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ABSTRACT

An accurate description of the electronic structure of semiconductors and insulators is essen-

tial in materials discovery. However, the Schrödinger equation[124] of many-body systems,

e.g., electrons in solids or molecules, cannot be solved exactly. Many approaches have been

proposed to solve approximately the Schrödinger equation of interacting electrons, and new

methods and algorithms are still being developed to improve the efficiency and accuracy of

the calculations, and/or to incorporate new physics.

This dissertation focuses on the developments of methods to study the electronic struc-

ture of solids, in particular electron-phonon interactions in semiconductors and insulators,

using many-body perturbation theory (MBPT). We start with a brief review of existing

methods to study electron-electron interactions in solids, including density functional theory

(DFT)[63, 71] and post-DFT methods (GW approximation),[61, 65, 8] and methods to study

electron-phonon interactions including density functional perturbation theory (DFPT).[10]

Then we describe our developments to: (i) improve the efficiency of G0W0 calculations in

Chapter 3, (ii) combine electron-electron and electron-phonon calculations in solids in Chap-

ter 4, and (iii) compute electron-phonon interactions at the hybrid functional level of theory

in Chapter 5.

First, we develop an approximation to increase the efficiency of the G0W0 calculations

in molecules and heterogeneous systems. The G0W0 approximation predicts the electronic

energy gap of materials, but at a higher computational cost compared to DFT. Starting from

an existing implementation of the G0W0 method, where the dielectric function is represented

using a low-rank approximation,[51] we present an algorithm to improve the efficiency of the

calculations by solving an approximate form of the Sternheimer equation.[132] The method

presented here speeds up the calculation by 50%, without significant loss of accuracy.

Then, we develop a method to effectively combine the calculation of electron-electron

and electron-phonon interactions at the G0W0 level of theory in extended systems. Our

xii



method allows for the calculations of the electron-electron and electron-phonon interaction

without the separate evaluation of screening effects as well as for calculations beyond the

Allen-Heine-Cardona (AHC) formalism[4].

In the last part of the dissertation, we propose a method to compute electron-phonon

interactions at the level of hybrid functionals based on density matrix perturbation theory

(DMPT).
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CHAPTER 1

INTRODUCTION

All chemical processes obey the fundamental laws of quantum mechanics. After quantum

mechanics was developed in the early 20th century and especially after the Schrödinger

equation was derived in 1920s,[124] several physicists started to believe that all chemistry

problems were solved and what remained was nothing but a tedious job that would solve

the Schrödinger equation of molecules and solids.[33] Nevertheless, solving the Schrödinger

equation for real molecules or solids turned out to be not that trivial. In the famous ar-

ticle More is different,[5] the Nobel laureate P. W. Anderson wrote “The ability to reduce

everything to simple fundamental laws does not imply the ability to start from those laws

and reconstruct the universe”. Anderson was right, and there are still countless chemical

problems that remain unsolved today, almost one century after Schödinger’s equation was

written. Researchers are still pursuing the developments of new methods, approximations,

and numerical techniques based on the fundamental laws of quantum mechanics to explain

experiments, to predict new chemistry, and to discover new materials.

In quantum chemistry, the electronic structure of a molecule or a solid is arguably one

of the most fundamental properties, describing the energies of the electrons in the systems.

However, the exact solution of the electronic structure problem is not possible for realistic

systems, and thus many approximations to the solution of the Schrödinger equation have

been proposed. Using the variational principle, the Hartree method[59] was proposed in

1927, and then followed by the Hartree-Fock (HF) method.[60] In the Hartree method, one

writes the many-body wavefunction as a product of single-particle orbitals, failing to satisfy

the Pauli principle.[102] This problem was fixed when the many-body wavefunction was

approximated by a Slater determinant.[130] The HF method is still used today, and it is

also the starting point for many higher-level theories, including configuration interactions

(CI)[127] and coupled clusters (CC)[28].
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While HF and its derivatives lay their foundation in the electronic wavefunctions, it is also

possible to reformulate the solution of Schrödinger equation in terms of the electron densities

n(r). The Hohenberg-Kohn (HK) theorems established the one-on-one mapping between the

external potential acting on the system of electrons and the electronic density.[63] As a result,

the dimensionality of the system containing N electrons was in principle reduced from 3N

to 3. However, the HK theorem does not provide any practical solutions to the Schrödinger

equation. Inspired by orbital-based methods, the Kohn-Sham formalism was derived and it

is the de facto standard formulation of DFT theory calculations used today.[71] The Kohn-

Sham equation maps the interacting system to an artificial non-interacting system that shares

the same electron density, and solves for the single-particle orbitals of the non-interacting

system. In the derivation of the Kohn-Sham formalism, the exchange-correlation potential

Vxc was introduced whose exact expression is unknown. To apply the Kohn-Sham formalism

to realistic materials, proper approximate forms of the exchange-correlation potential must be

chosen. Examples of approximate exchange-correlation functionals include the local density

approximation (LDA),[105] the generalized gradient approximations (GGA),[103, 12] and

hybrid functionals.[13, 104] We will explore the Kohn-Sham formalism in more detail in

Chapter 2.

Despite the success of DFT in many applications,[21] the approximate forms of the theory

suffer from inaccuracies including energy gap underestimations and poor description of the

long-range interaction in several weekly bonded solids.[141, 91] The many-body perturba-

tion theory (MBPT) was proposed as an alternative formulation of the Schrödinger equation

using Green’s functions.[61] It improves over DFT calculations by considering dynamically

screened interactions. The dynamical screening effects are computationally demanding, thus

the first GW calculation[65] was done twenty years after the MBPT was proposed. Since

then, many implementations of the GW approximation were proposed in the literature,

and they are included in codes such as BerkeleyGW,[32, 66, 120] Yambo,[89] Abinit,[48]
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SternheimerGW[45, 73] and the WEST[51] code, developed in our group. These implementa-

tions take advantage of different techniques to speed up the calculations. For example, to

compute the frequency integration of theGW self-energy, the plasmon-pole model (PPM) has

been used to speed up the frequency integration in BerkeleyGW, Yambo, and Abinit, while an

analytical continuation is used in SternheimerGW. WEST adopted the Lanczos algorithm[74]

as well as the contour deformation technique to obtain self-energies with high accuracy. To

improve the convergence of the summation of empty bands, the so-called simple approximate

physical orbitals (SAPO)[121] are used in BerkeleyGW. In WEST, we approximate the dielec-

tric function with its low-rank decomposition, which usually exhibits fast convergence, and

the summation of empty bands is completely circumvented. In Chapter 3, we will present a

method to approximate the low-rank decomposition of the dielectric function implemented

in the WEST code that reduces the computational cost of the GW approximation without

significant loss of accuracy.[147]

The above methods to compute the electronic structure of solids and molecules rely on the

Born-Oppenheimer (BO) approximation, and do not include the effect of the ionic vibrations

on the electronic structure. However, the interactions between the electrons and the motions

of ions, i.e., phonons, are responsible for many phenomena, including thermal transport,[14,

85] conventional super-conductivity,[9] and the electron-phonon renormalization of energy

levels[4, 6, 148, 72].

Early studies of the electron-phonon interaction relied on semi-empirical models,[15, 36]

e.g., the Fröhlich model.[36], and it is only in recent years that electron-phonon interactions

were computed from first principles. As the dynamical matrices[88] are defined as the sec-

ond derivative of the total energy and the electron-phonon renormalizations of energy levels

are defined as the derivative of energy levels relative to ionic positions, the straightforward

approach to compute electron-phonon interaction is to displace atomic positions by finite

differences and evaluate the derivatives numerically.[27, 6, 24] The finite difference approach
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is known as the frozen-phonon (FPH) method,[27, 6, 24] and its application is limited as it

converges slowly as a function of the size of the supercell. Other methods to study electron-

phonon interactions are molecular dynamics (MD)[35, 68] and path-integral molecular dy-

namics (PIMD)[113, 114, 72]. The PIMD and MD approaches incorporate the temperature

dependence of electron-phonon interactions and go beyond the harmonic approximation[72],

and the former also includes nuclear quantum effects.

In this dissertation, we focus on density functional perturbation theory (DFPT)[10, 42],

which is widely adopted to compute phonon frequencies and electron-phonon coupling ma-

trices, and FPH or PIMD methods are only used to verify our results when needed.

In the past decades, the DFPT was first implemented to compute phonon frequencies

in the PHonon package as a part of the Quantum Espresso code[41, 40] and it was later

implemented in other codes such as Abinit.[48] The DFPT was used, for example, to com-

pute electron-phonon interactions in diamond[44, 45] within the Allen-Heine-Cardona (AHC)

formalism.[4, 3] However, the AHC formalism relied on a set of approximations, that might

lead to an incorrect description of the electron-phonon self-energies in certain systems. Thus,

other studies tried to understand how these approximations affect the computed self-energies

by including dynamical effects[22, 23] and non-adiabaticity[23, 23, 93] of the Fan-Migdal

part of the self-energy, and by eliminating the rigid-ion approximation (RIA)[109, 110] of

the Debye-Waller part of the self-energy.

To speed up the convergence of electron-phonon calculations based on DFPT, many

researchers interpolated electron-phonon coupling matrices using a real-space basis. For ex-

ample, Wannier functions[108] are used in the EPW code as a part of Quantum Espresso,[111]

atomic orbitals are used in the Perturbo code,[149] and the Fourier interpolation is used in

the Abinit code[48]. These interpolation techniques make it possible to converge electron-

phonon interactions with dense sampling of the Brillouin zone.

In Chapter 4, we are interested in understanding how G0W0 corrections affect the com-

4



puted electron-phonon self-energies at the DFT level, and we developed a protocol to combine

the calculations of electron-electron interactions at the GW level of theory with the calcu-

lations of electron-phonon interactions in solids, without repeating the calculation of the

dielectric screening. We carried out calculations of defects in diamond to show the ability of

our approach to deal with large-scale systems. Moreover, we showed that our implementation

is capable of going beyond the widely used AHC formalism.

The calculations described so far used DFPT on top of DFT wavefunctions obtained at

the LDA/GGA level of theory. In Chapter 5, we present a method to compute phonons and

electron-phonon interactions at the hybrid functional level of theory based on density matrix

perturbation theory.

We conclude the dissertation with a brief summary of the methods we developed to com-

pute the electron-electron and electron-phonon interactions as well as the possible directions

for further research that this dissertation points toward..
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CHAPTER 2

THEORETICAL FOUNDATIONS

In this chapter, we describe the theoretical foundations on which our methodological de-

velopments are based. We begin with a description of the electronic structure problem in

Section 2.1. Then we go through existing methods to study electron-electron and electron-

phonon interactions. We introduce Density Functional Theory (DFT) in Section 2.2, and the

GW approximation based on Many-body Perturbation Theory (MBPT) in Section 2.3. To

compute electron-phonon interaction, we summarize Density Functional Perturbation The-

ory (DFPT) in Section 2.4, as well as Density Matrix Perturbation Theory (DMPT), which

is the foundation of our recently proposed method described in Chapter 5.

2.1 The electronic structure problem

The Born-Oppenheimer (BO) approximation[16] assumes that electrons move much faster

than ions and thus we can decouple the Schrödinger equation into an electronic and ionic

part. Within the BO approximation, the time-independent Schrödinger’s equation of a

many-body system with N electrons is,[90, 53]

HΨ0(r1, r2, · · · , rN ) = E0Ψ0(r1, r2, · · · , rN ), (2.1)

where H is the Hamiltonian of the system, E0 and Ψ0 are the ground state total energy

and ground state N -particle wavefunction, and r1, r2, · · · , rN are the coordinates of the

electrons.

The Hamiltonian H can be decomposed into several terms: the kinetic energies of the
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electrons, electron-electron Coulomb interactions, and electron-ion Coulomb interactions,[53]

H = −1

2

N∑
i

∇2
i +

N∑
i

N∑
j>i

1∣∣ri − rj
∣∣ − N∑

i

ion∑
I

ZI
|ri −RI |

, (2.2)

where i, j are the indices of electrons, I is the index of ions, ZI is the nuclear charge of I-th

ion and we assume Hartree atomic unit ~ = me = e = 1. The direct and exact solution of

the Schrödinger’s equation is only possible for a limited subset of systems, a famous example

being the hydrogen atom.[53] Thus one has to employ physical numerical approximations to

solve the Schrödinger equations for a given material. In 1929, the many-body wavefunction

was written using a Slater determinant of a set of single-particle wavefunctions,[130]

Ψ(r1, r2, · · · , rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ2(r1) · · · ψN (r1)

ψ1(r2) ψ2(r2) · · · ψN (r2)

...
...

. . .
...

ψ1(rN ) ψ2(rN ) · · · ψN (rN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.3)

where ψ(r) is a single-particle wavefunction and we omit spins for simplicity. It is worth

noting that the use of a single Slater determinant fails for some systems, e.g., systems with

strong correlation, but such systems are beyond the scope of this dissertation. Using a Slater

determinant, solving the Schrödinger equation for N -particle wavefunction Ψ(r1, r2, · · · , rN )

is equivalent to solve for a set of single-particle wavefunctions ψi(r) and their corresponding

energies εi.

The electronic structure problem studied in this dissertation is formulated in terms of

solution for the pairs of energy levels and single-particle wavefunctions (εi, ψi) for a given

system. Among the existing methods, we will introduce density functional theory (DFT)[63,

71, 90] and many-body perturbation theory (MBPT)[91, 55, 61].

The discussion above deals purely with the electron-electron interactions, but electron-
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phonon interactions are known to affect the electronic energy levels εi.[43] Thus, to obtain

an accurate description of the electronic structures of solids and molecules, it is necessary to

study the effect of electron-phonon interaction on the energy levels. In this chapter, we will

introduce density functional perturbation theory (DFPT) to compute phonon frequencies

and electron-phonon coupling matrices in Section 2.4 and Section 2.5, and density matrix

perturbation thoery (DMPT) in Section 2.7.

2.2 Density functional theory (DFT)

2.2.1 The Kohn-Sham equations

Density functional theory (DFT)[63] is arguably the most widely used theory in the com-

putational chemistry community. It formulates the electronic structure problem in terms

of charge densities n(r) rather than wavefunctions. For a system with N electrons, DFT

significantly reduces the dimension of the problem from 3N to 3.

The idea to connect the physical observables of interacting systems with the electronic

charge density n(r) is old and can be traced back to the Thomas-Fermi (TF) model,[137],

where the kinetic energy (T) is written as,

T = CTF

∫
[n(r)]5/3dr, (2.4)

where CTF is a constant prefactor. The TF model was inaccurate for many systems except

simple metals and lacked mathematical and physical rigor. The proof of the mapping be-

tween charge densities and physical observables was proposed many years later in the two

Honhenberg-Kohn (HK) theorems,[63]

1. The external potentials Vext(r) and hence the total energies of the interacting electronic

system are unique functionals of the ground-state charge densities n(r);
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2. The total energies of the interacting system can be written as a functional in terms of

the charge density,

EHK[n(r)] = FHK[n(r)] +

∫
Vext(r)n(r)dr, (2.5)

where FHK is a universal functional. The charge density that minimizes the functional

EHK is guaranteed to be the exact ground-state charge density of the interacting

system.

The first HK theorem establishes a one-on-one mapping between the ground-state charge

density of the interacting system and the external potentials it feels, and the second HK

theorem indicates the total energy and ground-state charge density can be obtained using

the variational principle. However, the functional FHK is unknown, thus the HK theorems

cannot be applied to study materials directly.

A practical formalism that can be applied to realistic materials was proposed one year

after the HK theorems, and is known as the Kohn-Sham (KS) formalism.[71] The Kohn-

Sham formalism introduces a non-interacting system that has the same charge density as

the interacting system, and the total energy functional of the non-interacting system is

written as,

EHK[n] = T0[n] + EH[n] + Exc[n] +

∫
Vext(r)n(r)dr, (2.6)

where T0[n] is the kinetic energy of the non-interacting system, EH[n] is the Coulomb inter-

actions between electrons in the non-interacting system,

EH[n] =
1

2

∫∫
n(r)n(r′)
|r− r′|2

drdr′ (2.7)

and Exc is the exchange-correlation energy defined as,

Exc[n] = FHK[n]− T0[n]− EH[n]. (2.8)
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By minimizing the HK energy in Eq. (2.6), one obtains the famous Kohn-Sham equations,

HKSψn(r) = εnψn(r), (2.9)

where the eigenvalue εn and the eigenvector ψn are Kohn-Sham single-particle energy levels

and orbitals. When periodic systems are studied and k point sampling is used, the Kohn-

Sham equations are solved at every k point,

HKSψnk(r) = εnkψnk(r). (2.10)

HKS is the Kohn-Sham Hamiltonian,

HKS = K + Vscf

= −1

2
∇2 + VH + Vext + Vxc,

(2.11)

where K = −1/2∇2 is the kinetic operator, the Hartree potential is

VH(r) =

∫
n(r′)
|r− r′|

dr′, (2.12)

the external potential is

Vext(r) = −
∑
I

ZI
|r−RI |2

(2.13)

and the exchange-correlation potential is defined as the functional derivative of exchange-

correlation energy

Vxc(r) =
δExc

δn(r)
. (2.14)

For convenience, we define the short-hand notation

VHxc = VH + Vxc (2.15)
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and it will be used later in our phonon calculations.

By solving the Kohn-Sham equations (2.9), the charge density can be constructed from

the Kohn-Sham wavefunctions,

n(r) = 2

Nocc∑
n

|ψn(r)|2, (2.16)

where the summation runs over occupied bands and the prefactor 2 accounts for spin.

