electric

field to the NP solids and using the Qbox code. We found a value of approximately 3.2 at

0 K for the weakly interacting solid (increasing to 3.6 and 3.7 at 510 K for the fused and

necked solids, respectively, which is much smaller than the PbS bulk dielectric constant of
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22). We found that the Clausius-Mossotti relation underestimated the polarizability of the

interacting solids by 60%, providing values of only 376 Å
3

instead of 700 Å
3
, due to inherent

approximations of a homogeneous non-dipolar material underlying the derivation of Eq. 4.4.

4.5 Conclusions

In conclusion, we investigated the combined effect of temperature and NP-NP interaction on

functionalized PbS nanoparticles, showing the emergence of electronic and dielectric prop-

erties different from those of isolated NPs. Using first principles molecular dynamics and

electronic structure calculations, we showed that the fundamental gap of the NP slightly

decreases with T and as a function of interaction strength, while the radiative lifetimes ex-

hibited a much stronger dependence on interaction, becoming an order of magnitude less

sensitive to temperature compared to those of isolated NPs. Our calculations also showed

that weakly interacting NPs behave as fluctuating dipoles, with amplitudes on the order

of 300% with respect to the average dipole moment, similar to those that we observed for

the polarization of strongly interacting NP solids. We found that electronic polarizabilities,

similar to dipoles, are affected by the interaction between NPs, increasing by about a factor

of 2 in strongly interacting solids; however, their fluctuations at finite T are much smaller

than those of the polarization. Hence, at finite T the NP solids behave as dynamical, polar-

izable dipolar systems, and dispersion interactions, e.g. as Casimir forces, are expected to

contribute to their bonding and stability. Finally, in view of our findings, we revisited and

discussed several results present in the literature for the dipole moments of lead chalcogenide

NPs terminated with various ligands.
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CHAPTER 5

ELECTRONIC AND OPTICAL PROPERTIES OF QUASI-2D

NANOPLATELETS

5.1 Introduction

In the previous chapter, we discussed the collective properties of lead sulfide nanoparticles

as part of a solid composed of these “building blocks”, in particular investigating the com-

bined effects of interactions between nanoparticles and the disorder introduced through finite

temperature distortions. Here, we transition to studying cadmium selenide nanoplatelets, a

class of nanomaterials that is less understood from both an experimental and computational

perspective, but has the potential to outperform nanoparticles for photovoltaic applications

due to finer tunability. Thus, before understanding the collective behavior of a solid com-

posed of these nano-objects, it is essential to first understand the properties of the isolated

nanoplatelets. In this chapter, we describe a computational protocol to accurately calculate

the optoelectronic properties of quasi-2D nanoplatelets, in particular focusing on the optical

band gap and related quantities for solar cell device performance. We provide state-of-the-

art calculations of the optical gap, and interpret our results using a series of simple models

that allow us to disentangle the effects of quantum confinement, strain, and dielectric con-

trast between the material and its environment. In Section 5.2, we begin by laying out our

computational strategy, including details of the electronic structure methods and structural

models. In Section 5.3, we continue with a deeper discussion of the structural properties of

nanoplatelets, particularly in relation to their unique biaxial strain profiles. In Section 5.4,

we present and then interpret calculations of the fundamental band gap of these materials

obtained using G0W0, and suggest a new model that can be used to estimate the fundamen-

tal gap of NPLs with reduced computational cost, relative to many body perturbation theory

calculations. We end the section with a discussion on the challenges of defining an effective

dielectric constant for quasi-2D materials, providing our own definition of a quasi-2D effec-
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tive dielectric constant and commenting on the validity of our method through comparing

hybrid functional calculations to G0W0. Finally, in Section 5.5.1 we use our results for the

electronic structure of nanoplatelets to calculate and interpret the optical properties that

can be directly related to experiment. We show agreement with experimental optical band

gaps and absorption spectra, and provide the first calculations of the exciton binding energy

for these materials that do not use excitonic models.

5.1.1 State of the Art of Calculations and Experiments for Semiconducting

Nanoplatelets

Quasi-two dimensional CdSe nanoplatelets (NPLs) are a remarkable class of anisotropic

materials with strong quantum confinement in only one direction much like epitaxially-grown

quantum wells. Similarly to quantum dots (QDs), which have been successfully integrated

into certified solar cells, the highly controlled tunability of the optical absorption spectra

of NPLs as a function of their thickness promises successful integration of these materials

as photoabsorbers in photovoltaic devices. Due to recent synthetic advances, the size and

structure of NPLs can be controlled with atomic precision, leading to impressively narrow

absorption and emission linewidths of less than 40 meV, nearly half of that typically observed

for QDs [34]. This atomically precise synthesis has additionally opened up the possibility to

further tune the unique electronic structure of each layer of a complex NPL heterostructure.

Today, CdSe NPLs are routinely synthesized with passivating ligands that have been

experimentally shown to affect their photophysical properties [1, 49]. In line with compu-

tational reports [176, 195], experiments further suggest [1, 49] that NPLs exhibit ligand-

dependent biaxial strain profiles that lead to detailed atomic structures quite different from

their bulk counterparts. However, the relationship between ligands, atomic structure, and

photophysical properties is not fully understood. This is due, in part, to discrepancies

between different computational methods adopted to model the properties of NPLs for

example, the optical transition energies.
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In general, the optical transition energy is given by the difference between the quasi-

particle (QP) and exciton binding (Eb) energies. The former is the difference between the

ionization potential and electron affinity. The latter describes the attractive interaction be-

tween electron and hole, and it may be modeled knowing the dielectric constant and effective

mass of the material. While optical transitions are measured using i.e. UV-vis spectroscopy,

separately measuring the quasiparticle and exciton binding energies is more challenging par-

ticularly for colloidal solutions where typical photoemission spectroscopy measurements suf-

fer from scattering due to the solvent. For colloidal NPLs, measurements of the QP energies

have only recently become accessible [188], through an experimental procedure combining

absorption and photoacoustic spectroscopies [188]. Due to the lack of data on QP and ex-

citon binding energies, previous theoretical efforts have used optical transition energies only

to validate models of electronic properties. Various theoretical investigations have used dif-

ferent methods to compute Eb and QP energies [37, 17], with reported results that differ

significantly, especially for the QP energies.

The common methods for computing quasiparticle energies can be broadly classified in or-

der of increasing computational cost as: effective-mass approximation (EMA), tight-binding

(TB), Density Functional Theory (DFT), and the GW approximation. Increased computa-

tional cost comes at the benefit of a reduced number of model assumptions. Discrepancies in

predicted quasiparticle gaps between different methods can originate from both differences

in model assumptions and choice of parameters. Parametric discrepancies between different

computational approaches are easier to reconcile. However, identifying differences in model

assumptions has more profound implications on our physical understanding of NPLs.

Here, we present a computational protocol for studying quasi-2D NPLs based on first-

principles calculations and on the assessment of a number of models that have been proposed

in the literature [11, 83, 150, 37, 132] for estimating the quasiparticle gaps and exciton binding

energies. In doing so, we rationalize how the photophysical properties of NPLs are affected

by ligand-induced biaxial strain and quantum confinement as well as dielectric contrast
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between the NPL and its environment. Specifically, we use Density Functional Theory (DFT)

calculations to probe the structural properties of a series of CdSe NPLs. Quasiparticle (QP)

and exciton binding (Eb) energies are directly computed using Many Body Perturbation

Theory at the G0W0 level and the Bethe Salpeter equation (BSE), respectively. Our G0W0

and BSE results compare favorably with recent experimental reports [188] and are to the

best of our knowledge the first calculations at this level of theory for NPLs. We interpret

our G0W0 results for the QP energy using an EMA model and find agreement between our

calculations and the model only when quantum confinement effects are included using a finite,

and not infinite, potential barrier in the EMA model—the infinite one being most commonly

assumed barrier in literature. We show how the QP energies of NPLs are sensitive to the

interplay between dielectric contrast, which has been the focus of previous reports [37, 17],

and biaxial strain as well as quantum confinement. Further, we devise a model accounting

for strain effects,quantum confinement and dielectric contrast that provides a simple way to

estimate the fundamental gap of complex NPLs when the use of first-principles methods is

not feasible due to the high computational cost.

To compare our BSE calculations of the exciton binding energies of NPLs with available

excitonic models, we calculate the effective masses of each NPL as well as an effective di-

electric constant defined using information from the electrostatic potential, illustrating the

importance of taking into account the thickness-dependent nature of all quantities entering

the excitonic model. The interpretation of our BSE results through exciton models further

highlights the necessity to consider the effect of the screened Coulomb interaction due to

dielectric contrast between the NPL and its environment, as well as a finite extension of the

exciton wavefunction in the direction perpendicular to the NPL.