It is worth noting that the HK theorems do not require the introduction of wavefunctions,

and the wavefunctions in the Kohn-Sham equation are introduced to carry out practical

calculations. An orbital-free density function theory (OF-DFT)[78] has been proposed, but

it is beyond the discussion of the current dissertation since it works best for metals.

2.2.2 Approximations to the exchange-correlation functionals

The exact expression of the exchange-correlation potential is unknown, thus proper approx-

imations must be made to do practical calculations.

One of the most famous approximate exchange-correlation potential is the local density

approximation (LDA), which explicitly writes the exchange-correlation potential as a func-

tional of the electron density,[105] and it was derived from the homogeneous electron gas

model (HEG).

Exc =

∫
V HEG

xc [n(r)]n(r)dr (2.17)

Although HEG is a coarse model and it does not reflect the charge density in most real

materials, LDA functionals succeeded in the description of some solids in the early days of

DFT calculations.

To improve the performance of the LDA, the generalized gradient approximation (GGA)

was proposed, which writes the exchange-correlation potential as a functional of the electron
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density and its gradient,[103]

Exc =

∫
V GGA

xc [n(r),∇n(r)]n(r)dr (2.18)

The widely-used PBE functional is a famous example of this category.[103]

In LDA and GGA, the exchange potentials are local in space. However, the exchange

interaction is known to be non-local.[90] To account for the non-locality of the exchange

interaction, a portion of Hartree-Fock exchange is added to the exchange-correlation func-

tional, and such approximate functionals are called hybrid functionals. As an example, the

PBE0 functional[1] has the following form,

V PBE0
xc (r, r′) = (1− α)V PBE

x (r) + V PBE
c (r) + αV HF

x (r, r′) (2.19)

with α being 0.25. The dielectric-dependent hybrid (DDH) functional is another example,

where the α parameter is tuned for each system using the dielectric constant.[128, 129, 18, 17]

Despite its success in many applications, the Kohn-Sham equations fail to describe the

single-particle energies of real systems in many cases.[91, 141] We recall that in the derivation

of the Kohn-Sham orbitals, the energy levels are those of the non-interacting system instead

of the real system.

2.2.3 Solution of the Kohn-Sham equations using the planewave basis sets

and pseudopotentials

In the quantum chemistry community, it is common practice to write the wavefunctions in

terms of a selected set of basis functions, and planewave basis sets are used throughout this
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dissertation. Thus, the Kohn-Sham orbitals are expanded as,

ψnk(r) =
∑
G

cnk(G)ei(k+G)·r, (2.20)

where the coefficients cnk(G) represents the contributions of the planewaves with index G.

The planewaves used in our calculations are truncated with an energy cutoff Ecut,

~2

2me
|k + G| ≤ Ecut. (2.21)

The index k is the point in the Brillouin zone.

In the Kohn-Sham Hamiltonian, the external potential Vext(r) is the interaction between

electrons and nuclei. However, this interaction is singular as an electron gets closer to an

ion. To describe such singularity, one would need a huge number of planewaves, and the

convergence of the calculations will be very difficult. Considering the fact that chemical

properties are dominated by valence electrons, we can express the interaction between core

electrons, ions and valence electrons in an effective potential, which is commonly referred to

as pseudopotential.[125]

Throughout this dissertation, we use norm-conserving (NC) type pseudopotentials.[58,

57] In general, the NC pseudopotentials contain two parts, the local part and non-local part,

VNC(r, r′) = V l(r) +
∑
ij

|βi(r)〉V nlij
〈
βj(r

′)
∣∣ , (2.22)

where β is a set of projection basis and V nlij is the contribution of the projection basis, and

r is the norm of the position vector r to the atom nuclear, r = |r|.
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2.3 Many-body perturbation theory

2.3.1 Hedin’s equations

In 1965, L. Hedin reformulated the Schrödinger equation in terms of a set of self-consistent

equations based on Green’s functions, and the method is known as many-body perturbation

theory (MBPT) today.[61] The complete set of Hedin’s equations reads: (see also Figure 2.1a)

G(1, 2) = G0(1, 2) +

∫∫
d3d4G0(1, 3)Σ(3, 4)G(4, 2) (2.23a)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫∫ ∫∫
d4d5d6d7

δΣ(2, 3)

δG(5, 6)
G(4, 5)G(6, 7)Γ(1, 4, 7) (2.23b)

χ0(1, 2) = −i
∫∫

d3d4G(1, 3)G(1, 4)Γ(2, 3, 4) (2.23c)

W (1, 2) = vc(1, 2) +

∫∫
d3d4 vc(1, 3)χ0(3, 4)W (4, 2) (2.23d)

Σ(1, 2) = i

∫∫
d3d 4G(1, 4)W (1, 3)Γ(2, 3, 4) (2.23e)

where the numbers are compact notations of coordinate and time 1 = (r1, t1), 2 = (r2, t2),

etc; G0 and G are the Green’s function of the non-interacting and interacting systems; Σ is

the self-energy; Γ is the vertex function; χ0 is the irreducible polarizibility; vc and W are the

bare and screened Coulomb interactions, respectively. In addition to the equations above,

we define the dielectric function

ε(1, 2) = 1−
∫

d3 vc(1, 3)χ0(3, 2) (2.24)

and Eq. (2.23d) can be equivalently written in terms of the dielectric function,

W (1, 2) =

∫
d3 ε−1(1, 3)vc(2, 3). (2.25)
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The exact self-consistent solution of Hedin equation is still not feasible even with today’s

computing capability. Thus, it is necessary to make approximations to the original Hedin

equations to conduct practical calculations for realistic materials, and the most famous one

is the GW approximation.[8, 65, 64, 66]

2.3.2 GW approximation

Within the GW approximation, (see Figure 2.1b) the vertex function Γ is neglected and the

irreducible polarizibility and self-energy read,

χ0(1, 2) = −iG(1, 2)G(1, 2) (2.26a)

Σ(1, 2) = iG(1, 2)W (1, 2). (2.26b)

The expression Eq. (2.26a) for χ0 is known as the random phase approximation (RPA)[39]

and the expression of self-energy Eq. (2.26b) gives rise to the name GW approximation.

The GW approximation ignores the vertex, but it still requires running self-consistent

calculations. The G0W0 approximation, where no self-consistent procedure is performed,

is widely employed, because it is computationally more affordable (see Figure 2.1c). The

subscript 0 in G0W0 approximation indicates non-self-consistency.

The discussion above is a general framework of the G0W0 approximation, and now we de-

fine the numerical methods[143, 144, 51, 52, 147] we use in this dissertation (see Figure 2.1c).

As G0W0 is a perturbative method, the initial guess of G does make a difference. A common

practice is to construct the initial Green’s function from DFT wavefunctions ψn and DFT

energy levels εn,

G0(r, r′, ω) =
∑
n

ψn(r)ψ∗n(r′)
ω − εn + i0+sgn(εn − εF )

, (2.27)
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where εF is the Fermi level. Then the irreducible polarization χ0 is approximated with,

χ0 = −iG0G0, (2.28)

and it can be written in terms of Kohn-Sham wavefunctions using the Alder-Wiser expression:

[145]

χ0(r, r′, ω) =
∑
nm

ψn(r)ψ∗n(r′)ψm(r′)ψ∗m(r)×[
θ(εn − εF )θ(εF − εm)

ω − (εn − εm) + i0+ − θ(εF − εn)θ(εm − εF )

ω − (εn − εm)− i0+

] (2.29)

The screened Coulomb interaction is constructed from Eq. (2.23d), and the G0W0 self-

energy reads:

Σ(1, 2) = iG0(1, 2)W0(1, 2). (2.30)

Once we have the self-energy, the G0W0 quasiparticle energy is computed perturbatively

onto DFT energy levels,

ε
QP
n = εKS

n +
〈
ψn

∣∣∣Σn(ε
QP
n )− Vxc

∣∣∣ψn〉 (2.31)

Unless otherwise indicated, all of the G0W0 calculations in this dissertation follows the

procedure described above and illustrated in Figure 2.1c.

2.3.3 Low-rank decomposition of the irreducible polarizibility

Within the RPA and using DFT wavefunctions, the irreducible polarizability can be evalu-

ated with Eq. (2.29). However, the summation runs over all unoccupied bands and it is only

doable for small systems, but not for large supercells.

Recently, the low-rank decomposition of the irreducible polarizability has been proposed

to implement G0W0 calculations for large scale systems. [143, 144, 51, 52, 84, 147] The

low-rank decomposition expresses the symmetrized polarizability χ̃0 in terms of its leading
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Figure 2.1: Illustration of the quantities involved in the (a) original Hedin’s equations, (b) the
GW approximation, (c) the G0W0 approximation within the random phase approximation
(RPA).

eigenvectors φ,

χ̃0(q) =

NPDEP∑
i

|φi(q)〉λi(q) 〈φi(q)| , (2.32)

where χ̃0 is the symmetrized irreducible polarizability χ̃0 = v
1/2
c χ0v

1/2
c , φi(q) is the eigen-

vector of χ̃0 and λi is the corresponding eigenvalue and q is the difference between k points in

the Brillouin zone. The eigenvectors of χ̃0 are known as projective dielectric eigenpotentials

(PDEP).

The PDEPs from a general orthonormal basis and can be used to represent Green’s

functions G and screened Coulomb interactions W , and the G0W0 approximation can be

implemented within the PDEP basis. For details of the implementation, please refer to

Ref. 143, 144, 51.

2.4 Density functional perturbation theory (DFPT)

Phonon modes are the collective vibrations of atoms in solids.[15, 10, 87] Within the harmonic

approximation, the phonon modes can be obtained by diagonalizing the dynamical matrix

DIα,Jβ , whose elements are defined as the derivative of the total energy with respect to

17



atomic displacements,

DIα,Jβ =
1√

MIMJ
CIα,Jβ =

1√
MIMJ

∂2Etot

∂uIα∂uJβ
, (2.33)

where CIα,Jβ is known as the force constant matrix, I and J are indices of atoms, α and

β are the three directions to displace atoms, u is the coordinate of the atom, M are atomic

masses, and Etot is the total energy of the system.

Eq. (2.33) can be evaluated by a finite difference method, known as the frozen-phonon

(FPH) approach.[30] This approach is straightforward to implement, but in general it requires

large supercells for semiconductors to converge.

An alternative method is the density functional perturbation theory (DFPT), which has

been widely used. We briefly explain the method below, and throughout this dissertation, we

use the short-hand notations ∂ to represent a generic change of densities ∂n(r), wavefunctions

∂ψ(r) or potentials ∂V (r), and ∂Iα to represent the changes due to the displacements of I-th

atom along direction α.

When the external potential Vext in the Kohn-Sham Hamiltonian is varied, the Kohn-

Sham wavefunctions ψ, electron densities n(r) and the potentials VH and Vxc will change

accordingly. The central idea of DFPT is to adjust the potentials, wavefunctions, and

densities self-consistently according to the perturbation until convergence is achieved. The

key steps are:

1. Solve for the change of DFT wavefunctions ∂ψ(r) with the change of external potential

Vext as the initial perturbation.

2. Construct the change of density ∂n(r) from the change of wavefunctions.

3. Update the change of Hartree potential ∂VH and exchange-correlation potential ∂Vxc.

4. Repeat the calculations until convergence is achieved.
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In DFPT, a k-point sampling of the Brillouin zone is used for wavefunctions, and phonons

are computed at each q-point, where the q point is defined as the differences between k points

and is associated with the wavelength of the phonon mode. For each q point, we rewrite the

definition of force constants as:

CIα,Jβ(q) =
∂2Etot

∂u∗Iαq∂uJβq
. (2.34)

The connection between Eq. (2.33) and Eq. (2.34) can be found in Appendix A.

The most difficult component of force constants is the so-called electronic contribution,[10]

Cel
Iα,Jβ(q) ∝

〈
∂Iαqψnk

∣∣∂JβqVext
∣∣ψnk〉 , (2.35)

where ∂ψnk is the change of wavefunctions due to the displacements of atomic positions.

Other parts of the force constants are trivial to compute and they are discussed in Ap-

pendix A.

Given a change of scf potential ∂Vscf , the change of wavefunction can be obtained by

solving Sternheimer’s equation[132],

(HKS
k+q − εnk)

∣∣∂Iαqψnk〉 = −Pck+q∂IαqVscf |ψnk〉 , (2.36)

where Pck+q =
∑
c

∣∣ψck+q

〉 〈
ψck+q

∣∣ is the projector operator on to the conduction bands

manifold and c is the index of conduction band. H̃k+q is the Hamiltonian projected to

the conduction band manifold, HKS
k+q = Pck+qH

KSPck+q. The detailed derivation of the

Sternheimer equation can be found in Appendix A.

Only the change of external potential ∂Vext is known from phonon calculations. Thus,

a self-consistent strategy is usually employed to update Vscf until the change of density

is converged and this is implemented in the PHonon package of the Quantum Espresso
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software.[41]. In Chapter 4, we developed a protocol to run phonon calculations without

running self-consistent calculations.

During the iterations of DFPT, the potentials are updated using the change of density

∂qVHxc = ∂qVH + ∂qVxc = (vc + fxc)∂qn(r), (2.37)

where fxc is the exchange-correlation kernel defined as the functional derivative of the

exchange-correlation potential,

fxc(r, r′) =
δVxc(r)

δn(r′)
, (2.38)

and it is simple to compute for a given LDA/GGA functionals, but not for hybrid functionals.

In Chapter 5, we implement an approach to compute phonons at the hybrid functional level

of theory.

The change of density is constructed from the change of wavefunctions,

∂qn(r) = 2
occ∑
n

∑
k

[
∂qψ

∗
nk(r)ψnk(r) + c.c.

]
(2.39)

where the summation runs over all occupied bands at every k point and the prefactor 2

accounts for spin.

Once the we have the force constants and dynamical matrices are obtained, the phonon

frequencies can be computed by diagonalizing the dynamical matrix:

∑
Jβ

DIα,Jβ(q)ξJβ,qν = ω2
qνξIα,qν , (2.40)

where ωqν is the phonon frequency of mode ν at q point, and ξqν is the polarization of the

phonon mode.

Another useful result of a DFPT calculation is the converged change of potential ∂Vscf ,

which will be used in electron-phonon calculations.
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(2
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7)

Eq. (2.35)

converged?

Figure 2.2: The procedure to compute phonons based on density functional perturbation
theory (DFPT). DFPT uses the change of external potential ∂Vext due to nuclear displace-
ments as initial perturbation, and solves for the change of the self-consistent (scf) potential
∂Vscf , change of wavefunctions ∂ψ, and change of density ∂n self-consistently until converge
of these three quantities is achieved.

2.5 Electron-phonon interaction from DFPT

To compute electron-phonon interaction, we write the first-order electron-phonon coupling

Hamiltonian in second quantization,

Hep =
∑

mnνkq

gmnν(k,q)ĉ
†
mk+qĉnk(b̂qν + b̂

†
−qν), (2.41)

where ĉ† and ĉ are creation and annihilation operators of electrons, b̂† and b̂ are creation

and annihilation operators of phonons associated to phonon mode ν and momentum q. The

central quantity is the electron-phonon coupling matrices gmnν(k,q), see Figure 2.3.

Early studies relied on model coupling matrices, e.g., the Fröhlich model,[36], but now

we can compute the electron-phonon coupling matrices from first-principles with DFPT.

Within DFPT, the electron-phonon coupling matrix can be evaluated with the change of scf

potential,

gmnν(k,q) =
〈
ψmk+q

∣∣∂qνVscf

∣∣ψnk〉 , (2.42)
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or alternatively in the basis of atomic perturbations, gmnIα(k,q).

gmnIα(k,q) =
〈
ψmk+q

∣∣∂IαqVscf

∣∣ψnk〉 . (2.43)

These two forms are equivalent and can be easily related:

gmnν(k,q) =
∑
Iα

ξIα,qν√
2MIωqν

gmnIα(k,q). (2.44)

The electron-phonon self-energy is the energy of an electron with the electron-phonon

interactions included. It has two parts, the Fan-Migdal (FM) part,

ΣFM
nk (ω, T ) =

∑
mνq

|gmnν(k,q)|2
[

nqν + fmk+q

ω − εmk+q + ωqν − i0+ +
nqν + 1− fmk+q

ω − εmk+q − ωqν − i0+

]
(2.45)

and Debye-Waller part,

ΣDW
nk (T ) = −

∑
mνq

∑
IαJβ

2nqν + 1

εnk − εmk

1

4ωqν

[
ξIα,qνξ

∗
Iβ,qν

MI
+
ξJα,qνξ

∗
Jβ,qν

MJ

]
×

g∗mnIα(k,0)gmnJβ(k,0),

(2.46)

where T is the temperature.

It is worth noting that the Debye-Waller self-energy is in fact due to second-order electron-

phonon interaction, but the second-order electron-phonon coupling matrices gmnνν′(k,q,q
′)

are commonly approximated with first-order electron-phonon coupling matrices gmnν(k,q).

The technique is known as rigid-ion approximation (RIA) [4, 109, 49], and it has already

been used in the DW self-energy written above.

Using the frequency-dependent Fan-Migdal self-energy, the renormalized energy levels
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εnk

εmk+q

gmnν(k,q)

ωqν

(a) gmnν(k,q)ĉ†mk+qĉnkb̂qν

εnk

εmk+q

gmnν(k,q)

ω−qν

(b) gmnν(k,q)ĉ†mk+qĉnkb̂
†
−qν

Figure 2.3: Illustration of two electron-phonon processes in the electron-phonon interacting
Hamiltonian of Eq. (2.41).

can be computed self-consistently,

ω = εnk +
〈
ψnk

∣∣∣ΣFMnk (ω, T ) + ΣDWnk (T )
∣∣∣ψnk〉 , (2.47)

with initial guess ω0 = εnk. But the frequency-dependence makes calculations difficult,

and thus the Allen-Heine-Cardona (AHC) formalism has been widely adopted. In the AHC

formalism, two approximations are used to simplify the calculations of the Fan-Migdal self-

energy,

1. The On-the-Mass-Shell (OMS) approximation neglects the frequency-dependence of

the Fan-Migdal self-energy and approximates it with the self-energy evaluated at ω =

εnk: ΣFM
nk (ω) = ΣFM

nk (εnk). It assumes that the FM self-energy is the same at all

frequencies.