5.2 Computational Framework

In line with previous experimental and computational reports [83, 36, 17, 164, 195], we focus

our study on zinc blende CdSe NPLs ranging from 2-7 monolayers (MLs) in thickness, where
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we define the number of monolayers to be equal to the number of layers of Se, adhering to

the formula Cdx+1Sex due to the symmetric Cd termination on both the top and bottom of

the NPL. We chose NPLs capped with chlorine ligands to passivate both surfaces, as they

have been successfully used in ligand-exchange experiments [36], with ligands initially placed

as bridges between Cd atoms prior to structural relaxation [164] to preserve the tetrahedral

coordination.

Structures of 2ML, 3ML, 5ML and 7ML NPLs were generated using 2x2x1 supercells (28-

68 atoms) and using 3x3x1 k-point meshes, allowing both the in-plane lattice constants and

the atom positions to relax until forces were below 10−5 a.u. We found that the relaxation

of lattice constants in addition to atomic positions was essential in order to recover accurate

strain profiles. All structural relaxations were performed using the open source plane-wave

code Quantum Espresso [61] with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation

functional [134] and using PseudoDojo pseudopotentials [173] to describe the interaction

between the core and valence electrons; we found that including the 3d electrons in the

valence partition of Se was essential to reproduce a band gap in quantitative agreement with

experiment (see further details in Section 3.2.4). A kinetic energy cutoff of 100 Ry was

used for all calculations, with a vacuum spacing of at least 17 Angstrom in the out-of-plane

direction to separate periodic replicas.

5.2.1 Calculation of Quasiparticle Gaps from G0W0

G0W0 quasiparticle energies were calculated for the 2ML, 3ML and 5ML NPLs, while BSE

calculations were performed on 2ML and 3ML NPLs only. For both G0W0 and BSE calcula-

tions, a primitive unit cell of 7-15 atoms was used. Each primitive unit cell was symmetrized

to remove spurious numerical differences in the lattice constants in x and y and reduce

the number of k-points needed to carry out our calculations, with a difference in band gap

compared to the non-symmetrized structure of less than 0.1 meV.

G0W0 calculations were performed using the West code [66], which does not require
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Figure 5.1: a) Comparison of the convergence of the G0W0 band gap with respect to k-point
mesh for a 2ML CdSe NPL, obtained using Yambo (Plasmon-pole model approximation)
and West (Full-frequency integration), demonstrating that the two codes agree after ex-
trapolating to infinite k-points, but not for small k-point meshes, due to different methods
adopted for the truncation of the Coulomb potential. The x axis gives number of k-points
in the in-plane direction, i.e. 4x4x1, etc. b) Comparison of Plasmon-pole approximation to
Full-frequency approaches using Yambo with a 4x4x1 k-point mesh for the 2ML NPL, as a
function of increasing number of explicitly calculated frequencies.
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explicit calculation of empty states and avoids inversion of dielectric matrices. G0W0 quasi-

particle gaps were extrapolated to infinite number of k-points in the lateral dimensions and

to infinite number of PDEPs (see Section 3.5 for discussion of PDEP convergence). The

long-range Coulomb interaction was truncated to properly converge with respect to vacuum

size in the axial direction, using the method discussed in Ref. [159]. For G0W0 calculations

in West, we found that a sufficiently large k-point mesh of at least 5x5x1 was essential prior

to extrapolation to infinite k-points due to the method used in the code for the Coulomb

truncation.

For the 2ML NPL, in Fig. 5.1a we provide a detailed comparison between G0W0 calcu-

lations using West and the Yambo code [145, 115], the latter of which uses the Plasmon-Pole

Approximation (PPA) of Godby and Needs [63, 53, 161] rather than the full-frequency (FF)

approach of West. Yambo calculations of the quasiparticle gap were conducted with 100

empty states, and the Coulomb interaction was truncated using the Random Integration

Method (RIM) [123]. We found that, after extrapolating to infinite k-point meshes, quasi-

particle gaps calculated with the two codes converge to within 40 meV (Fig 5.1a), with the

remaining small discrepancy accounted for by the difference between PPA and FF approaches

(Fig 5.1b, where both PPA and FF are calculated with Yambo).

5.2.2 Calculation of Exciton Binding Energy from BSE

The exciton binding energy and absorption spectra of CdSe NPLs were calculated through

the Bethe-Salpeter Equation (BSE) using the Yambo code (see Section 3.6 for more details

of the method) and using PBE wavefunctions and a scissor correction equal to the difference

between the G0W0 and PBE gaps at the chosen k-point density for the 2ML and 3ML

NPLs. The final spectrum for the 2ML NPL was calculated with a 15x15x1 k-point mesh,

while exciton binding energies for the larger NPLs were extrapolated from smaller k-point

densities, as shown in Fig. 5.2b and c. We found that convergence with respect to k-point

mesh was essential, as the BSE spectra required a much denser mesh than the PBE or
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Figure 5.2: a) Examples of BSE spectra obtained at different k-point densities, from 2x2x1
to 15x15x1, for a 2ML CdSe NPL. Solid lines are from BSE, while dashed lines are from the
Independent Particle Approximation (IPA). Spectra are plotted with a Lorentzian broaden-
ing of 0.1 eV. b) Convergence as a function of k-points of the first transition energy for the
IPA spectrum (black, same as HOMO-LUMO G0W0 gap) and BSE (red). c) Convergence
as a function of k-points of the exciton binding energy of the 2ML NPL, calculated as the
difference between the first transition energies of IPA and BSE.
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BSE spectrum for 2ML CdSe illustrating the difference between including 10 valence/10
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G0W0 band gaps alone. In 5.2a we show the variation of the BSE (solid lines) and IPA

(dashed lines) spectra of 2ML NPL with increasing k-point density, noting the qualitatively

incorrect shape below a 10x10x1 mesh. We note that a fully converged spectrum would

require at least 25x25x1 k-points; however, the exciton binding energy and near-quantitative

comparison with experiment are obtained by 15x15x1 k-points.

Similarly to the Yambo G0W0 calculations, BSE calculations of 2D NPLs employed a

Coulomb cutoff using the Random Integration Method in order to converge with respect to

vacuum size in the axial direction. The Yambo documentation recommends the Coulomb

cutoff to be set approximately 1 Bohr smaller than the total unit cell size in the relevant

direction. All BSE and G0W0 calculations adhered to this guideline, for example using a

cutoff distance of 48.5 Bohr for the 2ML NPL, where the total axial unit cell size was 49.4

Bohr. Comparison of absorption spectra (using only 2x2x1 k-point sampling) with a cutoff

of 48 Bohr and 49 Bohr is shown in Fig. 5.3a in blue and red, respectively. As can be seen,

the absorption spectra is quite insensitive to the cutoff value when it is close to the edge of

the unit cell; however, we found the spectra onset to vary substantially when the cutoff was

reduced to near the center of the unit cell and lead to non-physical results.
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Finally, the spectra presented in this work were calculated using transitions between 10

occupied and 10 unoccupied energy levels near the band edges to reduce the size of the

matrices involved in the BSE calculation. We found this to be sufficient for the convergence

of the first two absorption peaks (attributed to the light-hole and heavy-hole transitions),

though more transitions would be required to fully converge the higher-energy regions of the

spectra, as shown in Fig. 5.3.

5.3 Structural Properties

5.3.1 Atomic Structure of Nanoplatelets

We begin our study through an analysis of the strain profiles in a series of CdSe NPLs.

In Fig 5.4 we plot the in-plane and out-of-plane strain for NPLs passivated with Cl− and

H− (the latter taken from Ref. [195] using the same level of theory). We define the strain

to be relative to the bulk lattice constant computed at the PBE level of theory. In line

with previous reports, our results show that NPLs are subject to compressive biaxial strain

that sensitively depends on their thickness and passivating ligands. We note that different

passivating ligands lead to different in-plane (εx) to out-of-plane (εz) strain ratios. We

explain the biaxial strain in NPLs as observed in our first principles calculations by using

a continuum elastic model that includes surface stress (solid lines in Fig. 5.4), originally

proposed for thin metallic films [69, 163]. According to the model, the equilibrium structure

of NPLs, i.e. in- and out-of-plane strain, arises from the fine interplay between volume

deformation-energy of the bulk crystal (∆Uvol), and surface energy due to surface stress

(∆Us):

∆Ũ =
∆Uvol + ∆Us

A0
=
[
L0NPLY∞ε

2 +O(ε3)
]

+ 2f0(1 + ε)2, (5.1)

where εx is the in-plane strain, ∆Ũ is the total work per unit area (A0), L0NPL is the NPL

thickness in the absence of strain, and f0 is the surface stress. The biaxial-modulus (Y∞)

in the 100-direction is defined for cubic crystals as C11 + C12 − 2C2
12/C11, where Cij are
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Figure 5.4: a-b) Out-of-plane and in-plane strain as a percentage relative to the bulk lattice
constant, for NPLs passivated with Cl− ligands (blue) and H− ligands, the latter using PBE
data from Zhou, et al [195]. Calculations were carried out at the DFT/PBE level of theory.
c) Drawing of a 4ML NPL labelling the in-plane and out-of-plane directions used throughout
the text.
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the elastic constants of the bulk [92]. The equilibrium in-plane strain that minimizes ∆Ũ is

given as:

εx =
−2f0

2f0 + L0NPLY∞
+O(εx). (5.2)

Therefore, both in- and out-of-plane strain(εz = −ηεx) are inversely proportional to the

thickness of the unstrained NPL (L0NPL). The model also rationalizes the observed overall

contraction across all layers of NPL heterostructures grown using c-ALD [77]. Since in biax-

ially strained materials, a contraction of the in-plane lattice constant leads to an expansion

in the axial direction (or vice-versa), changes in the biaxial strain profile of NPLs are coupled

with changes in the quantum confinement through changing the NPL thickness. Thus, the

electronic properties such as the quasiparticle band gap strongly depend on the amount of

strain present in the system.