2. The adiabatic approximation1 neglects the phonon frequencies in the denominator of

the FM self-energy assuming that εnk− εmk+q is much larger than phonon frequency

ωqν .

1. The adiabatic approximation mentioned here is not related to the Born-Oppenheimer approximation,
which is often also referred to as adiabatic approximation.
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Table 2.1: A list of theoretical approximations used to compute the Fan-Migdal self-energy,
where we specify whether the on-the-mass-shell (OMS) and the adiabatic approximations
are applied (X) or not (×) applied.

Level of theory OMS Adiabatic Equation

AHC X X (2.48)
Non-adiabatic AHC X × (2.50)

FF-AD × X (2.49)
FF-NA × × (2.45)

Within the AHC formalism, the Fan-Migdal self-energy is simplified to,

ΣFMnk (T ) '
∑
mνq

|gmnν(k,q)|2
2nqν + 1

εnk − εmk+q
. (2.48)

Despite its success, the AHC formalism fails to include non-adiabaticity and the frequency

dependence, thus in thie dissertation we will go beyond the AHC formalism. When the

frequency-dependence is restored and the adiabatic appoximation is still applied, we refer to

the self-energy as full frequency-dependent adiabatic (FF-AD) FM self-energy:

ΣFMnk (ω, T ) '
∑
mνq

|gmnν(k,q)|2
2nqν + 1

ω − εmk+q
. (2.49)

If we restore the phonon frequencies in the denominator of the FM self-energy but still keep

the OMS approximation,

ΣFM
nk (T ) =

∑
mνq

|gmnν(k,q)|2
[

nqν + fmk+q

εnk − εmk+q + ωqν − i0+ +
nqν + 1− fmk+q

εnk − εmk+q − ωqν − i0+

]
,

(2.50)

we have the so-called non-adiabatic AHC. Thus, the original FM self-energy in Eq. (2.45) is

full frequency-dependent and non-adiabatic (FF-NA). We summarized the levels of approx-

imations applied to the FM self-energy in Table 2.1.
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Table 2.2: A comparison of the approximations used in density functional perturbation the-
ory (DFPT), frozen-phonon (FPH) and path-integral molecular dynamics (PIMD) methods.
The symbols (X) and (×) are used to indicated whether the approximations are applied or
not, respectively.

Method Rigid-ion Anharmonic
DFPT X ×
FPH × ×

PIMD × X

2.6 Electron-phonon interaction from non-perturbative methods

In addition to the DFPT, the frozen-phonon approach (FPH), first-principles molecular

dynamics (FPMD) and path-integral molecular dynamics (PIMD) are also used to compute

electron-phonon interactions. In this dissertation, these methods are often employed to

generate reference results to verify our findings.

For the FPH approach, one computes the change of energy levels due to phonon vibrations

∂εn/∂nν using finite differences, where εn is the n-th Kohn-Sham energy level and nν is the

phonon occupation number of ν-th mode, and one evaluates the change of energy levels as

∂εn(T ) =
∑
ν

∂εn
∂nν

[
nν(T ) +

1

2

]
. (2.51)

The derivative ∂εn/∂nν is called the electron-phonon coupling energy (EPCE)[6, 109], and it

is equivalent to the expression in the AHC formalism, except that the rigid-ion approximation

is not needed in the FPH approach.

The DFPT and FPH methods rely on the harmonic approximation. We note that the

PIMD incorporates anharmonic effects, and thus it can be used to compute electron-phonon

interactions for disordered systems, for example amorphous diamond.[72]

We summarize the differences among the DFPT, FPH and PIMD methods in Table 2.2.

In Chapter 4 and Chapter 5, we compare our DFPT results with literature results and our

own FPH and PIMD results.
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2.7 Density matrix perturbation theory (DMPT)

Density matrix perturbation theory (DMPT) was implemented to compute excitation and

absorption spectra using time-dependent density functional theory (TDDFT)[115, 117] and

the Bethe-Salpeter equation (BSE).[118, 119, 116, 99] Unlike the Casida equation,[135, 25,

100] DMPT does not require the summation over empty bands and it is very useful to

conduct calculations of large systems.

While the Schrödinger equation describes the evolution of wavefunctions, the Liouville-

von Neumann equation governs the evolution of density matrices,

i
dγ

dt
= [H, γ], (2.52)

where γ is the density matrix γ(r, r′, t) =
∑occ
n ψn(r, t)ψ∗n(r′, t), here we omit k points and

spins for simplicity.

When a system is perturbed, the change of the density matrix obeys the following the

equation,

i
d

dt
∂γ(t) = L · ∂γ(t) + [∂Vext, γ], (2.53)

where L is the Liouville superoperator and ∂γ it the change of density matrix.[115, 117].

By solving Eq. (2.53), we will obtain the change of wavefunctions due to the displacements

of atomic positions like we did for DFPT method. In Chapter 5, we employ the DMPT and

solve the Liouville equation for atomic displacements to compute phonons and electron-

phonon self-energies. This approach allows one to compute phonons at the hybrid functional

level of theory and can be seen as a generalization of the Sternheimer equation.
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CHAPTER 3

IMPROVING THE EFFICIENCY OF G0W0 CALCULATIONS

WITH APPROXIMATE SPECTRAL DECOMPOSITIONS OF

DIELECTRIC MATRICES

As briefly introduced in Section 2.3, many-body perturbation theory (MBPT) is a method

that computes accurate electronic structure of semiconductors and insulators. Due to the

computational cost of MBPT, the G0W0 approximation is the practical method to imple-

ment MBPT. In this chapter, we developed an approximate basis of dielectric function to

speed up G0W0 calculations. This chapter is reproduced from Han Yang, Marco Govoni,

and Giulia Galli. Improving the efficiency of G0W0 calculations with approximate spectral

decompositions of dielectric matrices The Journal of Chemical Physics 151 (22), 224102,

with the permission of AIP Publishing. https://doi.org/10.1063/1.5126214

3.1 Introduction

Devising accurate and efficient methods to predict the electronic properties of molecules

and condensed systems is an active field of research. Density functional theory (DFT) has

been widely used for electronic structure calculations.[63, 71, 90] However, the exact form

of the exchange-correlation functional is unknown and therefore DFT results depend on

the choice of approximate functionals. Improvement over DFT results may be obtained by

using many-body perturbation theory (MBPT).[100, 91] A practical formulation of MBPT

for many electron systems was proposed by Hedin,[61] where the self-energy Σ is written in

terms of the Green’s function G and the screened Coulomb interaction W .

The GW approximation[61, 91] has been successful in the description of the electronic

properties of several classes of materials and molecules;[142, 86, 52, 122, 18, 47] however

the computational cost of GW calculations remains rather demanding and many complex
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systems cannot yet be studied using MBPT. Hence, algorithmic improvements are required

to apply MBPT to realistic systems. One of the most demanding steps of the original

implementation of GW calculations[65, 64, 66, 133, 134] involves an explicit summation over

a large number of unoccupied single particle electronic orbitals, which enter the evaluation

of the dielectric matrix ε[2, 145] defining the screened Coulomb interaction W (W = ε−1vc,

where vc is the Coulomb interaction). The summation usually converges slowly as a function

of the number of virtual orbitals (Nc). In recent years, several approaches have been proposed

to improve the efficiency of GW calculations. For example, in Ref. 121 it was suggested to

replace unoccupied orbitals with approximate physical orbitals (SAPOs); the author of Ref.

19 simply truncated the sum over empty states entering the calculation of the irreducible

density-density response function, and assigned the same, average energy to all the empty

states higher than a preset value; in a similar fashion, in Ref. 38 an integration over the

density of empty states higher than a preset value was used. Other approaches adopted

sophisticated algorithms to invert the dielectric matrix, e.g., in Ref. 131, they employed a

Lanczos algorithm.

Recently, an implementation of G0W0 calculations avoiding altogether explicit summa-

tions over unoccupied orbitals, as well as the necessity to invert dielectric matrices, has

been proposed,[143, 144, 98, 107, 51] based on the spectral decomposition of density-density

response functions in terms of eigenvectors (also known as projective dielectric eigenpoten-

tials, PDEPs). In spite of the efficiency improvement introduced by such formulation, G0W0

calculations for large systems remain computationally demanding.

In this chapter, we propose an approximation to the projective dielectric technique,[143]

which in many cases leads to computational savings of G0W0 calculations of 10-50%, without

compromising accuracy. The rest of the chapter is organized as follows: we describe the

proposed methodology in Section 3.2 and then we present results for several systems in

Section 3.3, followed by our conclusions.
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3.2 Methodology

We compute the density-density response function of solids and molecules within the frame-

work of the random phase approximation (RPA), using projective dielectric eigenpoten-

tials (PDEP)[143, 144, 51]. The accuracy of this approach has been extensively tested for

molecules and solids.[144] The technique relies on the solution of the Sternheimer’s equa-

tion [132]

(Ĥ − εv Î)|∆ψv〉 = −P̂c∆V̂ |ψv〉 (3.1)

to obtain the linear variation of the v-th occupied electronic orbital, |∆ψv〉, induced by the

external perturbation ∆V̂ . In Equation 3.1, Î is the identity operator, P̂c is the projector onto

the unoccupied states, εv and ψv are the v-th eigenvalue and eigenvector of the unperturbed

Kohn-Sham Hamiltonian Ĥ = K̂+ V̂SCF, respectively, where K̂ = −∇
2

2 is the kinetic energy,

V̂SCF is the self-consistent potential. For each perturbation, the first order response of the

density ∆n can be obtained as [10]

∆n = 2
∑
v

ψv∆ψv + c.c. (3.2)

Equation 3.1 and (3.2) can be used to iteratively diagonalize the static symmetrized irre-

ducible density-density response, χ̃0:[143, 144, 51]

χ̃0 =

NPDEP∑
i=1

|ξi〉λi 〈ξi| , (3.3)

where λi and ξi are eigenvalues and eigenvectors of χ̃0 and NPDEP is the number of eigen-

vectors of χ̃0, respectively. The eigenvectors ξi are called PDEPs: projective dielectric

eigenpotentials throughout the manuscript. The symmetrized irreducible density-density

response function is defined as χ̃0 = v
1/2
c χ0v

1/2
c , where vc is the Coulomb potential.[51]

Within the RPA, the symmetrized reducible density-density response can be expressed as
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χ̃ = (1− χ̃0)−1 χ̃0, therefore the ξi are also eigenvectors of χ̃. The projective dielectric

technique has also been recently applied beyond the RPA using a finite field method.[84]

When solving the Sternheimer equation, it is not necessary to compute explicitly the

electronic empty states, because one can write P̂c = Î− P̂v, since the eigenvectors of Ĥ form

a complete basis set (P̂v is the projector onto the occupied states). The use of Eq. (3.3)

significantly reduces the cost of G0W0 calculation from N2
pwNvNc to NPDEPNpwN

2
v where

Nv, Nc, NPDEP, Npw are numbers of occupied orbitals (valence bands in solids), virtual

orbitals (conduction bands in solids), PDEPs, and plane waves, respectively. Importantly

NPDEP � Npw.

The application of the algorithm described above to large systems is hindered by the

cost of solving Eq. (3.1). However, we note that the eigenvalues of χ̃0 rapidly converge to

zero,[82, 143, 144, 52] (an example is shown in Figure 3.1). In addition, as shown in Ref. 144,

the eigenvalue spectrum of the dielectric function for eigenvectors higher than the first few,

is similar to that of the Lindhard function.[79] Hence we propose to compute the PDEPs of

χ̃0 corresponding to the lowest eigenvalues using Equation 3.1 and (3.2) and to compute the

remaining ones with a less costly approach. Inspired by the work of Ref. 116, we approximate

the eigenpotentials corresponding to higher eigenvalues with kinetic eigenpotentials, which

are obtained approximating the full Hamiltonian entering Equation 3.1 with the kinetic

operator(K̂):[83, 116]

(K̂ − εv Î)|∆ψv〉 = −P̂c∆V̂ |ψv〉. (3.4)

In the following, we refer to the eigenpotentials from Equation 3.1 as standard PDEPs

(stdPDEP, ξi, i = 1, · · · , NstdPDEP) and those from Equation 3.4 as kinetic PDEPs (kin-

PDEP, ηi, i = 1, · · · , NkinPDEP) and we rewrite the irreducible density-density response

function as

30



χ̃0 =

NstdPDEP∑
i=1

|ξi〉λi 〈ξi|+
NkinPDEP∑

j=1

∣∣ηj〉µj 〈ηj∣∣ , (3.5)

where ξi and ηj are standard and kinetic PDEPs, respectively, and λi and µj are their

corresponding eigenvalues. The procedure to generate stdPDEPs and kinPDEPs is summa-

rized in Figure 3.2. We note that during the construction of kinetic PDEPs, the projection

operator P̂ = Î −
∑
NstdPDEP

|ξi〉 〈ξi| was applied so as to satisfy the orthonormality con-

strain, 〈ξi|ξj〉 = δij , 〈ηi|ηj〉 = δij and 〈ξi|ηj〉 = 0, ∀(i, j); in addition we applied v
1/2
c to

perturbations to yield a symmetrized irreducible response function χ̃0.

In our G0W0 calculations, both the static Green’s function and the statically screened

Coulomb interaction are written in the basis of eigenpotentials of the dielectric matrix.

Frequency integration is performed using a contour deformation algorithm. A detailed de-

scription of the implementation of G0W0 calculations in the basis of eigenpotentials can be

found in Ref. 98, 107, 51.

3.3 Validation and results

We now turn to discussing results for molecules and solids obtained by using a combination

of standard and kinetic PDEPs. To examine the efficiency and applicability of the approx-

imation proposed in Section 3.2, we performed G0W0 calculations for a set of closed-shell

small molecules, a larger molecule (Buckminsterfullerene C60), and an amorphous silicon

nitride/silicon interface (Si3N4/Si) with a total of 1152 valence electrons. All Kohn-Sham

eigenvalues and eigenvectors were obtained with the QuantumEspresso package,[41, 40] using

the PBE approximation[103], SG15[123] ONCV[57] pseudopotentials and G0W0 calculations

were carried out with the WEST code.[51]

We first considered a subset of molecules taken from the G2/97 test set[29] and calculated

their vertical ionization potential (VIP) and electron affinity (EA) using different numbers
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of stdPDEPs (NstdPDEP) and kinPDEPs (NkinPDEP). We chose a plane wave cutoff of

85 Ry and a periodic box of edge 30 Bohr. For all molecules, we included either 20 or

100 stdPDEPs in our calculations, then added 100, 200, 300, 400 kinPDEPs in subsequent

calculations, after which an extrapolation was performed (a + b
NstdPDEP+NkinPDEP

) to find

converged values (one example is shown in Figure 3.3). These results are given in the second

(A) and third columns (B) of Table 3.1 and Table 3.2. The reference results reported in the

last column (C) of the two tables were obtained with 200, 300, 400, 500 stdPDEPs and an

extrapolation was applied. We found that including only 20 stdPDEPs yields quasiparticle

energies accurate within 0.1 eV relative to the reference G0W0 values obtained using only

standard eigenpotentials. The two data sets starting from 20 or 100 stdPDEPs enabled us to

save 40% and 10% of computer time compared to the time usage needed with only standard

eigenpotentials.

As a representative example, we present the computed eigenvalues of symmetrized irre-

ducible density-density response function of CH4 molecule in Figure 3.4, and the calculated

vertical ionization with different number of eigenpotentials in Figure 3.5 In Figure 3.4, we

compare the eigenvalues for the symmetrized irreducible density-density response function

of the methane molecule: 500 stdPDEPs and 100 stdPDEPs + 400 kinPDEPs. On the scale

of the figure the results are indistinguishable. In Figure 3.5, we show the results for the

vertical ionization potential of the CH4 molecule computed with 5, 10, 20 standard PDEPs

(NstdPDEP), and the remaining 100, 200, 300 and 400 PDEPs treated as kinetic PDEPs.

When setting NstdPDEP = 10 or 20 we obtain results accurate within 0.02 eV, as compared

to the ones obtained using only standard PDEP. When using 5 stdPDEPs we obtain instead

an error more than 10 times larger (0.25 eV).

Table 3.3 shows our results for the C60 molecule. The structure of C60 (point group Ih)

was also taken from the NIST computational chemistry database,[67] (optimized with the

ωB97X-D functional and cc-pVTZ basis sets) and no further optimization was carried out.
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Table 3.1: Vertical ionization potential (eV) obtained at the G0W0@PBE level of theory with
different numbers of standard and kinetic PDEPs. (A) 20 stdPDEPs + up to 400 kinPDEPs
and extrapolated; (B) 100 stdPDEPs + up to 400 kinPDEPs and extrapolated; (C) pure
stdPDEPs and extrapolated. A detailed discussion of extrapolations of quasiparticle energies
can be found in Ref. 52.