5.4 Electronic and Dielectric Properties

5.4.1 Fundamental Gaps of Nanoplatelets

To understand the electronic properties of the nanoplatelets, we start by computing the

quasiparticle energies of NPLs passivated with Cl− ligands using G0W0 starting from PBE

wavefunctions. Results are given in Fig. 5.5 in black. To the best of our knowledge, these

are the first calculations of the quasiparticle band gap of CdSe NPLs at the G0W0 level of

theory, which is widely accepted to give quantitative agreement with experiment.

We find the G0W0 quasiparticle gap to be 3.52 eV for the 2ML NPL, decreasing to 3.05

eV for the 3ML NPL and to 2.43 eV for 5ML. We do not include Spin-Orbit Coupling (SOC)

for the G0W0 calculations, but expect SOC to lower the quasiparticle gaps by approximately

0.1 eV, as was found for bulk CdS GW gaps [148] as well as our own PBE calculations. Our

quasiparticle gaps are in good agreement with the only experimental report of fundamental

gaps for these materials [188], where they measure the band-to-band transition energy to be

approximately 2.9 eV for a 3ML NPL through a combination of photoacoustic and absorption
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Figure 5.5: Fundamental band gaps of CdSe NPLs calculated using G0W0 starting from
PBE wavefunctions (black), and estimated using the combined model described in the text
(blue).
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spectra. However, we note that the experimental samples were capped with organic ligands

and were in colloidal solution where the environmental dielectric constant was larger than

that of vacuum (approximately 2) which we expect would slightly reduce the measured

fundamental gap compared to the one that would be measured in vacuum.

5.4.2 Interpretation of Quasiparticle Gaps Through Simplified Models

While we have presented accurate calculations of quasiparticle gaps, the computational cost

of G0W0 is prohibitive for thicker NPLs or more complex heterostructures, and thus a model

that can estimate the quasiparticle gap with G0W0 accuracy, without explicitly performing

calculations for each size, is highly desirable. In order to find the best possible model to

estimate the quasiparticle band gap of CdSe NPLs, we identified three key descriptors to

understand how the properties of NPLs differ from that of bulk CdSe, the latter of which has

been extensively studied experimentally, from first principles, and using models. First, as

previously mentioned, the strong anisotropy of the NPLs leads to a biaxally strained material

whose thickness depends on the exact biaxial strain profile since the in-plane compression

directly leads to an axial expansion. Second, similarly to quantum dots or other nanomate-

rials, quantum confinement, determined by the NPL thickness, leads to an increase of the

quasiparticle gap compared to the bulk material. Finally, the quasiparticle gap of a 2D or

quasi-2D material has been shown to depend on the dielectric contrast between the mate-

rial, e.g. the NPL, and its environment [37], and can either increase or decrease depending

on whether the external dielectric constant is smaller or larger than the dielectric constant

within the material.

We first consider the effect of strain and we begin by discussing an eight-band k · p-

Hamiltonian that accurately describes changes in the band gap of bulk CdSe due to applied

biaxial strain; we then compare two separate effective mass models to estimate the change

in gap due to quantum confinement. Finally, we will use a model already present in the

literature [37] to calculate the change in band gap of the NPL caused by the dielectric
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contrast due to the surrounding vacuum. Combining the information from the models of the

three effects (strain, quantum confinement and dielectric contrast) into a unified model of

the QP gap as a function of size, we compare our results with those of G0W0 calculations.

We obtain an accurate description of the gap as a function of size, comparable to that of

G0W0 calculations (see Fig. 5.5).

We describe changes in the CdSe bulk band structure, and thus the band gap, as a

function of strain using an effective mass k · p-Hamiltonian [177]. For zinc-blende crystals,

such as CdSe, the eight-band k ·p-Hamiltonian describes the energies of the electron, heavy

(hh) and light-holes (lh), as well as the spin-orbit (SO) hole bands. At fixed momentum-

vector k, the band-energies, and therefore also EQP,bulk, are obtained by diagonalizing the

k · p-Hamiltonian.

The eight-band model can be extended to include effects of strain on the bulk dispersion

[11]. To assess changes in band gap as a function of strain, we consider the individual changes

in the heavy-hole and electron energies. Changes to the Γ-point energies of the heavy-hole

and electron are given by:

∆Ee = ap (εz − 2η) , (5.3)

∆Ehh = −a (εz − 2η) + b (εz + η) , (5.4)

where a, b, and ap are the material-dependent deformation potentials. Out-of-plane (εz)

and in-plane strain (εy = εx) are connected through η = −εx/εz. The difference between

electron and heavy-hole energy due to strain is then given as:

∆Ebulk
strain = ∆Ee −∆Ehh (5.5)

In Fig. 5.6 we compare the pristine-bulk dispersion obtained from PBE calculations to

the results obtained from the eight-band model which has been parametrized using our PBE

results. We also plot the bulk Γ-point energies of both heavy-hole and electron, computed

for different out-of-plane strains. The deformation potentials (a, b, and ap) were determined
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Figure 5.6: a) Band structure of unstrained bulk CdSe, showing agreement between our
DFT (PBE) results (blue) and k · p model. b) The change in electron (top) and heavy-hole
(bottom) energies of the bulk upon applied biaxial strain. The k ·p model was parametrized
using the data in orange, while the blue line is an extrapolation that shows good agreement
with DFT.
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by using Eqs. 5.3 and 5.4 and by fitting PBE data of the bulk material where the atomic

structure had a biaxial strain ratio of η=0.72 (shown in orange), corresponding to the biaxial-

strain ratio obtained using bulk elastic properties. The blue lines are an extrapolation of the

model corresponding to η=1.25 ( the average strain-ratio in our Cl- passivated NPLs) using

the same deformation potentials. The close agreement between PBE results and eight-band

model indicate that the model can accurately described band-dispersion and strain-induced

changes on EQP,bulk.

To include the effect of quantum confinement, we consider an infinite potential-well model

that is often used in the literature to predict QP energies of NPLs [83]. The presence of

infinite barriers forces the wave-function (envelope) to vanish at the top and bottom of the

NPL, which leads to a discretization of the out-of-plane momentum (kz = nπ/LNPL, n=

1,2,...). Most importantly, the smallest kz is non-zero and increases with decreasing NPL

thickness (LNPL). The confinement energy, Econf, is then the difference between band-

energy at finite kz obtained by diagonalizing the eight-band model and the respective

Γ-point energies. Our ability to correctly describe confinement therefore strongly depends

on how accurately we describe the band-dispersion of the bulk.

In Fig. 5.7a we plot the confinement energy computed at the PBE level of theory for

NPLs of different thickness and passivated with chlorine ligands. The confinement energy

is obtained as EDFT
conf = EDFT

NPL − EDFT
bulk . We compare the PBE confinement energy with

that obtained with the infinite potential model. Our results show that the infinite potential

model strongly overestimates the PBE results, suggesting that the hypothesis of an infinite

barrier needs to be revisited.

The simplest way to go beyond the infinite-barrier assumption and model the effect

of a finite-potential (V0) on the QP gap, is to consider the heavy-hole (hh) and electron

(e) separately [150], similar to our approach to describe the effective mass model including

biaxial strain. We approximate the heavy-hole dispersion assuming a constant effective mass

[mhh = m0/(γ1− 2γ2)], where γi are the modified Luttinger parameters of the bulk and m0
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Figure 5.7: a) Charge carrier confinement energy in NPLs, comparing the finite (blue) and
infinite (red) potential well models. b) Charge carrier confinement energy as a function of
strain for the 2ML NPL using increasing finite potentials between 2 eV and 14 eV.
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is the free-electron mass [11]. To account for the non-parabolicity of the electron dispersion,

we use an energy dependent electron effective-mass me(E) similar to Ref. [52, 129]:

m0/me(E) = α +
Ep
3

(
2

E
+

1

E + ∆

)
(5.6)

where Ep is the Kane energy describing conduction and valence band mixing [11], α describes

the coupling of the lowest electron-band to higher bands [52, 129, 51], and ∆ is the energy-

splitting of the valance band due to spin-orbit coupling. The electron effective-mass at

the bottom of the band is obtained for E = Eg. Neglecting effects of non-parabolicity by

assuming a constant me can lead to incorrect estimates of the confinement energy, especially

for thin NPLs.