Molecule A B C
C2H2 11.07 11.06 11.06
C2H4 10.41 10.40 10.40

C4H4S 8.80 8.77 8.76
C6H6 9.17 9.14 9.13
CH3Cl 11.28 11.26 11.25
CH3OH 10.58 10.56 10.56
CH3SH 9.39 9.36 9.36

CH4 14.01 14.01 14.01
Cl2 11.51 11.51 11.50
ClF 12.55 12.55 12.54
CO 13.51 13.50 13.50
CO2 13.32 13.31 13.31
CS 11.00 10.98 10.98
F2 14.99 14.97 14.97

H2CO 10.43 10.42 10.42
H2O 11.82 11.82 11.81
H2O2 10.87 10.87 10.86
HCl 12.50 12.50 12.50
HCN 13.20 13.20 13.20
Na2 4.95 4.95 4.95
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Table 3.2: Vertical electron affinity (eV) obtained at the G0W0@PBE level of theory with
different numbers of standard and kinetic PDEPs. (A) 20 stdPDEPs + up to 400 kinPDEPs
and extrapolated; (B) 100 stdPDEPs + up to 400 kinPDEPs and extrapolated; (C) pure
stdPDEPs and extrapolated. A detailed discussion of extrapolations of quasiparticle energies
can be found in Ref. 52.

Molecule A B C
C2H2 -2.42 -2.41 -2.41
C2H4 -1.75 -1.75 -1.75

C4H4S -0.85 -0.81 -0.80
C6H6 -1.01 -0.96 -0.96
CH3Cl -1.17 -1.16 -1.16
CH3OH -0.89 -0.89 -0.89
CH3SH -0.88 -0.88 -0.88

CH4 -0.64 -0.64 -0.64
Cl2 1.65 1.64 1.65
ClF 1.28 1.28 1.28
CO -1.56 -1.57 -1.57
CO2 -0.97 -0.97 -0.97
CS 0.49 0.51 0.51
F2 1.16 1.16 1.16

H2CO -0.69 -0.68 -0.68
H2O -0.90 -0.90 -0.90
H2O2 -1.80 -1.79 -1.79
HCl -1.07 -1.07 -1.07
HCN -2.08 -2.08 -2.08
Na2 0.64 0.63 0.63

34



Figure 3.1: First 500 eigenvalues λi of the symmetrized irreducible density-density response
function χ̃0 (see text), for three small molecules: CH4 (blue dots), C2H4 (orange up trian-
gles), and C2H2 (green down triangles). Nv is the number of occupied orbitals.

We used the PBE exchange-correlation functional, a plane wave energy cutoff of 40 Ry and

cell size of 40 bohr, the same as used in Ref. 107. We performed two groups of calculations

starting with 100 and 200 standard eigenpotentials, respectively. For both calculations, we

computed quasiparticle energies by adding 100, 200, 300, 400 kinetic eigenpotentials and

extrapolation was done in the same manner. As seen in Table 3.3, the results obtained with

200 standard eigenpotentials and additional kinetic eigenpotentials differ at most by 0.1 eV

from those computed with standard eigenpotentials (extrapolated up to NstdPDEP = 2000).

The two sets of calculations starting with NstdPDEP = 100 and NkinPDEP = 200 amounted

to savings of 32% and 15%, respectively.

We now turn to a more complex system, amorphous silicon nitride interfaced with a

silicon surface (Si3N4/Si(100)), whose structure was taken from Ref. 106 (See Figure 3.6).

This interface is representative of a heterogeneous, low dimensional system.

We computed band offsets (BO) by employing two different methods. The first one is
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Figure 3.2: The workflow used in this work to generate eigenvectors of the dielectric matrix
using the Kohn-Sham Hamiltonian (stdPDEP) and using the kinetic operator (kinPDEP).
See text.
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Figure 3.3: Extrapolation of G0W0 energy of highest occupied orbital of methane with
respect to total number of eigenpotential used (NstdPDEP + NkinPDEP). In this plot,
NstdPDEP = 20 and NkinPDEP = 100, 200, 300, 400 for the four points, respectively.

Figure 3.4: Comparison between the eigenvalues (λi) of the leading 500 stdPDEPs and the
eigenvalues of the 100 leading stdPDEPs followed by 400 kinPDEPs of the CH4 molecule.
Nv is the number of occupied states and stdPDEPs and kinPDEPs are eigenvectors of
the symmetrized irreducible density-density response function(χ̃0) solved using Kohn-Sham
Hamiltonian and kinetic operator.
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Figure 3.5: Calculations of the vertical ionization potential of the methane molecule with 20,
10, 5 standard eigenpotentials (stdPDEP) and up to 400 kinetic eigenpotentials (kinPDEP)
compared to calculations (red symbols) performed with purely stdPDEPs.

Table 3.3: Quasiparticle energies (eV) of C60 calculated at the G0W0@PBE level of the-
ory. Energy levels are labeled by their symmetry in point group Ih. NstdPDEP = 100 and
NstdPDEP = 200 are calculations with 100 and 200 stdPDEPs and up to 400 kinPDEPs and
extrapolated. NkinPDEP = 0 is the calculation with pure stdPDEPs and extrapolated. (See
text)

Energy levels NstdPDEP = 100 NstdPDEP = 200 NkinPDEP = 0 G0W0 Expt

t1g -1.70 -1.66 -1.70
t1u -2.70 -2.77 -2.82 -2.74a, -2.62b, -2.82c -2.69d

hu -7.32 -7.32 -7.38 -7.31a, -7.21b, -7.37c -7.61d, -7.6e

gg + hg -8.46, -8.52 -8.46, -8.51 -8.51, -8.56 -8.68c, -8.69c -8.59e

a Ref. 107: with 700 standard eigenpotentials;
b Ref. 121: with 27387 SAPOs, where SAPO stands for simple approximate physical orbitals;
c Ref. 112: plane wave energy cutoff of 45 Ry and cell edge of 31.7 bohr;
d Ref. 80;
e Ref. 77.
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based on the calculation of the local density of electronic states (LDOS);[106, 146] the second

one is based on the calculation of the average electrostatic potential which is then used to set

a common zero of energy on the two parts of the slab representing the two solids interfaced

with each other.[140] The average electrostatic potential was fitted with the method proposed

in Ref. 136. We used a plane wave energy cutoff of 70 Ry. We also performed G0W0@PBE

calculations for each bulk system separately and obtained quasiparticle energies.

The local density of states is given by:

D(ε, z) = 2
∑
i

∫
dx

Lx

∫
dy

Ly
|ψi(x, y, z)|2δ(ε− εi), (3.6)

where z is the direction perpendicular to the interface, ψi(x, y, z) is the wavefunction, the

factor 2 represents spin degeneracy. We computed the variation of the valence band max-

imum(VBM) and conduction band minimum(CBM) as a function of the direction (z) per-

pendicular to the interface[106]

∫ EF

VBM
D(ε, z) dε =

∫ CBM

EF

D(ε, z) dε = ∆

∫ EF

−∞
D(ε, z) dε, (3.7)

where EF is the Fermi energy and ∆ is an constant that is chosen to be 0.003.[106] We follow

a common procedure adopted to describe the electronic structure of interfaces described in

Ref. 106 and 146. The band offsets (see Table 3.5) at the PBE level of theory were determined

to be 0.83 eV and 1.49 eV for the valence band and conduction band, respectively, which are

in agreement with the results of 0.8 eV and 1.5 eV reported in Ref. 106.

As mentioned above, another method to obtain the valence band offset (VBO) and con-

duction band offset (CBO) is to align energy levels with respect to electrostatic potentials.

Following Ref. 136, the electrostatic potential was computed as:

V̄ (r) = VH(r) + Vloc(r)−
∑
i

V̄
(i)
at (|r− ri|), (3.8)
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Figure 3.6: Ball and stick representation of the atomistic structure[106] of the Si3N4/Si(100)
interface used in our study.

where V̄
(i)
at is the potential near the core region obtained from neutral atom calculations.

With this method, VBO and CBO at the PBE level are found to be 0.89 eV and 1.63 eV.

To compute G0W0 corrections on band offsets, we performed G0W0@PBE calculations of

bulk silicon and amorphous silicon nitride. In Table 3.4, quasiparticle corrections to Kohn-

Sham energies of bulk silicon and amorphous silicon nitride are shown. The second and

third columns are computed with 1000 and 2000 standard eigenpotentials. The fitted G0W0

reference results are extrapolated with 500, 1000, 1500 and 2000 standard eigenpotentials. To

test accuracy of kinetic eigenpotentials, we started with 400 stdPDEPs and added 100, 200,

300, 400 kinPDEPs, after which the same extrapolation was applied. We calculated VBO

and CBO at the G0W0 level by applying quasiparticle corrections on PBE results. After

applying quasiparticle corrections on LDOS results, VBO and CBO are 1.41 eV and 1.88 eV

while the VBO and CBO are found to be 1.46 eV and 2.02 eV after applying corrections to

results based on electrostatic potential alignment. Both of them are close to the range of

experimental results of 1.5 − 1.78 eV and 1.82 − 2.83 eV. Time saving when using kinetic

eigenpotentials to obtain quasiparticle corrections was approximately ∼ 50%.
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Table 3.4: Quasiparticle energies of valence band maximum (VBM) and conduction band
minimum (CBM) of bulk silicon and amorphous Si3N4 computed with standard eigenpoten-
tials and by combining standard and kinetic eigenpotentials. Columns NstdPDEP = 1000
and NstdPDEP = 2000 report calculations performed with 1000 and 2000 stdPDEPs; column
Fit reports extrapolated results; column NkinPDEP = 400 reports calculations with up to
400 kinPDEPs and then extrapolated. (See text)

NstdPDEP = 1000 NstdPDEP = 2000 Fit NkinPDEP = 400
Si VBM 5.70 5.55 5.45 5.53
Si CBM 7.03 6.91 6.79 6.82

a− Si3N4 VBM 7.14 7.01 7.01 6.99
a− Si3N4 CBM 11.99 11.87 11.83 11.83

Table 3.5: Band gaps of bulk Si, a − Si3N4, and band
offsets (VBO&CBO) of the interface.(see Figure 3.6) All
values are in eV.

Method
Energy

VBO CBO ESi
g ESi3N4

g

PBE
LDOS 0.83 1.49 0.67 3.19

Potential 0.89 1.63 0.76 3.19
Refa 0.8 1.5 0.7 3.17

G0W0

LDOS 1.41 1.88 1.29 4.77
Potential 1.46 2.02 1.29 4.77

Refa 1.5 1.9 1.3 4.87

Expt 1.5-1.78b 1.82-2.83c 1.17d 4.5-5.5e

a Ref. 106;
b Ref. 69, 54, 62;
c Estimated by the other three experimental values;
d Ref. 70;
e Ref. 50, 11, 31.
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3.4 Conclusion

The method introduced in Ref. 98, 107, 51, 52 to compute quasiparticle energies using the

G0W0 approximation avoids the calculation of virtual electronic states and the inversion

and storage of large dielectric matrices, thus leading to substantial computational savings.

Building on the strategy proposed in Ref. [143, 144] and implemented in the WEST code,[51]

here we proposed an approximation of the spectral decomposition of dielectric matrices

that further improve the efficiency of G0W0 calculations. In particular we built sets of

eigenpotentials used as a basis to expand the Green function and the screened Coulomb

interaction by solving two separate Sternheimer equations: one using the Hamiltonian of the

system to obtain the eigenvectors corresponding to the lowest eigenvalues of the response

function, and the other using just the kinetic energy operator to obtain the eigenpotentials

corresponding to higher eigenvalues. We showed that without compromising much accuracy,

this approximation reduces the cost of G0W0 calculations by 10%-50%, depending on the

system, with the most savings observed for the largest systems studied here.
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CHAPTER 4

COMBINED FIRST-PRINCIPLES CALCULATIONS OF

ELECTRON-ELECTRON AND ELECTRON-PHONON

SELF-ENERGIES IN CONDENSED SYSTEMS

We present a method to efficiently combine the computation of electron-electron and electron-

phonon self-energies, which enables the evaluation of electron-phonon coupling at the G0W0

level of theory for systems with hundreds of atoms. In addition, our approach, which is a

generalization of a method recently proposed for molecules,[92] enables the inclusion of non-

adiabatic and temperature effects at no additional computational cost. We present results

for diamond and defects in diamond and discuss the importance of numerically accurate

G0W0 band structures to obtain robust predictions of zero point renormalization (ZPR) of

band gaps, and of the inclusion of non-adiabatic effect to accurately compute the ZPR of

defect states in the band gap. The Illustration of the development is shown in Figure 4.1.

This chapter is reproduced from Han Yang, Marco Govoni, Arpan Kundu, and Giulia

Galli. Combined first-principles calculations of electron-electron and electron-phonon self-

energies in condensed systems. https://arxiv.org/abs/2106.10373, which is under review in

the Journal of Chemical Theory and Computation and Arpan Kundu, Marco Govoni, Han

Yang, Michele Ceriotti, Francois Gygi, and Giulia Galli Quantum vibronic effects on the

electronic properties of solid and molecular carbon. Copyright 2021 by the American Physics

Society. https://doi.org/10.1103/PhysRevMaterials.5.L070801

4.1 Introduction

The interaction between electrons and phonons in solids[43, 45, 6] gives rise to a variety of

interesting physical phenomena, including superconductivity[9], and to complex electronic

structure properties in metals, semiconductors and insulators[34]. Electron-phonon coupling
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Figure 4.1: Illustration of the idea to combine the calculations of electron-electron and
electron-phonon interactions by reusing the dielectric screening. In the background, we are
showing a specific defect in diamond to showcase our ability to perform calculations for
large-scale systems.

has been widely studied for more than half a century[36]. However, it is only in the last two

decades that first principles, quantum mechanical methods have been applied to carry out

quantitative calculations[44, 43, 6], based on frozen-phonon approaches[96, 94, 95, 6, 68],

density functional perturbation theory (DFPT)[42, 10, 43, 6, 109, 22, 23] and, very recently,

path-integral molecular dynamics simulations based on density functional theory (DFT)[72].

The frozen-phonon approach is straightforward to implement, compared to other meth-

ods, as the phonon frequencies and electron-phonon renormalization energies are simply

computed by displacing the nuclear positions and solving the Kohn-Sham equations at each

displaced position[6, 24, 96, 94]. However, the frozen-phonon approach is difficult to con-

verge with respect to the supercell size, [10, 43] and using this method it is challenging

to accurately describe polar systems[110, 93]. Hence, perturbative approaches have been

widely used. Most of them solve the electronic structure problem at the level of density

functional theory (DFT)[6, 22, 23] and compute electron-phonon coupling within the Allen-

Heine-Cardona (AHC) formalism[4, 3, 45]. However, some formulations have been recently

proposed to go beyond the approximations of the AHC approach, and include non-adiabatic

[109, 110, 93], dynamical[22, 23, 7] and/or non-rigid-ion[109] effects in the calculation of
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electron-phonon interactions. It has also been shown that for several solids many-body per-

turbation theory (MBPT)[45, 6, 94] is necessary in order to obtain results in quantitative

agreement with experiments, and GW corrections have been applied to compute electron-

coupling matrices[75, 76] and/or DFT single particle energy levels[45, 6, 92]. Given the

computational cost involved in electron-phonon calculations based on MBPT, e.g., at the

G0W0 level, plasmon-pole models (PPM) are often employed[66, 6, 94, 75, 46] to approxi-

mate the frequency dependence of the self-energy, in spite of some known deficiencies of such

models[91].

With the goal of improving the accuracy and efficiency of electron-phonon calculations

within MBPT, we recently proposed [92] a method that combines the evaluation of elec-

tron–electron and electron–phonon self-energies. The dielectric matrix is represented in

terms of dielectric eigenpotentials[143, 144], utilized for both the calculation of G0W0 quasi-

particle energies and the diagonalization of the dynamical matrix; virtual electronic states

are not explicitly computed; dielectric matrices, being represented using a spectral decompo-

sition, are never inverted, and all self-energies are evaluated over the full frequency spectrum

using the Lanczos algorithm.[107, 51, 52]. Importantly, our implementation also enables

at no extra cost the evaluation of non-adiabatic effects and electron-phonon self energies

at multiple temperatures and frequencies. Although in principle the method is general, in

practice it has so far been applied only to finite systems within the adiabatic approximation.

In this work, we generalize the combined electron-electron and electron-phonon approach

described in Ref. 92 to solids and, after presenting a detailed verification and validation

protocol, we apply the approach to large supercells with about 1000 electrons, which are

representative of defective solids. We report results as a function of temperature and we

study in detail the effect of including non-adiabatic terms in the zero point renormalization

of the band gap of pristine and defective diamond and on defect states.

The rest of this work is organized as follows: we first describe our methodology and
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then verify our implementation and validate our results for specific systems; we then present

applications of the method to point defects in diamond.

4.2 Methodology

4.2.1 Dynamical and electron-phonon coupling matrices

In a periodic system, phonon frequencies are computed by diagonalizing the dynamical

matrix[10]

DIα,Jβ(q) =
1√

MIMJ
CIα,Jβ(q) =

1√
MIMJ

∂2E

∂u∗Iα(q)∂uJβ(q)
, (4.1)

where CIα,Jβ(q) is a force constant, E is the total energy of the system, u denotes displace-

ments from equilibrium atomic positions, MI , MJ are atomic masses, I, J are indices of

atoms, α, β are Cartesian directions, and q is the wave-vector of the phonon mode.