The heavy-hole (Ehh,conf) and electron (Ee,conf) confinement energies for a finite potential

well are then obtained by solving an implicit equation for mi = mhh and mi = me(E)

respectively:

tan

(
LNPL

2

√
2miEi,conf

)
=

√√√√mi

(
V0

Ei,conf
− 1

)
. (5.7)

Eq. 5.7, here given in atomic units, is obtained by imposing continuity and current-

conserving boundary conditions [14] for the wave-function at the top and bottom of the

NPL. As in Ref. [129], a free-electron mass is assumed for heavy-hole and electron in the

vacuum region surrounding the NPLs. Strain-induced changes in the effective NPL-thickness

are accounted for by LNPL. Assuming different confinement potentials (V0) for heavy-hole

and electron is straightforward. The overall confinement energy (Econf) is then given as the

sum of Ee,conf and Ehh,conf.

In general, the confinement potential (V0) originates from the covalent interaction be-

tween organic ligands and Cd atoms located on the surface. V0 therefore sensitively depends

on the type of ligand passivating the surface. In Fig. 5.7b we plot the confinement energy of

a 2ML-thick NPL as a function of out-of-plane strain and for varying confinement potentials

(V0). Note that Econf combines both Ee,conf and Ehh,conf. Bulk parameters entering the
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model are extracted from DFT calculations of the pristine and strained bulk. However, using

experimental parameters [83] yields similar results. Our findings show that both out-of-plane

strain and, to an even greater extent, V0 sensitively affect the confinement energy.

We probe the strength of V0 and the validity of the finite-potential model using our PBE

calculations of NPLs passivated with Cl- ligands. By comparing the finite potential model

plotted for different V0 to PBE calculations, as shown in Fig. 5.7, we show that the two

methods are in agreement for V0 between 2 and 4 eV. Confining potentials of only a few eV

stand in stark contrast to most previous reports that assume V0 to be infinite.

To finally assess the effect of the dielectric environment on the fundamental band gap

of our series of NPLs, we use a model proposed by Cho et al. [37] which offers a simple

correction scheme to accurately estimate QP band gaps. This correction scheme is based

upon the method of image charges [99], in which a self-energy, Eself, is calculated as the

repulsive interaction between a charge inside and an infinite number of imaginary charges

outside the NPL:

Eself =
1

εindNPL

[
2tanh−1(L12)− ln(1− L12)

]
(5.8)

where dNPL is the NPL thickness and L12 = (εin − εout)/(εin + εout). This scheme was

validated for MoS2 [37] and later used for CdSe NPLs [195] as an additive correction upon

PBE calculations of NPLs.

We combine the effective mass model for the change in the band gap of bulk CdSe due

to biaxial strain (∆Ebulk
strain) with the change in fundamental gap due to quantum confine-

ment (Econf) using a finite potential well model, and the self-energy (Eself) due to dielectric

contrast using the model by Cho et al., to estimate the quasi-particle energy (EQP) of NPLs:

E
QP
NPL = EQP,bulk + ∆Ebulk

strain + Econf + Eself (5.9)

where ∆Ebulk
strain, Econf, and Eself are defined as in Eqs. 3-5. A value of 2.5 eV for V0 was
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assumed for all NPL thicknesses, as this was the average value found to match our PBE

data. The effective masses entering the finite potential model (Econf, Eq. 4), are taken from

the eight-band k ·p-Hamiltonian of the strained bulk, parametrized using PBE calculations.

Similarly, the deformation potentials entering ∆Ebulk
strain (Eq. 3) are extracted from the same

calculations. In-plane and out-of-plane strain values are extracted from the relaxed NPL

structures passivated by Cl-ligands. The same calculations are used to determine the NPL

thickness (dNPL), entering Eself (Eq. 5). Finally, for Eself, we take εin and εout to be 6.2 and

1, respectively, corresponding to the bulk dielectric constant of CdSe and that of vacuum.

We take the experimental value of 1.66 eV for EQP,bulk [88].

The close agreement between this combined model and G0W0 calculations is shown in Fig.

5.5 and suggests that this model accurately describes the interplay between strain, quantum

confinement and dielectric screening effects that ultimately determine quasiparticle gaps in

NPLs.

5.4.3 Band Structure and Effective Masses of Nanoplatelets

In addition to the fundamental gaps presented in Section 5.4.1 and interpreted through

models in 5.4.2, it is also important to understand how the full band structure of NPLs is

affected by changes in strain and quantum confinement, particularly as it relates to changes

in the effective masses that will be shown to be essential in the estimation of exciton binding

energies in Section 5.5.1 using excitonic models.

Going from the 3D crystalline bulk of zinc blende CdSe to a 2D or quasi-2D counterpart

requires careful comparison of band structures, as it is not necessarily straightforward to

compare the 3D and 2D Brillouin zones. In 2D, the zinc blende Brillouin zone can be

visualized as a slice through the 3D Brillouin, as shown in the schematic in Fig. 5.8b. While

the full reciprocal space of the 2D NPLs is not directly comparable with that of the bulk,

the high symmetry point commonly labeled X (or M) is identical in both dimensionalities.

Thus, comparisons in band structure and effective masses between the bulk and NPLs are
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Figure 5.8: a) Valence band states (including SOC) near the band edge for 2ML-7ML NPLs,
along the Γ− X direction (colored lines) compared to the same states for biaxially strained
bulk CdSe (gray dotted lines). b) Schematic of the Brillouin zone for the 3D Bulk and 2D
NPLs (blue rectangle) [176]

done along the reciprocal space path between Γ and X.

In Fig. 5.8a we compute the valence band structure including spin-orbit coupling (SOC)

for the 2ML, 3ML, 5ML and 7ML NPLs along the Γ− X direction. In gray, we compare to

the bandstructure of the NPL to the band structure of a biaxially strained bulk, subject to

the same strain as the respective NPLs, where SOC has also been included. We find that

while the dispersion of the valence band maximum (VBM) is similar to that of the bulk,

the lower-lying bands all differ significantly. As the NPL thickness increases, we observe an

increase in the number of subbands close to the VBM not present in the bulk dispersion.

This is consistent with the results of Vasilev et al. [176]. The presence of energy subbands is

typical for quantum-wells, and is best understood through the infinite confinement potential

model described previously [186]. Energy subbands correspond either to the light- and spin-

orbit-hole, with reduced energy compared to the heavy-hole due to quantum confinement

and strain, or they can be assigned to heavy-hole states with finite out-of-plane momentum

kz = nπ/LNPL, where n is larger than one. We also note the clear non-parabolicities of all

bands of the NPLs that originate from both quantum confinement and strain effects.

In Fig. 5.9, we plot the reduced mass, µ, calculated using band structures at the PBE

level of theory, where we define the reduced mass to include contributions from only the
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Figure 5.9: Reduced masses of NPLs computed using PBE (this work, black) and compared
to Tight Binding calculations from Ref. [17] (red).

effective mass of the heavy hole (hh) and the electron (e):

1

µ
=

1

me
+

1

mhh
(5.10)

To the best of our knowledge, there are no direct experimental measurements of effective

masses for CdSe NPLs, hence we compare our results with Tight Binding calculations of

the reduced masses [17], which yielded results for the reduced mass of bulk CdSe in good

agreement with experiment. Our effective masses calculated at the PBE level of theory are

lower than literature results, which is unsurprising due to the level of theory, but we find

that the trends and ratio of the reduced mass of the NPL to that of the bulk are in good

agreement between our PBE results and that of Ref. [17]. Furthermore, in Table 5.1 we

summarize all possible methods for calculating the reduced mass of bulk CdSe, and show

that calculating the band structures using a hybrid functional such as DDH rather than

PBE leads to a reduced mass in much better agreement with experiment. However, such

calculations for NPLs are prohibitively costly due to the need for a extremely dense k-point
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Table 5.1: Summary of reduced masses of bulk CdSe calculated using different methods and
compared to experiment value taken from [83].

f. diff.
(PBE)

f. diff.
(PBE w/ SOC)

k · p
(PBE)

k · p
(PBE w/ SOC)

k · p
(DDH)

exp. [83]

0.067 0.068 0.055 0.054 0.081 0.11

mesh near the Γ point.

5.4.4 Dielectric Constants of Nanoplatelets

For three dimensional materials such as bulk CdSe, there is a clear relation between the

dielectric constant, ε, and refractive index, n: ε = n2. For 2D-periodic systems such as

nanoplatelets, however, there is no consensus in the literature regarding the definition of a

dielectric constant particularly due to the necessity of defining a volume, Ω (see Eq. 3.11).

For example, previous calculations of a 2D dielectric constant have been performed by using

a volume based on the positions of the atoms in a unit cell (either including or excluding

ligands), while others have suggested that the atom positions plus the covalent radii of

the ligands is a preferred descriptor of the material thickness. Some authors [170, 132]

have suggested that the dielectric constant is actually not sufficient for describing dielectric

properties of 2D materials, instead pointing towards a 2D polarizability as the fundamental

variable of interest. Olsen et al. [132] demonstrated that an effective dielectric constant

could be determined by analytically averaging the screening felt by the exciton in the center

of the 2D material using an effective Bohr radius. In this work we sought to define an effective

dielectric constant by using a thickness defined by the electrostatic potential, which extends

further away from the atoms than the covalent radii of the surface atoms by approximately

1 Å on either side, regardless of the NPL thickness. For example, for the 2ML NPL, we find

an atom-to-atom thickness of 17.0933 Bohr, a covalent thickness of 20.9483 Bohr (where the

covalent radii of Cl is 1.928 Bohr), and an electrostatic potential thickness of 23.2180 Bohr.

In Table 5.2, we show how the value of the thickness defined using the electrostatic potential

depends on the threshold chosen for the zero of the potential. We note that, near the edges
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Figure 5.10: Planar-averaged electrostatic potential of the 2ML, 3ML, 5ML and 7ML NPLs.
Gray boxes show the atom-to-atom thickness of the NPLs

of the unit cell, fluctuations of the electrostatic potential were on the order of 0.001 V.

We use the Effective Dielectric Model (EDM) from classical mechanics [170], where a 2D

material surrounded by an external dielectric medium (in our case, vacuum) can be modelled

by two capacitors in parallel (series) to compute the effective in-plane (out-of-plane) dielectric

constant of the system:

εeff,‖ = εNPL
δ

L
+ εext(1−

δ

L
) (5.11)

where δ is the thickness of the NPL and L is the full length of the unit cell including the
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Table 5.2: NPL thickness for different definitions of the electrostatic potential threshold.
Threshold Thickness (Å)
0.175 V (1% of max) 11.879
0.1 V 12.205
0.088 V (0.5% of max) 12.458
0.05 V 12.693

Figure 5.11: Effective dielectric constant calculated at the PBE level of theory with atom-
to-atom thickness, as a function of increasing vacuum spacing. Dashed line shows the PBE
dielectric constant of the bulk.

surrounding medium (vacuum). εeff,‖ is the total effective dielectric constant of the NPL and

the surrounding medium (vacuum), which was calculated using the self-consistent dielectric-

dependent hybrid (sc-DDH, see Section 3.2.3) functional and the method of finite fields. As

expected, we find that both the in-plane and out-of-plane components of the total dielectric

constant converge to 1 as the total unit cell lattice constant and the vacuum between periodic

images in increased. On the contrary, by defining instead an effective volume of the NPL,

εNPL, we obtain a value of the dielectric constant that is insensitive to the size of the vacuum

layer, as shown in Fig. 5.11.

We additionally found that our sc-DDH effective dielectric constants calculated using

finite fields were in good agreement with an estimation of the experimental effective dielectric
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Table 5.3: Dielectric constant of bulk CdSe from exp. and calculated using sc-DDH, com-
pared with the effective dielectric constant of the 2ML NPL estimated using Eq. 5.12 and
calculated with one and two self-consistent iterations for DDH.

bulk CdSe,
exp.

bulk CdSe,
sc-DDH

2ML NPL,
exp. approx

2ML NPL,
sc-DDH1

2ML NPL,
sc-DDH2

ε 6.2 6.0 3.82 4.02 4.05

constant of the NPL calculated using a ratio of experimental and PBE values:

εNPL,exp ≈
εbulk,exp
εbulk,PBE

εNPL,PBE (5.12)

We note that this expression is also used to estimate an initial input value for the fraction of

exact exchange in sc-DDH calculations, which speeds up convergence of sc-DDH by requiring

only two self-consistent iterations, for example as shown in Table 5.3 for the 2ML NPL,

labeled “sc-DDH1” and “sc-DDH2”. Comparison with the estimated value from Eq. 5.12

is provided as well.

In Fig. 5.12a, we present the dielectric constants calculated at sc-DDH using NPL

thicknesses defined by the atom-to-atom distances, the covalent radii and the electrostatic

potential. The total dielectric constant of the system, εeff,‖, was calculated using the

finite field method (see Section 3.4.2) with a self-consistent dielectric-dependent hybrid (sc-

DDH) functional, in which the inverse of the effective dielectric constant of the NPL, εNPL,

was used in each case as the fraction of exact exchange and solved self-consistently until

convergence (see Section 3.2.3) [158].

To validate our method of defining this 2D effective dielectric constant, we calculated the

fundamental band gaps using the sc-DDH functional, where the fraction of exact exchange

is again the inverse of the dielectric constant defined through the electrostatic potential. In

Fig. 5.12b, we compare the sc-DDH fundamental band gaps to that of G0W0, presented and

validated above in Section 5.4.1, and find that the fundamental gap calculated with sc-DDH

underestimates the G0W0 by approximately 0.3-0.4 eV. Since the sc-DDH fundamental gap

of bulk CdSe is slightly higher than the G0W0 gap (1.66 eV and 1.57 eV, respectively),
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Figure 5.12: a) Effective dielectric constants of the NPLs calculated using three definitions
of the NPL thickness: the atom-to-atom distance (red), the covalent radii (green) and the
electrostatic potential (teal). Error bars on the teal curve represent the maximum and
minimum thicknesses defined in Table 5.4.4. b) Fundamental band gaps calculated using
sc-DDH compared to G0W0.

we attribute the underestimation of sc-DDH for the NPLs to a dielectric constant that is

slightly too large. This corresponds to a thickness that is slightly too small, thus indicating

that a more accurate screening length would actually be larger than that defined by the

electrostatic potential, which is significant due to the fact that all previous attempts to

define an effective 2D dielectric constant have used thicknesses smaller than the ones in the

present study.

5.5 Optical Properties

5.5.1 Absorption Spectra and Exciton Binding Energies

Comparison with absorption experiments is critical for validating both calculations and mod-

els, as these experiments are essential for determining the photophysical properties of newly

synthesized materials that may be applicable for photovoltaic devices. As such, while we

calculated the fundamental band gap in Section 5.4.1, an understanding of the fundamental
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gap alone is not sufficient without combining it with an investigation of the exciton binding

energy, Eb, and finally the optical band gap, Eg,opt. Therefore, having computed the funda-

mental band gap of NPLs using G0W0 and having rationalized our results using a series of

simple models, we now turn our focus to the exciton binding energy, Eb. We compute the

optical absorption spectra and exciton binding energy using the Bethe-Salpeter equation,

thus obtaining a direct calculation of Eb from first principles. We find the exciton binding

energy of the 2ML NPL to be approximately 600 meV, reducing to 500 eV for 3ML. In Fig.

5.13a we show the absorption spectrum of 2ML CdSe calculated with BSE starting from

PBE wavefunctions and a constant scissor correction equal to the difference between the

fundamental band gaps at PBE and G0W0. The spectrum was calculated with a 15x15x1

k-point mesh, and includes transitions between 10 occupied and 10 unoccupied energy levels

near the band edges. We stress the importance of convergence with respect to k-point mesh,

as the BSE spectra were found to require a much denser mesh than the PBE or G0W0 band

gaps alone. Our BSE calculations explicitly included spin-orbit coupling, as we found that

qualitative agreement with experimental absorption spectra, as shown in Fig. 5.13a, could

not otherwise be obtained because the first two peaks are widely attributed to the heavy

hole and light hole first transitions [83].

Besides providing a value for the exciton binding energy for Cl- passivated NPLs, BSE cal-

culations can help address discrepancies in assumptions used in models present in literature.