The force constants are given by the sum of an electronic and ionic part, with the latter

being trivial to evaluate. Within the framework of density functional perturbation theory

(DFPT), the electronic contribution can be written as

CelecIα,Jβ(q) =
occ∑
n

∑
k

〈
ψnk

∣∣∂Jβ,qVext∣∣ ∂Iα,qψnk〉+ c.c., (4.2)

where k is a k-point within the Brillouin zone, ψnk is the wavefunction of the n-th band at k,

and Vext is the external ionic potential. For simplicity, we denoted the derivative ∂/∂uIα(q)

as ∂Iα,q. The braket in Eq. (4.2) is commonly computed by solving the Sternheimer equation

self-consistently,

(ĤKS − εnk)
∣∣∂Iα,qψnk〉 = −P̂ck+q∂Iα,qV̂SCF |ψnk〉 , (4.3)
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where ĤKS = K̂+ V̂SCF is the Kohn-Sham Hamiltonian; K̂ is the kinetic operator; V̂SCF is

the self-consistent potential operator; εnk is the Kohn-Sham eigenvalue of the n-th band at

the k point, ∂Iα,qV̂SCF is the first order change of the self-consistent potential due to atomic

displacements, ∂Iα,qψnk denotes the first order change of the wavefunction, and P̂ck+q = Î−∑occ
v

∣∣ψvk+q

〉 〈
ψvk+q

∣∣ is the projection operator onto the manifold of unoccupied (virtual)

single particle electronic states.

Instead of solving the Sternheimer equation self-consistently, we write the braket in

Eq. (4.2) as:[92]

〈
ψnk

∣∣∂Jβ,qVext∣∣ ∂Iα,qψnk〉 =
〈
∂Jβ,qψ

bare
nk

∣∣∂Iα,qVSCF ∣∣ψnk〉 , (4.4)

where the change of the wavefunction is obtained through the one-shot solution of the Stern-

heimer equation

(ĤKS − εnk)
∣∣∣∂Iα,qψbarenk

〉
= −P̂ck+q∂Iα,qV̂ext |ψnk〉 . (4.5)

The change of SCF potential can be evaluated from ∂Iα,qV̂ext as

∂Iα,qVSCF = ∂Iα,qVext + [fHxc + fHxcχfHxc]∂Iα,qρ
bare, (4.6)

where fHxc = vc + fxc is the sum of the bare Coulomb potential, vc, and the exchange-

correlation kernel, fxc; χ is the reducible density-density response function and ∂Iα,qρ
bare

is the derivative of the bare change of density,

∂Iα,qρ
bare =

occ∑
n

∑
k

[
ψ∗nk∂Iα,qψ

bare
nk + c.c.

]
. (4.7)

In order to efficiently evaluate the reducible density-density response function, χ, we rep-

resent the irreducible density-density response function, χ0, in terms of projective dielectric
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eigenpotentials (PDEP)[144, 107, 51, 147] and we represent χ with the same basis used as

that of χ0:

χ0(q) =

NPDEP∑
i

|φi(q)〉λi(q) 〈φi(q)| , (4.8)

where i is the index of the PDEP basis, φi(q) and λi(q) are the i-th eigenvector and eigen-

value of the symmetrized reducible polarizability, NPDEP is the number of PDEP basis

functions, respectively. Using the Dyson equation χ = χ0 +χ0fHxcχ, the reducible density-

density response function can be evaluated using the PDEP basis set:

χ = (1− χ0fHxc)
−1χ0. (4.9)

Adopting the procedure described above, we can compute the dynamical matrix D(q):

∑
Jβ

DIα,Jβ(q)ξJβ,qν = ω2
qνξIα,qν , (4.10)

where ωqν are phonon frequencies and ξIα,qν are phonon eigenvectors. Finally, Eq. (4.6) is

used to evaluate the electron-phonon coupling matrix elements g given by:[43]

gmnν(k,q) =
〈
ψmk+q

∣∣∂qνVSCF ∣∣ψnk〉 , (4.11)

where ∂qνVSCF is the mode-resolved change of potential,

∂qνVSCF =
∑
Iα

ξIα,qν√
2MIωqν

∂Iα,qVSCF . (4.12)
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4.2.2 Electron-phonon self-energy

Within many-body perturbation theory (MBPT)[43, 91], the electron-phonon self-energy has

two components, the Fan-Migdal:

ΣFM
nk (ω, T ) =

∑
mνq

|gmnν(k,q)|2
[

nqν + fmk+q

ω − εmk+q + ωqν − i0+ +
nqν + 1− fmk+q

ω − εmk+q − ωqν − i0+

]
(4.13)

and Debye-Waller:

ΣDWnk (T ) = −
∑
mνq

∑
IαJβ

2nqν + 1

εnk − εmk

1

4ωqν

[
ξIα,qνξ

∗
Iβ,qν

MI
+
ξJα,qνξ

∗
Jβ,qν

MJ

]
g
∗,Iα
mn (k,0)g

Jβ
mn(k,0),

(4.14)

where nqν and fmk+q are Bose-Einstein and Fermi-Dirac distributions, respectively. We

note that the expression of the Debye-Waller self-energy of Eq. (4.14) is written by assuming

the rigid-ion approximation, in which the second-order expression of the electron-phonon

coupling matrix elements are approximated with their respective first-order expressions. The

effect of this approximation has been thoroughly studied in Ref. 109. When adopting the

AHC formalism,[4, 3] in our calculations, we assume the on-mass-shell approximation i.e.,

ω = εnk and the adiabatic approximation, i.e., εnk−εmk+q � ωqν . However, in some cases

discussed below we did not adopt the adiabatic approximation. Within the AHC formalism,

the real part of the Fan-Migdal self-energy can be simplified:

Re ΣFMnk (T ) ≈
∑
mνq

|gmnν(k,q)|2
[

2nqν + 1

εnk − εmk+q

]
. (4.15)

To avoid summations over empty bands in the evaluation of Fan-Migdal and Debye-

Waller self-energies (Eq. (4.13) – (4.15)), here we use the Lanczos approach. Writing the

Fan-Migdal self-energy within the AHC approximation (Eq. (4.15)) as an example, we first
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expand the electron-phonon coupling matrix using Eq. (4.11),

ΣFMnk =
∑
mνq

〈
ψnk

∣∣∂−qνVSCF ∣∣ψmk+q

〉 2nqν + 1

εnk − εmk+q

〈
ψmk+q

∣∣∂qνVSCF ∣∣ψnk〉 . (4.16)

Given the projection of the Hamiltonian on the conduction (virtual) manifold, i.e., H̃k+q =

P̂ck+qHP̂
c
k+q, we can write

∑
m

∣∣ψmk+q

〉
(εnk − εmk+q)−1 〈ψmk+q

∣∣ = (εnk − H̃k+q)−1. (4.17)

Eq. (4.17) may be efficiently solved using the Lanczos approach, and the imaginary part

of the Fan-Migdal self energy and the Debye-Waller self-energy (Eq. (4.13)-(4.14)) may be

computed in a similar manner.

Staring from Eq.(4.17), we define Ank(H̃k+q) = (εnk − H̃k+q)−1, and Eq.(4.17) can be

written as,

Ank(H̃k+q) =
∑
m

∣∣ψmk+q

〉
Ank(εmk+q)

〈
ψmk+q

∣∣ (4.18)

Following references[74, 92], we obtain the Lanczos basis q̃l and corresponding eigenvalues

dl of H̃k+q, and thus the self-energy can be written as

ΣFMnk (T ) =
∑
νql

〈
L
qν
nk|q̃l

〉
Ank(dl)

〈
q̃l|R

qν
nk

〉
[2nqν(T ) + 1], (4.19)

where
∣∣Lqνnk〉 and

∣∣Rqν
nk

〉
are vectors within the set {

∣∣∂qνVSCFψnk〉 , n = 1, 2, · · · }.

In the following, we describe how to compute Lanczos basis functions, and hereafter

we drop the superscripts and subscripts of |L〉 and |R〉 for simplicity. The Lanczos basis
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functions and eigenvalues can be obtained by diagonalizing the matrix

Q†H̃Q =



α1 β2

β2 α2 β3

β3
. . . . . .

. . . . . . βn

βn αn


, (4.20)

where Q = {|ql〉 , l = 1, 2, · · · , NLanczos} with |q1〉 = |R〉 are a set of orthonormal vectors,

and the elements of the matrix are obtained from

αn =
〈
ql

∣∣∣H̃∣∣∣ ql〉 (4.21)

and

βn+1 = ||(H̃ − αn) |qn〉 − βn |qn−1〉 ||. (4.22)

The vectors |ql〉 are orthogonalized with a recursive process by applying

|qn+1〉 =
1

βn+1

[
(H̃ − αn) |qn〉 − βn |qn−1〉

]
. (4.23)

The diagonalization of Eq. (4.20) yields the eigenvalues dl and corresponding eigenvectors

Ul. We then define a modified basis set |q̃l〉 as a linear combination of the original basis |ql〉,

|q̃l〉 =

NLanczos∑
k

Ukl |qk〉 . (4.24)

Having obtained the eigenvalues dl of the matrix Q†H̃Q and using the modified basis |q̃l〉,

we can evaluate the Fan-Migdal self-energy in Eq. (4.19), without summations over empty

bands. A similar technique can be applied to obtain the Debye-Waller self-energy.
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Table 4.1: First principles calculations of electron-phonon self-energies based on the G0W0
approximation. The integral of the self energy as a function of frequency is evaluated using
either a plasmon-pole model (PPM) or by carrying out full-frequency (FF) integration using
contour deformation.[51, 46] Evaluation of theG0W0 self-energy (ΣG0W0

) and of the electron-
phonon self-energy (Σep) are performed with algorithms requiring summation (S) over virtual
states or no summation (NS) over virtual states. The evaluation of ΣG0W0

and Σep is
combined in this work (Y) but carried out separately (N) in previous works.

Ref. 45 Ref. 6 This work
Frequency Integration PPM PPM FF
Evaluation of ΣG0W0

Sa S NS

Evaluation of Σep S S/NSb NS
Combined evaluation
of ΣG0W0

and Σep N N Y

a TheG0W0 energy levels were not used in the evaluation of electron-
phonon self-energies at G0W0 level, instead a scissor operator cor-
responding to the G0W0 correction was applied to DFT energy
levels.

b No empty bands were used in the evaluation of electron-phonon
self-energies at the DFT level. No information was provided on
the calculations of empty states for G0W0 calculations.

In addition, we can compute the temperature-dependent, non-adiabatic or frequency-

dependent self-energies without any extra computational cost, by reusing the Lanczos basis

set defined above.

The approach described above was implemented in the WEST code[51, 92], interfaced with

Quantum Espresso (version 6.1)[41] and the symmetries at k and q points were analyzed

using the PHonon package[41].

A brief summary of the main features of the methodology presented here, compared

to the implementations of first principles electron-phonon calculations used in the current

literature, is given in Table (4.1).
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4.3 Verification protocol

Our verification protocol includes first the comparison of phonon frequencies computed with

standard DFPT based approaches with those of our methodology (Eq. (4.6)); we then carry

out a study of the numerical parameters affecting the calculations of the ZPR of diamond

within DFT and G0W0 and compare our results with those present in the literature.

Phonon frequencies – To verify our implementation, we first compared the phonon fre-

quencies of the diamond crystal obtained with the method described above to those computed

with the PHonon package in Quantum Espresso[41]. For verification purposes we carried out

our calculations using the local density approximation (LDA), a cutoff of 60 Ry, Trouiller-

Martins type pseudopotentials[139] generated with the FHI98pp code[37], and a 3 × 3 × 3

k-point mesh.

Figure 4.2 shows that the interpolated phonon dispersion curves in diamond obtained

with the two approaches are indistinguishable, with a mean absolute difference less than

1 cm−1. The comparison was repeated using energy cutoffs of 80, 100, and 120 Ry, for which

we converged the phonon frequencies with respect to the number of PDEP eigenpotentials

in the basis set. We found that the remaining small discrepancies not visible on the figure

can be further reduced by increasing the cutoff Figure 4.3.

Zero point renormalization of energy levels at the DFT level of theory – We now turn to

the discussion of electron-phonon self-energies. The real and imaginary parts of the electron-

phonon self-energy yield the zero point renormalization and the lifetime of the single particle

energy levels, respectively. To verify our implementation, we computed the ZPR of single

particle energy levels in diamond at the DFT/LDA level of theory and compared our results

with those reported in Ref. 6 and Ref. 109. In these two papers, the ZPRs are computed as

∆εnk(T ) =
1

Nq

∑
qν

∂εnk
∂nqν

[
nqν(T ) +

1

2

]
, (4.25)
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Figure 4.2: Phonon dispersion of diamond interpolated from 3× 3× 3 q-point sampling.

Figure 4.3: Difference in phonon frequencies [in cm−1] computed with this work and PHonon

package in Quantum Espresso.
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where Nq is the number of q points and ∂ε/∂n is the electron-phonon coupling energy

(EPCE). The latter can be evaluated using frozen-phonon or DFPT calculations,[109, 95]

and here we report our results using DFPT and the AHC approximation,[4, 3, 109]

∂εFMnk
∂nνq

= 2
∑
m

|gnmν(k,q)|2

εnk − εmk+q
, (4.26)

∂εDWnk
∂nνq

= − 1

2ωqν

∑
m

∑
IαJβ

1

εnk − εmk

[
ξIα,qνξ

∗
Iβ,qν

MI
+
ξJα,qνξ

∗
Jβ,qν

MJ

]
g
∗,Iα
mn (k,0)g

Jβ
mn(k,0).

(4.27)

We computed EPCEs with the Troullier-Martins type pseudopotential[139], an energy cutoff

of 60 Ry, and 6×6×6 k-point sampling, as in Ref. 109. We performed two sets of calculations,

one using the lattice constant that we optimized at the LDA level (3.5185 Å), and the other

using the lattice parameter (3.5323 Å) reported in Ref. 109. In Table 4.2 we compare the

computed EPCEs with those in Ref.109 at k = Γ, L and q = Γ, L. We find a mean absolute

difference less than 3 meV and the mean absolute relative difference is ∼ 2 %. The largest

differences are observed at (q = Γ, k = L3) and (q = L, k = Γ2′). For (q = Γ,k = L3),

the EPCE computed with the optimized structure is −162.66 meV and the value reported

in Ref.109 is −180.55 meV; for (q = L,k = Γ2′), the EPCE computed with our code and

the lattice constant of Ref.109 is −294.70 meV, to be compared to −307.54 meV, reported

in Ref.109.

Ref. 109 reported EPCEs’ values but did not report renormalizations of energy levels

in diamond. Therefore, to verify our computed renormalizations, we compare our results

with those of Ref. 6, using the same lattice parameter (3.5473 Å) and 4 × 4 × 4 k-point

sampling. The computed renormalization of the highest occupied and lowest unoccupied

bands at the Γ point are 116 and −319 meV, respectively, in good agreement with the values

of 113 and −314 meV, reported in Ref.6. As a result, our computed renormalization of the

direct gap in diamond is −439 meV, which also agrees very well with the result −427 meV of
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Table 4.2: Electron-phonon coupling energies (see Eq. (4.25)) [meV] computed with opti-
mized cell parameters (third column) and with the cell parameters reported by Ref. 109
(fourth column). Mean absolute differences (MAD)[meV] and mean absolute relative differ-
ences (MARD) are given in the last row.

q point k point Optimized Cell Cell parameter from Ref. 109 Ref. 109
Γ Γ1 −12.55 −12.84 −12.53

Γ25′ 25.13 24.86 24.83
Γ15 −14.87 −14.88 −14.23
Γ2′ −31.91 −30.86 −30.93
L2′ −21.18 −21.54 −20.98
L1 −16.72 −16.91 −16.60
L3′ 10.14 10.02 10.10
L3 −162.66 −182.88 −180.55

L Γ1 −54.47 −55.15 −53.73
Γ25′ 186.17 186.71 181.28
Γ15 −273.16 −274.86 −273.58
Γ2′ −311.89 −294.70 −307.54
L2′ −91.27 −91.96 −89.36
L1 −212.64 −224.15 −220.56
L3′ −26.88 −27.13 −25.91
L3 163.96 164.07 163.19

MAD [meV] 2.63 2.10
MARD [%] 2.29 % 2.13 %
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Ref. 6. When using the lattice constant (3.5185 Å) optimized in our calculations, we obtain

a renormalization energy of −429 meV and the difference compared to previously published

values is only 2 meV.

We also evaluated the Fan-Migdal self-energy without adopting the AHC approxima-

tion and thus considering so called non-adiabatic terms, by including phonon frequencies

in the denominator of Eq. (4.13). We emphasize that in our approach, which does not

require summations over empty bands, the inclusion of non-adiabatic effects comes at no

extra computational cost, as does the evaluation of electron-phonon self energies at multiple

temperatures and frequencies. We found that the ZPR of the indirect band gap of diamond

computed by including non-adiabatic effects is −332 meV, in good agreement with the value

−327 meV reported in Ref. 109, where the LDA functional and 10×10×10 k-point sampling

were used, as in our work.

We close the discussion of our DFT results by presenting temperature-dependent renor-

malizations of both the direct and indirect gaps in diamond obtained with 4× 4× 4 q-point

sampling (Fig. (4.4)). We carried out the calculations with the LDA functional at the LDA

lattice constant obtained in Ref.6, and with the PBE functional and the optimized lattice

constant at the PBE level of theory. We find an almost identical temperature dependence

with the two functionals. Our results for the direct gap renormalization compare well with

those of Ref. 94 and 68; however, they differ from those of Ref. 6. As for the indirect gap,

our results agree well with the findings of Ref. 68.

In collaboration with Dr. Arpan Kundu,[72] we compared the AHC formalism results

with those obtained from path-integral molecular dynamics (PIMD)[26] and frozen-phonon

approach. Although the rigid-ion approximation is used in the AHC formalism, the differ-

ence between AHC formalism and frozen-phonon approach or PIMD is negligible in crystal

diamond. The rigid-ion approximation is valid for temperatures lower than 500 K, however

we find larger differences at higher temperature.
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Figure 4.4: Temperature dependence of direct (upper) and indirect (lower) band gap in dia-
mond. The renormalization at zero temperature was set at zero. The literature calculations
are Ref. 6, Ref. 68 and Ref. 94, and the experimental renormalizations (black triangles) of
direct and indirect gap are extracted from Ref. 81 and Ref. 101, respectively.
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Zero point renormalization of energy levels at the G0W0 level of theory – We conducted

a detailed study of the zero point renormalization of the direct gap of diamond at the level

of G0W0, using different numerical protocols, denoted P1 – P5 in Table 4.3.