Current exciton models either neglect (purely 2D models) or consider (“hybrid” models) the

finite extension of the exciton wavefunction in the out-of-plane direction. Screened Coulomb

interactions due to dielectric contrast are included in most, but not all, models, typically by

using the image-charge method [195, 138]. Although in principle more accurate, including

the finite extension of the wave-function significantly increases the computational complex-

ity. Additional discrepancies arise in the choice of the reduced mass and dielectric constant

entering the exciton models. While most calculations assume the bulk reduced mass (µ),

our DFT calculations of NPLs, in line with previous reports [17], suggest that µ differs sub-
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Figure 5.13: a) BSE spectrum of 2ML CdSe calculated using 15x15x1 k-point sampling com-
pared to experimental data from [83]. BSE spectrum is plotted with a Lorentzian broadening
of 0.05 eV. b) Optical band gaps using G0W0 fundamental gaps and Eb calculated from BSE
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Figure 5.14: Exciton binding energies estimated using the Olsen model (black) and 2D
Hydrogen Approximation (teal). Sensitivity to the effective mass is shown by comparison
of values obtained using our PBE effective masses (solid teal line) to that with TB effective
masses taken from the literature (dashed teal line) [17]

stantially from the bulk value as shown in Section 5.4.4. This effect originates both from

confinement [186] and strain [11] and cannot be neglected. Furthermore, in most cases it is

necessary to assume a dielectric constant for the semiconductor material, and usually the

bulk value is used.

Using our BSE calculations, we probe the validity of the 2D Screened Hydrogen model

proposed by Olsen et al. [132], which uses a 2D polarizability rather than a dielectric constant

as the fundamental variable to calculate the exciton binding energy. Comparison between

Olsen’s 2D Screened Hydrogen model and BSE (Fig 5.14, black and red, respectively)

shows that the Olsen’s model overestimates our BSE results for the 2ML and 3ML NPLs,

with better agreement for the thicker 3ML NPL. This is consistent with observations by

Olsen et al., as they show that their model performs best for exciton binding energies below

approximately 500 meV.

While Olsen et al. presented an analytical expression for purely 2D materials that in-
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corporates screening into the 2D Hydrogen Approximation, we propose that such screening

may be inherently included by instead using effective dielectric constants for the NPLs such

as those presented in Fig. 5.12a. We use the basic 2D Hydrogen Approximation:

Eb,2D = 4Eb,3D =
2µ

ε2
(5.13)

where µ is the effective mass, ε is the dielectric constant, and the factor of 4 comes from

dimensionality. The exciton binding energies calculated using the Hydrogen Approximation

with the NPL effective dielectric constants (defined using the electrostatic potential) are

shown in Fig. 5.14 as solid teal lines, and are found to be approximately 300-400 meV lower

than those calculated by the Olsen model (black lines). However, we note the sensitivity

of the Hydrogen Approximation to the effective masses, which is not the case for the Olsen

model. Similar to the underestimation of effective masses using PBE (Section 5.4.3), the

underestimation of the exciton binding energy is unsurprising. For a more direct comparison

between the Olsen model and the Hydrogen Approximation using our effective dielectric

constants, we thus used effective masses taken from the literature [17]. The results are shown

as dashed teal line in Fig. 5.14, where we highlight the remarkable agreement with the Olsen

model. This agreement between the Olsen model and Hydrogen Approximation implies that

using effective dielectric constants of the NPLs defined using the electrostatic potential may

inherently lead to the inclusion of screened Coulomb interactions, which are instead neglected

when only the bulk dielectric constant is used in the Hydrogen Approximation. However, we

note that models still overestimate our BSE calculations, particularly for the smallest NPL

(Fig. 5.13).

A direct comparison between our BSE calculations and other exciton models present in

the literature, including both purely 2D [195] and hybrid [17], is not possible due to the fact

that they assume an external dielectric constant, εr,out, of 2 (organic ligands) while our BSE

calculations intrinsically assume εr,out to be 1 (vacuum). However, exciton binding energies

calculated assuming εr,out to be 2 instead of 1 are expected to be smaller [7, 37], which is
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consistent with our observations. Comparison between BSE and other models that assume

εr,out to be 1 and use the same values for µ would provide additional physical insights on

exact exciton character in NPLs and will be the focus of further studies.

5.5.2 Comparison of Optical Band Gaps to Experiment

By considering both the G0W0 fundamental gap and exciton binding energy, we compare our

calculated optical gaps with experiment, as shown in Fig. 5.13b. We find good agreement

using BSE as well as using the Olsen model and the Hydrogen Approximation with effective

NPL dielectric constants defined using the electrostatic potential. Our optical gaps are

additionally in decent agreement with Zhou et al. [195], where the fundamental gap is

calculated with the model of Cho et al. based on PBE calculations and Eb is calculated

using an effective mass model. We note that, while the Eb and fundamental band gap are

both expected to be affected by changes in dielectric constant between the material and its

environment, the optical band gap may be less sensitive to these changes, as suggested by

Cho et al. for MoS2 [37] due to cancellation of errors; indeed the Eb and fundamental gap

are affected by dielectric contrast in opposite ways but by similar amounts.

5.6 Conclusions

In conclusion, we have presented calculations of the fundamental band gap and exciton

binding energy of a series of CdSe NPLs calculated from G0W0 and BSE, respectively,

which lead to optical gaps in good agreement with experimental absorption measurements

[83, 36]. We rationalized our calculations of the fundamental gap using a model based on the

effective mass approximation for the biaxially strained bulk material that further accounts

for quantum confinement and dielectric contrast. Our BSE calculations provide the first

calculations of the exciton binding energy for these materials without the need to employ an

exciton model that makes assumptions regarding the strength of dielectric screening, extent
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of the exciton in the material, and sensitivity of the effective masses to changes in NPL

thickness through the number of layers or inherent strain.

We have shown that our model of the fundamental band gap predicts the quasiparticle

energies of quasi-2D NPLs with nearly “GW” accuracy. The close agreement between our

model and G0W0 calculations suggests that the model accurately describes the interplay

between strain, quantum confinement and dielectric contrast effects that ultimately deter-

mine quasiparticle gaps in NPLs. However, we stress that our model points to a confining

potential from the NPL surface of only a few eV, which is in stark contrast to most previous

reports that assume infinite potential barriers.

Due to the reduced computational cost of our model compared to G0W0 calculations, this

model could be used to predict the fundamental gaps of systems that are computationally

challenging to calculate with G0W0, such as thick NPLs, NPLs with long organic ligands,

or core/shell NPLs, and could be used for high-throughput screening of nanomaterials with

optimal band gaps for photovoltaic devices, since only calculations of the strained bulk

materials are required and the potential barrier, posed by the ligands or NPL shell, can be

tuned systematically.

Finally, by combining our model of the fundamental gap with an accurate model for the

exciton binding energy (either the model proposed by Olsen et al. [132] or the 2D Hydrogen

Approximation using effective dielectric constants of the NPLs), we have presented a scalable

framework for the calculation of the optical gap of NPLs that could be used for large NPLs

without the need for computationally demanding G0W0 and BSE calculations. With such

a scalable model, one could additionally investigate the more complex relationship between

structure and optical properties of core/shell NPL heterostructures, where the interfaces

between the core and shell introduce additional complexities in the biaxial strain profile.

For example, in the experimental study of Hazarika, et al. [77], an unexplained decrease

in optical gap was found for CdS/CdSe core/shell NPLs compared to pure CdSe NPLs.

This previously surprising result can be rationalized through appreciation of the unique
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interplay between biaxial strain, quantum confinement and dielectric contrast presented in

this chapter, and further work could include using the models presented here to estimate

the optical gaps of a series of core/shell NPLs, including the development of design rules for

core/shell NPLs with engineered optoelectronic properties based on the protocol we have

established for these calculations.
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CHAPTER 6

ELECTRONIC PROPERTIES OF METAL-ORGANIC

FRAMEWORKS

Reproduced in part with permission from Airi Kawamura, Arin R. Greenwood, Alexander

S. Filatov, Audrey T. Gallagher, Giulia Galli, and John S. Anderson, Inorganic Chemistry

56(6), 3349-3356 (2017). Copyright 2017 American Chemical Society.

6.1 Introduction

As a final application of our electronic structure methods to the field of renewable energy,

we show how spin-polarized Density Functional Theory calculations can be used to predict

the stability of different spin states for a series of Metal Organic Frameworks (MOFs) of the

formula M(BDC)(L) (M = Fe(II) or Co(II), BDC = 1,4-benzenedicarboxylate, L = pyrazine

(pyz) or 4,4’-bipyridine (bipy)), in particular focusing in this study on Fe(BDC)(pyz). In

conjunction with experiments, we show that these MOFs exist in a energetically favorable

antiferromagnetic state at low temperature, with the ferromagnetic spin configurations higher

in energy by approximately 30 meV. Although this barrier to switching between spin states

is low, we attribute the stability of the anti-ferromagnetic state to the different preferred

geometries for the three spin states.