The G0W0 self-energy Σ contains an exchange term

Σx(r, r′) = −
Nocc∑
n=1

∑
k

ψnk(r)vc(r, r
′)ψ∗nk(r′) (4.28)

and a correlation term

Σc(r, r
′;ω) = i

∫ +∞

−∞

dω′

2π
GKS(r, r′;ω + ω′)Wp(r, r

′;ω′), (4.29)

where ψnk are Kohn-Sham orbitals associated with the n-th level at the k point, vc is the

bare Coulomb potential, GKS is the Green function written in terms of Kohn-Sham orbitals,

GKS(r, r′, ω) =
∑
nk

ψnk(r)ψ∗nk(r′)

ω − εnk
(4.30)

with εnk being the n-th Kohn-Sham energy at the k point, and Wp is the difference between

the screened Coulomb potential and bare Coulomb potential,

Wp(r, r
′;ω) = W (r, r′;ω)− vc(r, r′). (4.31)

To improve the convergence of the calculations of the exchange part Σx with respect

to the number of k points, the curvature technique developed by Gygi-Baldereschi[56] and

further refined by Ref. 97 was used in most of our calculations. In Table 4.3, the curvature

technique is used to obtain the results presented in P1 and P2, but not those of P3 – P5.

The screened Coulomb interaction W is evaluated by computing the dielectric matrix ε,

W (r, r′;ω) = ε−1(r, r′;ω)vc(r, r
′). (4.32)
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and the symmetrized dielectric matrix ε̃ is computed from the symmetrized polarizibility χ̃0,

ε̃GG′(q, ω) = δGG′ − χ̃0
GG′(q, ω). (4.33)

The symmetrized polarizibility can be written as:

χ̃0
GG′(q;ω) =− 4πe2

Nocc∑
n

+∞∑
m=Nocc+1

∑
k

ρ∗mnk(q,G)ρjmnk(q,G′)

|q + G||q + G′|

×

[
1

εmk − εnk−q + ω − i0+ +
1

εmk − εnk−q − ω − i0+

] (4.34)

with

ρmnk(q,G) =
〈
ψmk

∣∣∣ei(q+G)·r
∣∣∣ψnk−q〉 . (4.35)

The straightforward evaluation of the polarizibility χ̃0 is expensive because it requires the

summation over empty bands and it is frequency dependent. In Table 4.3, the calculations

presented in the last column used 100 states for the summation over empty bands. To

compare our results with those if the literature, we also used 100 states for the results given

in columns P2 – P5. By using the Lanczos algorithm, we can avoid the summation over

empty bands and there is no need to truncate the summation. For the results of the P1

column, only 8 bands are used, and we show that the Lanczos algorithm yields the same

result as that of the P2 column, where 100 bands are used.

In Table 4.3, the calculation shown in the last column used the Plasmon-Pole model

(PPM),[66] a semi-empirical model, to compute the frequency dependence of the dielectric

matrix, but our G0W0 calculation computes the full frequency (FF) dependence using the

Lanczos approach without using any semi-empirical approximations. To compare our results

with those existing in the literature, we used the PPM in column P5 and we did reproduce

the literature result. However, FF is known to be more accurate than the PPM,[47] thus we

used FF in obtaining the results of P1 – P4.
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The calculation of electron-phonon self-eneriges also requires to carry out summations

over empty bands, and we used the Lanczos technique for the electron-phonon self-energies

in column P1 – P5.

We note that in our electron-phonon calculations at the G0W0 level, we apply G0W0

corrections only to DFT energy levels and we compute the electron-phonon coupling matrix

elements at the DFT level. Our fully-converged result is −545 meV (P1 in Table 4.3), which

is smaller than the value reported in Ref. 6. We investigated the dependence of the results

on Nstates, the number of states used in the evaluation of the G0W0 self-energy; on whether

the Lanczos approach was used in the evaluation of G0W0 and electron-phonon self-energies;

and on whether a full-frequency (FF) integration or the Hybersten-Louie plasmon-pole model

(PPM) was used in the evaluation of the G0W0 self-energy. The G0W0 calculation with the

PPM was carried out with the ABINIT package.[48, 20] In addition, we used the curvature

technique proposed in Ref. 97 in the calculation of the exchange part of the G0W0 self-energy.

In Table 4.3, P1 and P2 both yield what we consider a converged value of the ZPR

−545 meV, obtained by using 8 bands (4 valence bands and 4 conduction bands) and 100

bands (4 valence bands and 96 conduction bands), respectively. In P3, the curvature cor-

rection was not adopted when computing the exchange part of the electron self-energies and

the computed ZPR, −562 meV, was about 20 meV lower than our converged value. In P4,

where the Lanczos approach was not adopted, we obtained an even lower value, −600 meV.

For P1 – P4, the G0W0 quasiparticle energies were obtained with the WEST code[51] with

full-frequency (FF) integration. Finally in P5 we used the G0W0 band structure obtained

with the plasmon-pole model (PPM) computed with the ABINIT package, as input for our

calculations. By doing so we obtain a ZPR of −620 meV, in good agreement with the result

−622 meV reported in Ref.6.

This comparison shows that the accuracy of G0W0 corrections to DFT eigenvalues has a

significant impact on the computed electron-phonon self-energies; the comparison also shows
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that the plasmon-pole model may not be sufficiently accurate even for a simple crystal such

as diamond.

Table 4.3: Zero point renormalization (ZPR) of the direct gap of diamond obtained with
different computational protocols (P) at the level of G0W0@LDA. Nstates denotes the number
of empty bands used in the evaluation of the G0W0 self-energy; Lanczos the algorithm used
for the frequency integration; FF and PPM stand for full frequency and plasmon pole model,
respectively. In the last row we indicate whether the curvature technique of Ref. 97 was
included in the calculation of the exact exchange term of the self-energy.

P1 P2 P3 P4 P5 Ref. 6
ZPR [meV] -545 -545 -562 -600 -620 -622

Nstates (ΣG0W0
) 8 100 100 100 100 100

Lanczos (ΣG0W0
) Yes Yes Yes No No No

Lanczos (Σep) Yes Yes Yes Yes Yes See text
Freq. integration FF FF FF FF PPM PPM

Curvature Yes Yes No No No N/A

4.4 Large scale calculations: zero point renormalization in

defective solids

After verifying our implementation and examining the effect of various numerical approxima-

tions, we carried out calculations for supercells representative of defective solids, in particular

defects in diamond (see Figure 4.5), showcasing the ability of the methodology developed

here to carry out calculations for large systems. We considered two nearest neighbor carbon

atoms replaced by either two boron or two nitrogen atoms. The electronic structure of the

boron (nitrogen) pair exhibits one unoccupied (occupied) state in the band gap of the host.

We carried out DFT calculations with the PBE functional[103], SG15[123] ONCV[57] pseu-

dopotentials and an energy cutoff of 50 Ry. The G0W0 calculations were carried out with

the WEST code. We report the electron-phonon renormalizations of the systems with defects

in Table 4.4 and Table 4.5.

We first discuss the results using the AHC approximation (Table 4.4 and Table 4.5). The
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Figure 4.5: Isosurface (yellow) of the square moduli of the single particle orbitals of the
boron pair unoccupied defect state (left) and nitrogen pair occupied defect state (right), as
obtained in a 5× 5× 5 supercell of diamond.

presence of defects affects the renormalizaton of the gap of the host crystal due to symmetry

breaking,[72] with the effect decreasing in magnitude as the size of supercell increases, as

expected. In order to find a converged value of the renormalization, we extrapolated our

computed values as a function of the inverse of the supercell size for defective systems, and

as a function of the inverse of the number of q-points for pristine diamond. Our extrap-

olated values at the PBE level are −340 meV for the gap of pristine diamond and −338

and −370 meV for that of diamond with boron and nitrogen pairs, respectively. Once we

add G0W0 corrections, the corresponding extrapolated values are −351 meV and −372 and

−386 meV. In all cases, within the AHC approximations, we do not find significant differ-

ences between the renormalizations of the gap of pristine and defective diamond.

The renormalization of the defect state within the band gap is more interesting, as the

renormalizations of the defect states arising from boron and nitrogen pairs are noticeably

distinct, 51 meV and −7 meV, respectively, at the PBE level, after extrapolation. When

adding G0W0 corrections, the extrapolated values are 40 meV and 1 meV.
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Table 4.4: Zero point renormalization (ZPR) [meV] of the energy gap of pristine diamond
evaluated with k-point sampling (last column), of the energy gap of a supercell of diamond
hosting a boron defect (Host), and of the state of a boron impurity in a supercell of diamond
(Defect).

Supercell ZPR (Defect) ZPR (Host) ZPR (Pristine)

Adiabatic DFT/PBE

3× 3× 3 36 -397 -277
4× 4× 4 46 -401 -366
5× 5× 5 47 -327 -316
6× 6× 6 – – -324
8× 8× 8 – – -330

10× 10× 10 – – -341

extrapolated 51a -338a -357a, -340b

Adiabatic G0W0@PBE

3× 3× 3 29 -416 -254
4× 4× 4 37 -448 -380
5× 5× 5 37 -346 -291

extrapolated 40a -372a -351a

Non-adiabatic DFT/PBE

3× 3× 3 -267 -556 -637
4× 4× 4 -152 -482 -510
5× 5× 5 -131 -362 -372
6× 6× 6 – – -353
8× 8× 8 – – -330

10× 10× 10 – – -329

extrapolated -86a -346a -338a, -320b

Non-adiabatic G0W0@PBE

3× 3× 3 -275 -574 -615
4× 4× 4 -163 -518 -508
5× 5× 5 -143 -379 -348

extrapolated -99a -373a -325a

a Extrapolated up to 5× 5× 5
b Extrapolated up to 10× 10× 10
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Table 4.5: Zero point renormalization (ZPR) [meV] of the energy gap of pristine diamond
evaluated with k-point sampling (last column), of the energy gap of a supercell of diamond
hosting a nitrogen defect (Host), and of the state of a nitrogen impurity in a supercell of
diamond (Defect).

Supercell ZPR (Defect) ZPR (Host) ZPR (Pristine)

Adiabatic DFT/PBE

3× 3× 3 22 -322 -277
4× 4× 4 3 -394 -366
5× 5× 5 1 -333 -316
6× 6× 6 – – -324
8× 8× 8 – – -330

10× 10× 10 – – -341

extrapolated -7a -370a -357a, -340b

Adiabatic G0W0@PBE

3× 3× 3 33 -339 -254
4× 4× 4 12 -415 -380
5× 5× 5 9 -346 -291

extrapolated 1a -386a -351a

Non-adiabatic DFT/PBE

3× 3× 3 185 -459 -637
4× 4× 4 156 -431 -510
5× 5× 5 149 -345 -372
6× 6× 6 – – -353
8× 8× 8 – – -330

10× 10× 10 – – -329

extrapolated 138a -344a -338a, -320b

Non-adiabatic G0W0@PBE

3× 3× 3 192 -473 -615
4× 4× 4 161 -452 -508
5× 5× 5 153 -359 -348

extrapolated 141a -362a -325a

a Extrapolated up to 5× 5× 5
b Extrapolated up to 10× 10× 10
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We now turn to discuss non-adiabatic effects. We found that including non-adiabatic

effects in Eq. (4.13) changes substantially the renormalizations computed for defect states in

diamond, although it has a smaller effect on the gap of diamond. Our results are reported

in Table 4.4 and Table 4.5. The gap of diamond varies by −56, −35 and −12 meV – when

including non-adiabatic effect – in the case of the pristine solid, boron and nitrogen defective

systems, respectively, at the PBE level in the 5 × 5 × 5 supercell. The magnitude of the

renormalization of defect states increases by approximately a factor of 3 for boron pairs and

by more than a factor of 10 for nitrogen in 5× 5× 5 supercell, when including non-adiabatic

effects. After extrapolation, the renormalization of the boron defect state is −86 meV (PBE)

and −99 meV (G0W0) and that of the nitrogen pair is 138 meV (PBE) and 141 meV (G0W0).

To understand the difference between the results obtained with and without non-adiabatic

effects, we plot in Figure 4.6 the contribution of each vibrational mode to the difference

between the adiabatic and non-adiabatic renormalizations for the boron pair, described with

a 5 × 5 × 5 supercell; such difference is expressed in terms of the fractional contribution of

defect atoms to each mode, fdefect
qν =

∑defect
I

∑
α |ξIα,qν |2, where the summation runs over

the boron atoms. We define vibrational modes with fdefect
qν > 10% as modes exhibiting defect

relevant vibrations. Figure 4.6 shows that defect relevant vibrations are indeed responsible

for the difference between adiabatic and non-adiabatic effects found in the case of defect

states; however their contribution to the host gap renormalization are small. Quantitatively,

the defect relevant vibrations contribute approximately −89 meV to the difference between

adiabatic and non-adiabatic defect state renormalizations, with the remaining −88 meV

being accounted for by coupling with lattice vibrations. Overall our results indicate that

the AHC formalism and related adiabatic approximation are not sufficiently accurate to

describe the electron-phonon renormalizations of carbon-based defect states, and that taking

into account non-adiabatic effects is critical to obtain accurate results.
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Figure 4.6: The contribution of vibration modes to the difference between adiabatic and non-
adiabatic renormalizations for a boron pair in diamond, described in a 5 × 5 × 5 supercell,
with respect to the fractional contribution of the vibration of defect atoms fdefect

qν (see text).

4.5 Conclusions

In summary, we presented an efficient, combined approach to compute electron-electron and

electron-phonon self-energies in solids, which can be used for large scale calculations, and

enables the inclusion of non-adiabatic and temperature effects in a simple, straightforward

manner, at no extra computational cost. This approach is a generalization to solid of the

method proposed for molecules in Ref. 92. We discussed in detail verification and validation

strategies for calculations at the DFT and G0W0 level of theory; we found that the numerical

accuracy of G0W0 band structures is critical to obtain robust predictions of zero point

renormalizations of energy levels and that carrying out full frequency integration is necessary

to reach the required accuracy. We presented calculations for pristine diamond and defects

in diamonds with supercells containing ∼ 1000 electrons; we found that while the inclusion

of non-adiabatic effects leads to moderate changes in the renormalization of the diamond

band gap, it is essential to obtain accurate results for defect levels in the gap. Work is in

progress to apply our methodology to the study of spin-defects in diamond and in other
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insulators and semiconductors, including spin-phonon interaction.
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CHAPTER 5

ELECTRON-PHONON INTERACTION USING HYBRID

FUNCTIONALS

As briefly discussed in Section 2.7, density matrix perturbation theory and the Liouville

equation can be used to compute the change of charge density due to atomic displacements.

In this chapter, we describe the implementation of density matrix perturbation theory to

compute phonon frequencies and electron-phonon interactions at the level of hybrid func-

tionals.

5.1 Introduction

In the previous chapter, we implemented a method to combine the computation of electron-

electron interactions at the G0W0 level of the theory and the computation of electron-phonon

interactions by writing the dielectric functions in terms of dielectric eigenpotentials.[143]

The Green’s functions used in G0W0 calculations are constructed from density functional

theory (DFT) energy levels ε and wavefunctions ψ, thus the G0W0 quasiparticle energies

depend on the choice of the DFT exchange-correlation functional. Figure 5.1 shows the

G0W0 HOMO energy levels of the H2O molecule starting from Hartree-Fock (HF), PBE,

and hybrid functionals with various fraction of exact exchange (EX), as well as a comparison

to self-consistent GW calculations (scGW ) and experimental results. The different starting

points may lead to a variation of the computed G0W0 energy levels that are as large as

∼ 1 eV, and the use of hybrid functionals in general improves the comparison between self-

consistent GW calculations and experiments. The electron-phonon interactions also depend

on the chosen starting-point to compute the electronic structure of the system. In Section 4.3,

we compared the electron-phonon renormalizations of the energy levels of diamond obtained

with different G0W0 approximations; we show that the chosen numerical approximations
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Figure 5.1: The HOMO energy level of the water molecule computed with the G0W0 approxi-
mation and using different DFT energies and wavefunctions as starting points, including DFT
calculations at the PBE and Hartree-Fock (HF) level of theory and with hybrid functionals
with various portions of exact exchange (EX). The value obtained with self-consistent GW
calculations is indicated in green. Credit: Golze D, Dvorak M and Rinke P (2019). The GW
Compendium: A Practical Guide to Theoretical Photoemission Spectroscopy. Front. Chem.
7:377. doi: 10.3389/fchem.2019.00377. Permission granted under the Creative Commons
Attribution (CC BY) licence, version 4.0.

may result in 80 meV differences. These observations indicate that the quality of the band

structure and single particple wavefunction does make a difference in the computation of

electron-phonon interactions. In addition, we note that the method employed in Chapter 4

only makes corrections to the DFT energy levels, but the electron-phonon coupling matrices

are not corrected and only computed at the DFT level. In this thesis we evaluate electron-

electron and electron-phonon interactions at the level of hybrid functionals, where both

the energy levels and electron-phonon coupling matrices are computed at the same level of

theory.

Existing methods such as the frozen-phonon (FPH) approach[6, 24], first-principles molec-

ular dynamics (FPMD)[96, 94, 68, 72] and path-integral molecular dynamics (PIMD)[72, 26]

can in principle be used to compute phonons or electron-phonon self-energies at the hybrid

level of theory, but such calculations are computationally very demanding. This is due to the

70



necessity of using large supercells which makes these methods difficult to scale as a function

of size and thus applicable to large systems. Thus, a scalable and affordable implementation

of hybrid level phonon and electron-phonon calculations is desirable.

As an alternative to the solution of the Sternheimer equation[132], density matrix per-

turbation theory (DMPT) was adopted to compute excitation energies and absorption spec-

tra in molecules and solids in conjunction with time-dependent density functional the-

ory (TDDFT)[115, 117], and was later implemented to solve the Bethe-Salpeter equation

(BSE)[118, 119, 116, 99]. In the latter case, the DMPT was applied to find the change of

wavefunctions due to the perturbation of an electric field in molecules or solids. However, as

a general formalism, the DMPT can be used to compute the response of a system to pertur-

bations of any form, including the atomic displacements in the case of phonon calculations.

In this chapter, we first derive the DMPT formalism for phonon calculations starting from

the quantum Liouville-von Neumann’s equation in Section 5.2; we then verify the method

by comparing the results with the FPH and PIMD methods in Section 5.3; we conclude this

chapter in Section 5.4 with our summay and conclusions.

5.2 Methodology

We start with the quantum Liouville’s equation, and within Kohn-Sham density functional

theory,

i
d

dt
γ(t) = [HKS(t), γ(t)], (5.1)

where [·, ·] is the anti-commutator, HKS(t) is the Kohn-Sham Hamiltonian and γ is the

density matrix that can be written in terms of Kohn-Sham single-particle orbitals

γ(r, r′, t) = 2

Nocc∑
n

ψn(r, t)ψ∗n(r′, t), (5.2)
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where the prefactor 2 accounts for spin. In the following discussion, we dropped the indices

k and q used for sampling of the Brillouin zone for convenience.

Given a perturbation ∂Vext to the Hamiltonian, the change of the density matrix ∂γ

satisfies the following equation,

i
d

dt
∂γ(t) = L · ∂γ(t) + [∂Vext, γ], (5.3)

where L is the Liouville super-operator,

L · ∂γ(t) = [HKS(t), ∂γ] + [∂VH[∂γ](t), γ] + [∂Vxc[∂γ](t), γ]. (5.4)

For simplicity, we use the notation ∂ to represent the change of potentials ∂V , wavefunctions

∂ψ, charge densities ∂n(r) and density matrices ∂γ(r, r′). Later in the discussion, we also

use the notation ∂Iα (∂Jβ) to represent a change due to the displacement of atom I (J)

along the direction α (β).

Taking the Fourier transform of the time-dependent Eq. (5.3), we rewrite it in the fre-

quency domain,

(ω − L) · ∂γ(ω) = [∂Vext(ω), γ]. (5.5)

In phonon calculations, the Born-Oppenheimer approximation[16] is applied and no retar-

dation effects are included. Hence we only need to solve the equation at ω = 0,

L · ∂γ = −[∂Vext, γ]. (5.6)
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The equation can be expressed as,

 D +K1e −K1d K2e −K2d

−K2e +K2d −D −K1e +K1d


 A
B

 =

 {|−Pc∂Vextψn〉 : n = 1, · · · , Nocc}

{| Pc∂Vextψn〉 : n = 1, · · · , Nocc}


(5.7)

where Pc is the projection operator onto the virtual bands manifold, and the solutions A

and B are collections of change of wavefunctions an and bn, n = 1, · · · , Nocc, that can be

used to evaluate the change of density matrices,

∂γ = 2

Nocc∑
n

|an〉 〈ψn|+ |ψn〉 〈bn| (5.8)

In phonon calculations with ω = 0, we have an = bn = ∂ψn and thus we write Eq. (5.7) as:

[
D +K1e −K1d +K2e −K2d

]
A = {|−Pc∂Vextψn〉 : n = 1, · · · , Nocc} , (5.9)

and this is a generalized Sternheimer equation, where the operators are defined below.

DA =
{
Pc(HKS − εn) |an〉 : n = 1, · · · , Nocc

}
. (5.10)

When using LDA/GGA functionals, the K1e and K2e operators are defined as,

K1eA =

2

∫
dr′Pc(r, r′)ψn(r′)

Nocc∑
n′

∫
dr′′fHxc(r′, r′′)ψ∗n′(r

′′)an′(r
′′) : n = 1, · · · , Nocc

 ,

(5.11)

K2eA =

2

∫
dr′Pc(r, r′)ψn(r′)

Nocc∑
n′

∫
dr′′fHxc(r′, r′′)a∗n′(r

′′)ψn′(r
′′) : n = 1, · · · , Nocc

 ,

(5.12)
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where fHxc = vc + fxc is the sum of the bare Coulomb potential vc and the exchange-

correlation kernel fxc. K1d and the K2d operators are zero for LDA/GGA functionals.

When using hybrid functionals, the operators are defined as,

K1eA =

2

∫
dr′Pc(r, r′)ψn(r′)

Nocc∑
n′

∫
dr′′f loc

Hxc(r′, r′′)ψ∗n′(r
′′)an′(r

′′) : n = 1, · · · , Nocc

 ,

(5.13)

K2eA =

2

∫
dr′Pc(r, r′)ψn(r′)

Nocc∑
n′

∫
dr′′f loc

Hxc(r′, r′′)a∗n′(r
′′)ψv′(r

′′) : n = 1, · · · , Nocc

 ,

(5.14)

K1dA =

α
∫

dr′Pc(r, r′)
Nocc∑
n′

an′(r
′)
∫

dr′′vc(r′, r′′)ψ∗n′(r
′′)ψn(r′′) : n = 1, · · · , Nocc


(5.15)

K2dA =

α
∫

dr′Pc(r, r′)
Nocc∑
n′

ψn′(r
′)
∫

dr′′vc(r′, r′′)a∗n′(r
′′)ψn(r′′) : n = 1, · · · , Nocc


(5.16)

where f loc
Hxc = vc + f loc

xc is the sum of the bare Coulomb potential and the local part of the

exchange-correlation kernel f loc
xc and the parameter α is the fraction of the Hartree-Fock

exchange included in the hybrid functional.

Once we have the the solutions an of the Liouville equation (Eq. (5.7) or Eq. (5.9)), i.e.,

the change of wavefunction ∂ψn, we can compute the change of the density matrix with

Eq. (5.8), the change of density with

∂n(r) = 2

Nocc∑
n

∂ψ∗n(r)ψn(r) + ψ∗n(r)∂ψn(r) (5.17)
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and force constants

CIα,Jβ ∝
〈
∂Iαψn

∣∣∂JβVext
∣∣ψn〉 . (5.18)

By diagonalizing the dynamics matrix,

∑
Jβ

1√
MIMJ

CIα,JβξJβ,ν = ω2
νξIα,ν , (5.19)

where MI , MJ are atomic masses, we obtain the frequency ων of mode ν and the polarization

of the mode ξIα,ν .

To compute the electron-phonon coupling matrices in Cartesian basis:

gmnIα = 〈ψm |∂IαVscf |ψn〉 (5.20)

or in phonon mode basis:

gmnν =
∑
Iα

ξIα,ν√
MI

gmnIα, (5.21)

where ξIα,ν is the ν-th vibrational mode, the change of the self-consistent (scf) potential

∂Vscf needs to be evaluated. The scf potential consists of the Hartree potential VH, the local

part of the exchange-correlation potential V loc
xc and the non-local Hatree-Fock exchange V nl

xc .

Thus, the change of the scf potential ∂Vscf |ψn〉 is the sum of the three terms,

∂VH(r) |ψn(r)〉 = ψn(r)

∫
dr′vc(r, r′)∂n(r′), (5.22)

∂V loc
xc (r) |ψn(r)〉 = ψn(r)

∫
dr′f loc

Hxc(r, r′)∂n(r′), (5.23)

and

∂V nl
xc |ψn〉 = −α

Nocc∑
m

∫
dr′
[
∂ψ∗m(r′)ψm(r) + ψ∗m(r′)∂ψm(r)

]
vc(r, r

′)ψn(r′). (5.24)
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Once the electron-phonon coupling matrices g are obtained, the Fan-Migdal and Debye-

Waller self-energies can be computed,

ΣFM
n (ω, T ) =

∑
mν

|gmnν |2
[

nν + fm
ω − εm + ων − i0+ +

nν + 1− fm
ω − εm − ων − i0+

]
(5.25)

ΣDW
n (T ) = −

∑
mν

∑
IαJβ

2nν + 1

εn − εm
1

4ων

[
ξIα,νξIβ,ν

MI
+
ξJα,νξJβ,ν

MJ

]
gmnIαgmnJβ , (5.26)

where nν is the occupation number of the frequency ων obeying the Bose-Einstein distri-

bution and fm is the occupation number of the Kohn-Sham energy levels εm obeying the

Fermi-Dirac distribution.

In Section 2.5, we introduced the Allen-Heine-Cardona (AHC) formalism and theories

beyond the AHC listed in Table 2.1. These theories are also employed in this chapter.

We implemented the formalism above as a part of the WEST[51] package.

5.3 Results

5.3.1 Verification of the method

To verify the implementation of the method described above, we first computed the phonon

frequencies of selected solids (diamond, silicon and silicon carbide) and the vibrational modes

of selected molecules (H2, N2, H2O, CO2), and compared our results with those of the frozen

phonon approach. In Table 5.1 and Table 5.2, we summarize our results for the phonon

frequencies in solids and vibrational modes in molecules obtained at the PBE0 functional

level of theory and computed by solving either the Liouville equation or or using the frozen

phonon approach. The lattice constants used for diamond, silicon and silicon carbide are

6.8695, 10.3257 and 8.2623 Bohr, respectively, and the cell used for molecules is a cube of

edge 20 Bohr. For verification purposes, we only computed the phonon modes at the Γ point

in the Brillouin zone of the solids. We used an energy cutoff of 60 Ry for the solids and
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Table 5.1: A comparison of selected phonon frequencies [cm−1] in diamond, silicon and silicon
carbide computed in a primitive cell and the PBE0 functional by solving the Liouville’s
equation or by using the frozen-phonon approach.

Solid Liouville Frozen-phonon Absolute difference
diamond 2136.21 2131.48 4.73
silicon 737.47 737.28 0.19

silicon carbide 612.77 612.70 0.07

Table 5.2: A comparison of the vibrational modes [cm−1] of selected molecules obtained
with the PBE0 functional and computed by solving the Liouville’s equation or by using the
frozen-phonon approach.

Molecule Symmetry Liouville Frozen-phonon Absolute difference
H2 a1 4421.48 4438.78 17.30
N2 a1 2480.36 2480.36 0.00

H2O a1 1652.79 1658.76 5.97
H2O b2 3921.28 3936.57 15.29
H2O a1 4033.68 4048.58 11.90
CO2 e1u 698.15 698.12 0.03
CO2 a1g 1375.10 1375.18 0.08
CO2 a1u 2419.08 2419.23 0.15

50 Ry for the molecules, and the SG15[123] ONCV[57] pseudopotentials for all the solids

and molecules.

In Table 5.1, the absolute difference of the phonon frequencies computed with the two

methods in silicon and silicon carbide are small, 0.19 and 0.07 cm−1, respectively. The

difference of phonon frequency in diamond is larger, but it is still below 5 cm−1. In Table 5.2,

we compare the vibrational frequencies of H2, N2, H2O and CO2 molecules computed by

solving the Liouville equation or applying frozen-phonon approach. We found again that the

differences of the vibrational modes in N2 and CO2 are very small (below 1 cm−1), but they

are larger in H2 and H2O. The largest difference is found in H2 (17.30 cm−1), and this is

probably due to the numerical inaccuracy of the frozen-phonon approach.

To verify our approach to compute electron-phonon interactions, we computed the renor-

mailization of the HOMO, LUMO levels and HOMO-LUMO gap in the CO2 molecule within
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Table 5.3: Electron-phonon renormalization energies [meV] of HOMO, LUMO energy lev-
els and the HOMO-LUMO gap in the CO2 molecule, computed by solving the Liouville’s
equation, using density functional perturbation theory (DFPT), the frozen-phonon (FPH)
approach and the path-integral molecular dynamics (PIMD) method. We compare results
obtained with different functionals: LDA, PBE, PBE0 and the B3LYP functionals, and
include results obtained in Ref. 126.

Method Functional HOMO Renorm. LUMO Renorm. Gap Renorm.
Liouville LDA 64 -453 -517
DFPT LDA 64 -453 -517

Liouville PBE 65 -350 -415
DFPT PBE 65 -350 -415
FPH PBE 53 -325 -378

Liouville PBE0 68 -69 -137
FPH PBE0 55 -77 -132

PIMD PBE0 59 -103 -162
Liouville B3LYP 67 -107 -174

FPH B3LYP 54 -89 -143
PIMD B3LYP 58 -112 -170

Literature[126]
LDA — — -680.7

PBE+TS — — -716.2
B3LYP — — -4091.6
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the Allen-Heine-Cardona (AHC) formalism, and compared the results obtained with the

DFPT, FPH and/or PIMD methods. In Table 5.3, the renormailizations are computed at

the LDA, PBE, PBE0 and B3LYP levels of theory, respectively. The frozen-phonon and

PIMD results were obtained in collaboration with Dr. Arpan Kundu.

At the LDA and PBE level of theory, we first compared our results by solving the Liou-

ville equation and using the density functional perturbation (DFPT) approach introduced in

Chapter 4[92, 147]. At the LDA and PBE/GGA functionals, solving the Liouville equation

is exactly equivalent to using the method proposed in Chapter 4, thus renormalizations ob-

tained with the Liouville and DFPT methods are exactly the same: 64 meV for the HOMO

level, −453 meV for the LUMO level, and −517 meV for the gap with the LDA functional;

65 meV for the HOMO level, −350 meV for the LUMO level, and −415 meV for the gap

with the PBE functional. In addition, the renormalizations at the PBE level were also ob-

tained with the frozen-phonon approach. In the Liouville and DFPT methods, the rigid-ion

approximation is applied to obtaine the renormalized results, while it is not used in the

frozen-phonon approach. Thus, the frozen-phonon results are slightly different from those of

the Liouville and DFPT approaches: 53 meV for the HOMO level, −325 meV for the LUMO

level, and −378 meV for the gap. We then carried out calculations with the hybrid func-

tionals, PBE0 and B3LYP, and compared our results with those of the frozen-phonon and

PIMD approaches[72]. The PIMD approach circumvents the rigid-ion approximation and

also includes ionic anharmonic effects. At the PBE0 level of theory, the results computed

with the Liouville equation agree better with the frozen-phonon approach, −137 meV and

−132 meV for the gap renormailization, respectively. At the B3LYP level, the results com-

puted with the Liouville equation agree very well with those of the PIMD method, −174 meV

and −170 meV, respectively. At the PBE0 level of theory, the Liouville and PIMD results

differ by 25 meV; at the B3LYP level, the Liouville and frozen-phonon approaches differ by

31 meV. It is worth noting that in the frozen-phonon and PIMD approaches, one does not
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apply the same approximations as in the Liouville approach: the rigid-ion approximation is

applied and anharmonicity is not included in the Liouville approach, thus the ∼ 30 meV dif-

ference is acceptable. We also found that the computed renormalizations of the gap of CO2

reported in literature,[126] are significantly different from ours, with differences of −680.7

and −716.2 meV with LDA[105] and PBE+TS[138] functionals, respectively. Note that the

B3LYP level reported in the literature is −4091.6 meV, i.e., one order of magnitude higher

than the result at the LDA and PBE+TS functional level of theory, and hence that result

might be called into question for the unusual magnitude.

5.3.2 Renormalization of energy gaps in small molecules

After verifying our method, we carried out a study of the renormalization of the HOMO-

LUMO gap of molecules in the G2/97 test set[29] with LDA, PBE, PBE0 and B3LYP

functionals. All calculations were carried out in a cubic cell with lattice constant 20 Bohr

and a planewave energy cutoff of 50 Ry. The SG15[123] ONCV[57] pseudopotentials were

used for all elements. The results are summarized in Table 5.4 and Table 5.5, and are

illustrated in Figure 5.2.

Table 5.4 summarizes the renormalizations computed within AHC formalism. For most

of the molecules, using hybrid functionals does not significantly change the gap renormal-

ization relative to LDa or PBE results. For example, the energy gap renormalizations of the

H2 molecule computed with LDA, PBE, PBE0 and B3LYP functionals are 58 meV, 61 meV,

63 meV and 63 meV, respectively. However, hybrid functionals do reduce the magnitude of

gap renormailization in several systems, and CO2 and CH3Cl are representative examples.

In CO2 the renormailization is reduced from −425 meV at the PBE level to −127 meV at

the PBE0 level of theory; in CH3Cl, the renormalization changes from −149 meV (PBE) to

−59 meV (PBE0). In these two examples, the renormailizations computed with hybrid func-

tionals are less the 50% of those computed with a GGA functional. This finding highlights

80



Figure 5.2: Computed zero-point renormalization energies of the HOMO-LUMO gaps of
small molecules.

the need to compute electron-phonon renormailizations at the hybrid level of theory.

Next, we go beyond the AHC formalism. Using the so-called non-adiabatic AHC for-

malism (See Table 2.1), we avoid the approximation that neglects phonon frequencies in

Fan-Migdal self-energy, and the results are listed in Table 5.5. The non-adiabatic AHC

formalism significantly influences the computed magnitude of the gap renormalization in

most of the molecules with exceptions like CO2. For example, the H2 gap renormailiza-

tion changes from 63 meV to −377 meV with the PBE0 functional. The most significant

differences are found in the F2 and H2O2 molecules. Within the AHC formalism, the gap

renormailizations computed at the PBE0 level in F2 and H2O2 are 25 and −72 meV respec-

tively, but they are −2914 and 891 meV with non-adiabatic AHC method. Not only did the

non-adiabaticity change the sign of the renormailization, but the magnitude has also been

changed significantly.
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Table 5.4: List of HOMO-LUMO energy gaps of small molecules and their zero-point renor-
malization energy (ZPR) computed within the Allen-Heine-Cardona approximation. All
gaps and ZPRs are in eV. We compare results obtained with different energy functionals
(LDA, PBE, PBE0 and B3LYP).