6.2 Computational Framework

DFT calculations were performed using the Quantum Espresso [61] code under the General-

ized Gradient Approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) [134] parametriza-

tion and a plane-wave basis. Optimized Norm-Conserving Vanderbilt (ONCV) pseudopo-

tentials [74] were chosen to approximate the potential of the core electrons, using a kinetic

energy cutoff of 75 Ry. To account for the electronic interaction between partially filled Fe d
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states and open up a gap between the valence and conduction bands, the DFT+U method

was employed using a correlation energy (U) of 5 eV [48]. The value of U was chosen by

scanning over a range of 2-5 eV, as shown in Fig. 6.1, and choosing the smallest value for

which the pseudo-octahedral field Fe d electrons and the insulating band structure were ac-

curately represented. This value of U is close to what has been used for DFT+U calculations

in literature for other MOF and similar systems [192, 194].
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Figure 6.1: Total DOS as a function of increasing U parameter for antiferromagnetic
Fe(BDC)(pyz). Positive and negative values correspond to spin-up and spin-down DOS,
respectively.

All calculations were performed at the Gamma point and at the experimental lattice

constant with a trigonal unit cell (space group P-3) containing 162 atoms and including 6 Fe
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centers and two triangular pores (for a total of 636 valence electrons). Spin-Polarized Density

Functional Theory was used to account for the different possible spin configurations of the Fe

centers. Both antiferromagnetic (AFM) and ferromagnetic (FM) high-spin Fe systems were

considered, as well as a non-magnetic (NM) low-spin Fe case. Stable spin states were found

by varying the initial local magnetic moments of the Fe, O and N atoms, and enforcing a

total magnetization of zero for AFM coupling. The geometry for each of these three systems

was optimized at the PBE level of theory until forces on all atoms were less than 10−5 Ry

Bohr−1. Relaxed geometries were found to vary for the three spin configurations, with the

most notable difference coming from the non-magnetic low-spin system which is the most

strained at the fixed lattice constant.

6.3 Electronic Structure of Fe(II) MOFs

Metal-organic frameworks (MOFs) are characterized by high surface area and porosity that

make them a natural choice for applications such as gas storage [126, 121, 54], separation

[29, 23], and heterogeneous catalysis [113, 187]. In addition to studies utilizing MOFs for

these applications, the electronic and magnetic properties of these porous systems have

recently attracted increasing interest. Typically, MOFs include diamagnetic metal centers

(e.g. Zn(II), Al(III), Zr(IV), etc.) or clusters combined with diamagnetic, insulating linkers

which have no charge or spin carriers accessible for magnetic and electronic phenomena.

Systems that do feature suitable paramagnetic ions frequently feature linkers that mediate

weak electronic and magnetic coupling. Nevertheless, there has been substantial effort in

developing porous materials that display antiferromagnetic or ferromagnetic coupling, spin

canting, or conductivity.

In the context of expanding this class of materials, we have investigated metal centers

with high S values, in conjunction with linkers that may support strong electronic or mag-

netic coupling. One such bidentate linker is pyrazine (pyz) which, along with its expanded

analogue 4,4-bipyridine (bipy), has been shown to engender strong electronic coupling. De-
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Figure 6.2: Structure of solvated Fe(BDC)(pyz) as determined by single crystal x-ray diffrac-
tion showing (A) the hexagonal and triangular pores and (B) the pyrazine axial ligands.
H-atoms and disordered solvent have been omitted for clarity.

spite the ubiquity of these linkers in both discrete complexes and 1-D coordination polymers,

the properties of 3D materials that incorporate these linkers and paramagnetic metal cen-

ters have not been thoroughly investigated. This limited depth of study has prompted us to

investigate the ability of these linkers to mediate magnetic and electronic coupling between

paramagnetic centers in a structurally confined 3D MOF scaffold. The combination of pyz or

bipy with Fe(II) and Co(II) salts and 1,4-benzenedicarboxylate (BDC) provides a new family
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of MOFs that feature high spin metal centers forming infinite chains with these linkers.

In this study, we used first principles calculations to probe the electronic properties of

Fe(BDC)(pyz), one member of this family MOFs, whose experimentally determined 3D struc-

ture is shown in Fig. 6.2. Single crystal X-ray diffraction (SXRD) of solvated Fe(BDC)(pyz)

revealed a structure consisting of Fe(BDC) sheets with 7 triangular pores and 17.5 hexag-

onal pores (Fig. 6.2A) pillared through each Fe(II) atom by pyz (Fig. 6.2B). Within

the FeBDC sheet, Fe(II) is coordinated to two O atoms from one chelated BDC and two

O atoms from two separate BDC µ-OCO bridges to an adjacent Fe(II). The SXRD crystal

structure was used to generate initial atomic positions for our DFT calculations, which were

then allowed to relax in three separate spin configurations to assess the relative stability of

the antiferromagnetic (AFM), ferromagnetic (FM) and non-magnetic (NM) configurations

of Fe(BDC)(pyz).

Our DFT+U calculations revealed an insulating band structure for all three spin config-

urations of Fe(BDC)(pyz), as can be seen in the Projected Density of States (PDOS) in Fig.

6.3A-C, with a filled valence band of primarily Fe d and O p character and an unpopulated

N-based conduction band. The insulating band structure was consistent with room tempera-

ture, isotropic pressed pellet conductivity measurements, where the conductivity was too low

to yield a linear potential vs. current relationship. The electronic structure and magnetic

properties of Fe(BDC)(pyz) were also probed by temperature dependent magnetometry. In

this experiment, a χT value can be obtained as a function of temperature, which can be

compared to known values that relate to specific spin states. In particular, the χT300K of

Fe(BDC)(pyz) was found to be 2.74 cm−3 K/mol, which is comparable with the spin-only

χT of 3 cm−3 K/mol expected for an S = 2 center consistent with high-spin Fe(II). The mag-

netometry experiments were coupled with Mössbauer data, which excluded the possibility

of low-spin impurities. Fits to Mössbauer data yielded an isomer shift of 1.171(1) mm/s and

quadrupole splitting of 3.198(2) mm/s, both of which are consistent with highspin Fe(II)

[160, 116]. Thus, the magnetic and Mössbauer data strongly support a high-spin Fe(II)
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a) b)

c) d)
Fe2+ (AFM and FM)

Fe2+ (NM)

AFM FM

NM

Figure 6.3: Projected Density of States for a) anti-ferromagnetic b) ferromagnetic and c)
non-magnetic ordering. d) Diagram showing the high-spin electron configuration for AFM
and FM and the low-spin configuration for NM ordering.

center, although the origin of the χT values, lower than expected, is not entirely clear.

We confirmed the experimentally predicted high-spin occupation with DFT for both the

AFM and FM ordered systems, while the non-magnetic system exhibited low-spin occupation

of the Fe centers (see Fig. 6.3D for a diagram of both possible spin states). A visualization

of the electron density of the three systems can be seen in Fig. 6.4. In particular, the

juxtaposition of spin-up (green) and spin-down (blue) Fe(II) centers can be seen for the

AFM ordering, while for FM ordering each Fe(II) center is identical.

6.3.1 Stability of Fe(II) Spin States in Fe(BDC)(pyz) MOF

Experimentally, as temperature decreased, the χT value of Fe(BDC)(pyz) also decreased,

which suggested some combination of antiferromagnetic coupling (rather than ferromag-
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AFM FM NM

Figure 6.4: Spin-up (green) and spin-down (blue) electron density showing AFM (left), FM
(center) and NM (right) ordering. Top panels show the in-plane structure; bottom panels
show the axial ligands connecting the layers. Isosurfaces are shown at 15% of maximum
value.

netic, which shares the high-spin occupation) and zerofield splitting effects. Our DFT+U

calculations indicated that antiferromagnetic coupling is energetically favorable over the

ferromagnetic system by 30 meV, with the energy differences between the three relaxed

structures presented in Table 6.1.

Table 6.1: DFT+U calculated energy differences between antiferromagnetically (AFM),
ferromagnetically (FM) and non-magnetically (NM, i.e. low-spin) coupled systems of
Fe(BDC)(pyz).

Energy Difference (eV)
AFM - FM -0.0323 eV
AFM - NM -14.1178 eV
FM - NM -14.0855 eV

While this energy difference is somewhat small, we found that different relaxed geometries
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for the three spin states suggest unfavorable switching and high energy barriers between

states. In particular, the stress on the unit cell (Table 6.2) together with differences in

bond angles (Table 6.3) points toward AFM ordering being preferred. By comparing the

calculated bond angles of the AFM, FM and NM ordered systems to the angles measured with

SXRD, we find the calculated AFM bond angles to be in good agreement with experiment.

Finally, we remark that spin crossover has been observed in the structurally similar

[Fe2(µ− Bz)2(µ− pyz)2(Bz)2] · (HBz) system which is a 1-D chain with benzoate ligands

[10]. Because spin crossover is accompanied by a change in bond length, as seen in [Fe2(µ− Bz)2-

(µ− pyz)2(Bz)2] · (HBz), the lack of such behavior in Fe(BDC)(pyz) may be attributed to

the structural restriction of the lattice [10, 70]. Indeed, it has previously been shown that

Fe(II) spin crossover in MOFs is dependent on structural flexibility [73, 130]. Our DFT+U

calculations predict that the lattice strain of d6 Fe in a low-spin state would be energetically

unfavorable by more than 5 eV, supporting that the rigid framework prevents spin crossover

(Table 6.2).

Table 6.2: Stress on the unit cell for the three spin states at the experimental lattice constant
and PBE relaxed geometry, and for the same geometry with the additional U parameter.

System Stress at PBE (kbar) Stress at PBE + U (kbar)
AFM 3.25 7.41
FM -0.65 7.57
NM -13.34 -8.09

Table 6.3: Comparison of bond angles for the three DFT systems and experimental AFM sys-
tem. AFM 1 and AFM 2 indicate Fe(II) centers in the spin-up and spin-down configurations,
respectively.

Exp.
(AFM)

AFM 1
(avg)

%
diff.

AFM 2
(avg)

%
diff.

FM
(avg)

%
diff.

NM
(avg)

%
diff.

Chelated
O-Fe-O

60.24 61.71 2.44% 61.68 2.39% 61.76 2.52% 65.76 9.17%

Bridging
O-Fe-O

125.35 112.06 -10.6% 112.80 -10.0% 113.52 -9.44% 104.67 -16.5%

N-Fe-N 178.23 176.99 -0.69% 177.06 -0.66% 177.37 -0.48% 179.59 0.76%
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6.4 Conclusions

In summary, we used Spin-Polarized DFT+U calculations to characterize the metal-organic

framework Fe(BDC)(pyz), a member of a new isoreticular series of MOFs that has been

synthesized. Our DFT calculations, along with magnetometry measurements and Mössbauer

spectroscopy, confirmed that the Fe metal centers are high-spin and in a 2+ oxidation state.

Fe(BDC)(pyz) exhibits antiferromagnetic coupling, likely mediated by a combined effect

from both the BDC and L ligands. The effect of structural confinement in these systems

appears to quench possible spin canting or spin crossover phenomena, and illustrates the

effect of the rigid 3D MOF structure. The materials in this series, including Fe(BDC)(pyz),

represent rare examples where high-spin metal centers have been combined with pyrazine

and bipyridine linkers in a highly porous extended solid.
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CHAPTER 7

CONCLUSIONS

In this dissertation, we have investigated the collective and individual optoelectronic proper-

ties of nanomaterials that are used as thin films in photovoltaic devices. After establishing as

a baseline the electronic structure of isolated lead sulfide nanoparticles and how they may be

affected by temperature, we showed how the properties of these “building blocks” can change

remarkably when one considers also the interactions between neighboring units and thus the

collective properties of a solid made up of nanoparticles. In particular, we showed that while

the fundamental band gaps of NPs only change slightly as a function of both temperature

and interaction strength, the radiative lifetimes exhibit a much stronger dependence on in-

teraction, becoming an order of magnitude less sensitive to temperature compared to those

of isolated NPs. We found that weakly interacting NPs behave as fluctuating dipoles, with

amplitudes on the order of 300% with respect to the average dipole moment, similar to those

that we observed for the polarization of strongly interacting NP solids. We concluded that,

at finite T the NP solids behave as dynamical, polarizable dipolar systems, which allowed

us to provide a potential explanation for diverging results present in the literature for the

dipole moments of lead chalcogenide NPs terminated with various ligands.

Having demonstrated the unique collective properties of NPs that can play a part in con-

trolling the efficiencies of NP solar cell devices, we turned to a newer class of nanomaterials,

namely quasi-two dimensional CdSe nanoplatelets, where the optoelectronic properties of the

isolated building blocks had not yet been fully understood but which have the potential to

out-perform NPs due to finer tunability of their optoelectronic properties. In collaboration

with Sergio Mazzotti at ETH Zürich, we presented a computational protocol for studying

these quasi-2D systems through combining first principles calculations with simple models.

We offered the first calculations of the fundamental band gap of a series of CdSe NPLs from

the accurate first-principles G0W0 method, as well as the first calculations of the absorption

spectra and exciton binding energies of these materials using the Bethe-Salpeter Equation.
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We rationalized our results using a series of simple models, probing the effects of strain,

quantum confinement and dielectric contrast in isolated NPLs. By evaluating the changes

in fundamental band gaps estimated through three simple models, we demonstrated that

a combined model could be used to predict the quasiparticle energies of NPLs with nearly

“GW” accuracy but greatly reduced computational cost. We thus offered a method that can

be used to predict the fundamental gaps of complex systems such as thick NPLs, NPLs with

long organic ligands, or core-shell NPLs, where the only calculations needed are that of the

strained bulk materials and an estimate of the potential barrier, posed by the ligands or NPL

shell, that can be tuned systematically or obtained through experiments. Overall, through

comparing first principles calculations to models of fundamental gaps and exciton binding

energies, as well as discussing the implications of dielectric properties of 2D materials, we

offered insight into a framework that can be used to obtain the optoelectric properties of

quasi-2D materials with reduced computational cost compared to state-of-the-art methods

such as GW and BSE.

Finally, in collaboration with experimentalists in the Department of Chemistry at the

University of Chicago, we demonstrated that a new class of porous, 3D Metal Organic Frame-

works displays antiferromagnetic coupling between ion centers, which is a widely sought

after attribute due to having spin carriers that are accessible for magnetic and electronic

phenomena. We found that the effect of structural confinement in these systems reduced the

possibility for spin canting or spin crossover phenomena, illustrating the effect of the rigid

3D structure.

From predicting specific optical properties of nanomaterials using some of the most ac-

curate computational methods available, to interpreting the physical meaning behind their

electronic structure, to understanding not just the properties of the individual nanomaterial

but their collective behavior as they interact with one another, the work in this dissertation

has advanced the field of renewable energy and paved the way for future work in finding

optimal combinations of complex nanostructures that can push solar cell efficiencies beyond
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current limitations.
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Alessandro Dani, Valentina Crocellà, Filippo Giordanino, Samuel O. Odoh, Walter S.
Drisdell, Bess Vlaisavljevich, Allison L. Dzubak, Roberta Poloni, Sondre K. Schnell,
Nora Planas, Kyuho Lee, Tod Pascal, Liwen F. Wan, David Prendergast, Jeffrey B.
Neaton, Berend Smit, Jeffrey B. Kortright, Laura Gagliardi, Silvia Bordiga, Jeffrey A.
Reimer, and Jeffrey R. Long. Cooperative insertion of CO2 in diamine-appended
metal-organic frameworks. Nature, 519:303–308, 2015.

110



[123] William J Morokoff and Russel E Caflisch. Quasi-monte carlo integration. Journal of
computational physics, 122(2):218–230, 1995.

[124] C. B. Murray, C. R. Kagan, and M. G. Bawendi. Synthesis and Characterization of
Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies. Annual Review
of Materials Science, 30(1):545–610, 2000.

[125] C B Murray, D J Noms, and M G Bawendi. Synthesis and Characterization of Nearly
Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. J. Am. Chem.
Soc, 115:8706–8715, 1993.

[126] Leslie J. Murray, Mircea Dinca, and Jeffrey R. Long. Hydrogen storage in metalorganic
frameworks. Chem. Soc. Rev., 38:1294–1314, 2009.

[127] Gautham Nair, Liang-Yi Chang, Scott M Geyer, and Moungi G Bawendi. Perspective
on the Prospects of a Carrier Multiplication Nanocrystal Solar Cell. Nano Letters,
11(5):2145–2151, 2011.

[128] Zhijun Ning, Oleksandr Voznyy, Jun Pan, Sjoerd Hoogland, Valerio Adinolfi, Jixian
Xu, Min Li, Ahmad R. Kirmani, Jon-Paul Sun, James Minor, Kyle W. Kemp, Haopeng
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Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics,
7(1):13–23, 2012.

[157] William Shockley and Hans J. Queisser. Detailed Balance Limit of Efficiency of p–n
Junction Solar Cells. Journal of Applied Physics, 32(3):510–519, 1961.

[158] Jonathan H. Skone, Marco Govoni, and Giulia Galli. Self-consistent hybrid functional
for condensed systems. Phys. Rev. B., 89:195112, 2014.

113



[159] Tyler J Smart, Feng Wu, Marco Govoni, and Yuan Ping. Fundamental principles for
calculating charged defect ionization energies in ultrathin two-dimensional materials.
Physical Review Materials, 2(12):124002, 2018.

[160] Edward I. Solomon, Thomas C. Brunold, Mindy I. Davis, Jyllian N. Kemsley, Sang-
Kyu Lee, Nicolai Lehnert, Frank Neese, Andrew J. Skulan, Yi-Shan Yang, and Jing
Zhou. Geometric and electronic structure/function correlations in non-heme iron en-
zymes. Chemical Reviews, 100(1):235–350, 2000.

[161] M. Stankovski, G. Antonius, D. Waroquiers, A. Miglio, H. Dixit, K. Sankaran, M. Gi-
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