Molecule
LDA PBE PBE0 B3LYP

gap ZPR gap ZPR gap ZPR gap ZPR
H2 9.998 0.058 10.164 0.061 11.890 0.063 11.648 0.063
ClF 3.194 0.004 3.167 0.005 6.250 -0.002 5.629 -0.001
CS 3.954 -0.004 4.042 -0.004 6.562 -0.006 6.199 -0.006
HF 8.681 -0.032 8.598 -0.030 11.302 -0.011 10.809 -0.018
LiF 5.108 0.006 4.723 0.006 7.014 0.007 6.601 0.007
N2 8.221 0.013 8.319 0.013 11.707 0.007 11.179 0.008

NaCl 3.524 0.002 3.225 0.002 5.069 0.002 4.577 0.002
SiO 4.524 0.001 4.549 0.001 6.764 -0.002 6.368 -0.002
Cl2 2.899 0.006 2.894 0.006 5.503 0.002 4.887 0.003
CO 6.956 0.005 7.074 0.004 10.055 -0.003 9.575 -0.002
F2 3.495 0.030 3.370 0.029 7.840 0.025 6.917 0.025

HCl 6.768 -0.061 6.784 -0.069 8.858 -0.055 8.417 -0.066
Li2 1.532 0.001 1.524 0.001 2.582 0.001 2.343 0.001
LiH 2.985 0.002 2.873 0.003 4.424 0.001 4.117 0.002
Na2 1.564 0.001 1.521 0.001 2.495 0.000 2.264 0.001
P2 3.649 0.005 3.644 0.005 5.537 0.005 5.107 0.005

CO2 8.075 -0.517 8.033 -0.415 10.159 -0.137 9.708 -0.174
HCN 7.878 -0.185 7.930 -0.190 10.186 -0.020 9.806 -0.019
H2O 6.272 -0.042 6.208 -0.036 8.511 -0.013 8.084 -0.020
SH2 5.212 -0.189 5.238 -0.160 6.942 -0.042 6.593 -0.059
SO2 3.457 -0.019 3.414 -0.021 6.087 -0.016 5.596 -0.018

H2CO 3.470 -0.091 3.589 -0.092 6.451 -0.114 5.993 -0.111
H2O2 5.028 -0.093 4.887 -0.071 7.780 -0.072 7.505 -0.110
NH3 5.395 -0.053 5.304 -0.048 7.205 -0.035 6.825 -0.038
PH3 5.999 -0.146 5.946 -0.110 7.388 -0.039 7.056 -0.047
C2H2 6.703 -0.179 6.712 -0.029 8.181 -0.016 7.835 -0.014
CH3Cl 6.232 -0.158 6.210 -0.149 8.042 -0.059 7.691 -0.068
CH4 8.799 -0.084 8.820 -0.081 10.647 -0.091 10.320 -0.090
SiH4 7.727 -0.141 7.772 -0.115 9.440 -0.083 9.187 -0.086
N2H4 4.892 -0.386 4.866 -0.383 6.736 -0.375 6.426 -0.359
C2H4 5.654 -0.129 5.673 -0.123 7.592 -0.059 7.224 -0.053
Si2H6 6.364 -0.305 6.386 -0.238 7.874 -0.117 7.609 -0.117
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Table 5.5: List of HOMO-LUMO gaps of small molecules and their zero-point renormaliza-
tion energies (ZPR) computed within the non-adiabatic Allen-Heine-Cardona approximation.
All gaps and ZPRs are in eV. We compare results obtained with different energy functionals
(LDA, PBE, PBE0, B3LYP).

Molecule
LDA PBE PBE0 B3LYP

gap ZPR gap ZPR gap ZPR gap ZPR
H2 9.998 -0.260 10.164 -0.263 11.890 -0.377 11.648 -0.366
ClF 3.194 -0.959 3.167 -0.985 6.250 -1.011 5.629 -1.000
CS 3.954 -0.151 4.042 -0.156 6.562 -0.155 6.199 -0.154
HF 8.681 -0.225 8.598 -0.194 11.302 -0.083 10.809 -0.111
LiF 5.108 -0.123 4.723 -0.122 7.014 -0.134 6.601 -0.134
N2 8.221 -0.418 8.319 -0.432 11.707 -0.418 11.179 -0.428

NaCl 3.524 -0.021 3.225 -0.022 5.069 -0.022 4.577 -0.022
SiO 4.524 -0.052 4.549 -0.054 6.764 -0.056 6.368 -0.055
Cl2 2.899 -0.557 2.894 -0.560 5.503 -0.622 4.887 -0.589
CO 6.956 -0.361 7.074 -0.373 10.055 -0.338 9.575 -0.346
F2 3.495 -2.405 3.370 -2.317 7.840 -2.914 6.917 -2.600

HCl 6.768 -0.501 6.784 -0.440 8.858 -0.128 8.417 -0.195
Li2 1.532 -0.007 1.524 -0.008 2.582 -0.010 2.343 -0.010
LiH 2.985 -0.049 2.873 -0.045 4.424 -0.055 4.117 -0.058
Na2 1.564 -0.002 1.521 -0.002 2.495 -0.002 2.264 -0.002
P2 3.649 -0.077 3.644 -0.079 5.537 -0.100 5.107 -0.096

CO2 8.075 -0.495 8.033 -0.398 10.159 -0.136 9.708 -0.174
HCN 7.878 -0.543 7.930 -0.541 10.186 -0.147 9.806 -0.138
H2O 6.272 -0.114 6.208 -0.095 8.511 -0.050 8.084 -0.061
SH2 5.212 -0.203 5.238 -0.166 6.942 -0.050 6.593 -0.069
SO2 3.457 -0.231 3.414 -0.234 6.087 -0.281 5.596 -0.274

H2CO 3.470 -0.364 3.589 -0.376 6.451 -0.386 5.993 -0.382
H2O2 5.028 -2.549 4.887 -2.582 7.780 -0.891 7.505 -0.799
NH3 5.395 -0.590 5.304 -0.566 7.205 -0.578 6.825 -0.562
PH3 5.999 -0.516 5.946 -0.493 7.388 -0.453 7.056 -0.450
C2H2 6.703 -0.420 6.712 -0.074 8.181 -0.080 7.835 -0.073
CH3Cl 6.232 -0.351 6.210 -0.307 8.042 -0.112 7.691 -0.116
CH4 8.799 -1.950 8.820 -1.961 10.647 -2.245 10.320 -2.210
SiH4 7.727 -0.931 7.772 -0.916 9.440 -1.019 9.187 -1.007
N2H4 4.892 -1.082 4.866 -1.038 6.736 -1.129 6.426 -1.050
C2H4 5.654 -0.408 5.673 -0.411 7.592 -0.184 7.224 -0.173
Si2H6 6.364 -0.607 6.386 -0.551 7.874 -0.506 7.609 -0.507
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Figure 5.3: Analysis of the frequency-dependent self-energies of the HOMO and LUMO
orbitals of the F2 molecule.
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To analyze the reason why the non-adiabatic AHC formalism had such a big effect in the

calculation of renormailizations, we computed the frequency-dependent electron-phonon self-

energies in the F2 molecule and they are shown in Figure 5.3. The AHC result reported in

Table 5.4 corresponds to the intersection of the black and blue lines, while the non-adiabatic

AHC result reported in Table 5.5 corresponds to the intersection of the black and orange

lines. From Figure 5.3, we clearly see that the self-energies oscillate near the black line,

which corresponds to the HOMO, LUMO energy levels in the upper and lower plots. In the

non-adiabatic case, the black line happens to intersect the orange lines at the peak or valley,

thus they significantly differ from the intersections of the black and blue lines.

Next, we avoid the on-the-mass-shell (OMS) approximation (see Table 2.1) and solve for

the renormalizations using the frequency-dependent self-energies,

ω − εKS
n = Σn(ω). (5.27)

In the plot, the red line represents ω−εKS
n , and the blue and orange curves are fully frequency-

dependent adiabatic and non-adiabatic self-energies, respectively. Thus, the solutions of the

equation above correspond to the intersections between the red, blue or orange curves in

Figure 5.3.

Within the AHC formalism, the approximate renormailization, the intersection between

the black and blue curves, happens to be relatively accurate, as the red line intersects the

blue line at the the same point. But, with non-adiabatic self-energies, the on-mass-shell

approximation is not accurate for the self-consistent solutions, as the black line intersects

the orange line far away from the intersection of the red and orange lines. We also notice

that the red line intersects the blue and orange lines in multiple locations. This indicates

that the quasiparticle approximation does not work well for the F2 molecules when electron-

phonon interactions are considered, and satellite peaks are created. In sum, neither the

AHC nor the non-adiabtic AHC formalism correctly describes the self-energies in the full
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energy range, and thus we suggest that the frequency-dependent self-energies should always

computed whenever possible.

5.3.3 Renormalization of the energy gap of diamond

We computed the electron-phonon renormalization of the energy gap in diamond within the

AHC formalism, and beyond the AHC formalism by solving the full frequency-dependent

non-adiabatic (FF-NA) self-energies self-consistently (see Table 2.1). The calculations for

diamond were carried out in a 3×3×3 supercell with an energy cutoff of 60 Ry and SG15[123]

ONCV[57] pseudopotentials.

In Figure 5.4, we present the temperature-dependent indirect gap renormalization com-

puted with the PBE and PBE0 functionals. Within the same level of approximation, e.g.,

the AHC formalism (circles in the plot), the PBE and PBE0 results are almost the same

for temperatures lower than 400 K, but their difference gets larger for higher temperatures.

With the same functional, e.g., the PBE0 functional (orange lines in the plot), the results

obtained with the full frequency-dependent non-adiabatic self-energies are lower than those

obtained with the AHC formalism. In general, the use of the PBE0 hybrid functional does

not significantly change the trend of the ZPRs as a function of temperature.

We report the renormalized energy gap in Figure 5.5 with a comparison with experi-

mental measurements, and we list them in Table 5.6. Although the PBE0 hybrid functional

does not significantly change the trend of the electron-phonon renormalization as a function

of temperature, the renormalized gap are noticeably improved compared to experimental

measurements. The indirect energy gap of diamond computed with PBE and PBE0 without

electron-phonon renormalizaiton are 4.016 and 6.040 eV, respectively, and the experimental

indirect gap measured at approximately 100 K is 5.45 eV.[101] Comparing the computational

and experimental results, we find the the PBE gap is about 1.5 eV lower while the PBE0 gap

is about 0.60 eV higher than the experimental gap. By including electron-phonon renormal-
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Figure 5.4: The electron-phonon renormalization energy computed within the Allen-Heine-
Cardona (AHC) approximation, and beyond the AHC approximation by computing the full
frequency-dependent non-adiabatic (FF-NA) self-energy self-consistently. The renormailza-
tion energy at zero temperature has been shifted to zero.

Figure 5.5: The electron-phonon renormalized indirect energy gap in diamond computed
with the PBE and PBE0 functionals compared to experimental measurements.[101] We show
calculations performed with the Allen-Heine-Cardona (AHC) formalism and with the full
frequency-dependent non-adiabatic (FF-NA) self-energies.
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Table 5.6: The temperature-dependent zero-point renormalization energy (ZPR) and renor-
malized indirect energy gap (Gap+ZPR) computed with the PBE and PBE0 functionals
and using the Allen-Heine-Cardona (AHC) formalism or the full frequency-dependent non-
adiabatic (FF-NA) self-energies. The energy gaps computed at the PBE and PBE0 level of
theory, without electron-phonon interaction, are 4.016 and 6.040 eV respectively. All energies
are reported in eV.

T[K]
PBE(AHC) PBE(FF-NA) PBE0(AHC) PBE0(FF-NA)

ZPR Gap+ZPR ZPR Gap+ZPR ZPR Gap+ZPR ZPR Gap+ZPR
0 -0.288 3.727 -0.440 3.575 -0.290 5.750 -0.457 5.584

100 -0.288 3.727 -0.440 3.575 -0.290 5.750 -0.457 5.584
200 -0.288 3.727 -0.440 3.575 -0.290 5.750 -0.457 5.584
300 -0.292 3.723 -0.444 3.572 -0.292 5.748 -0.459 5.581
400 -0.302 3.714 -0.454 3.562 -0.300 5.740 -0.468 5.572
500 -0.317 3.699 -0.471 3.544 -0.313 5.727 -0.485 5.556
600 -0.336 3.679 -0.495 3.520 -0.331 5.710 -0.507 5.533

izaitons, we can see that the results computed at the PBE0 level of theory agree well with

the experimental measurements (see Figure 5.5 and Table 5.6). The renormalized indirect

gap computed with the PBE0 functional at 100 K is 5.75 eV when the AHC formalism is

used, while it is 5.584 eV when the self-consistent full frequency-dependent non-adiabatic

(FF-NA) self-energies are used. Compared to experiment 5.45 eV, the difference is only 0.3

and 0.13 eV with AHC and FF-NA, respectively. Thus, computing electron-phonon interac-

tions at the hybrid level of theory is a promising protocol to obtain results comparable to

experiments.

5.4 Conclusions

In conclusion, we implemented the calculatins of phonon and electron-phonon interaction

at the level of hybrid functionals by applying density matrix perturbation theory and by

solving the Liouville equation. Using this approach, we obtain phonon frequencies that

are comparable to those of the frozen-phonon approach and electron-phonon self-energies

comparable to those of the frozen-phonon and PIMD approaches. By using the Lanczos
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algorithm, we computed the full frequency-dependent non-adiabatic electron-phonon self-

energies beyond the AHC formalism.

We carried out a study of a set of small molecules with LDA, PBE, B3LYP and PBE0

functionals, and found it was necessary to analyze the frequency-dependent self-energies

to fully understand the electronic structure of these molecules. In addition, we conducted

calculations of the electronic structure of diamond with the PBE and PBE0 functionals,

and found that the PBE0 funtional noticeably improved the renormalized energy gap com-

pared to experimental measurements. Computing electron-phonon interactions at the hybrid

functional level of theory is a promising protocol to understand experiments and to obtain

accurate predictions of the electronic structure of materials, e.g., for materials discovery pur-

poses. The method proposed in this chapter can incorporate spin polarizations to study the

electron-phonon interactions in open-shell molecules, e.g., O2, and spin defects, e.g., NV−

in diamond and its full spin-polarized implementation is work in progress.
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CHAPTER 6

CONCLUSIONS AND OUTLOOK

This dissertation focuses on developing first principles methods to compute electron-electron

and electron-phonon interactions in solids and molecules.

We first developed an approach to generate approximate eigenvectors of dielectric matri-

ces by solving an approximate form of the Sternheimer equation. The approximate eigenvec-

tors were used in G0W0 calculations, which were verified by computing the vertical ionization

potentials and affinity energies of a set of small molecules. After verification, we computed

the energy levels of the C60 molecule and the band alignments at the silicon/silicon nitride

interface. Using our approximate basis, we found results in good agreement with those

obtained without approximations and we reduced the computational cost by 50%.

We evaluated the electron-phonon renormailization of electronic energy levels by general-

izing a method that combines the calculations of the electron-electron and electron-phonon

interactions in solids. We first verified our implementation with existing literature results

reported for diamond. Then we conducted a detailed study of the zero-point renormailiza-

tion in diamond with our method. To showcase our ability to perform calculations for large

scale systems, we computed the renormailization of defects in diamond. In addition, our

implementation allows one to perform calculations beyond the Allen-Heine-Cardona (AHC)

formalism, and we showed that going beyond the AHC approximation can significantly in-

fluence the results.

The method to combine electron-electron and electron-phonon interactions described in

Chapter 4 only introduced G0W0 corrections to energy levels in electron-phonon calculations,

but the single particle wavefuntions were not modified. To further improve our calculations,

we implemented the evaluation of electron-phonon interactions at the level of hybrid func-

tionals. In this way, not only did we change the eigenvalues used in the expression of the

electron-phonon interaction, but we also improved the single particle wavefunctions. To ver-
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ify our implementation, we compared our computed phonon frequencies with those of the

frozen-phonon approach, and compared the electron-phonon self-energies with those of the

frozen-phonon and path integral molecular dynamics approaches. Then we computed the

renormailizations due to electron-phonon interactions for a set of small molecules within the

AHC formalism and going beyond that formalism. We also realized that including the full

frequency-dependent self-energies is necessary for some of the molecules in order to obtain

accurate results.

Our method to compute phonons and electron-phonon interactions at the hybrid func-

tional level of theory, which solves the Liouville equation, can be extended to include spin

polarization and such an implementation is in progress.

In summary, predicting the electronic structure of molecules and solids is one of the most

fundamental problems in quantum chemistry, and to attack this problem it is necessary to

develop theoretical and numerical techniques to accurately describe both electron-electron

and electron-phonon interactions. This thesis is a contribution to such developments as well

as applications encompassing the electronic structure of solids and small molecules.

6.1 List of publications

1. Han Yang, Marco Govoni, and Giulia Galli. Improving the efficiency of G0W0 cal-

culations with approximate spectral decompositions of dielectric matrices. J. Chem.

Phys., 151(22):224102, 2019.

2. Arpan Kundu, Marco Govoni, Han Yang, Michele Ceriotti, Francois Gygi, and Giulia

Galli. Quantum Vibronic Effects on the Electronic Properties of Solid and Molecular

Carbon. Phys. Rev. Mat., 5(7):L070801, 2021.

3. Han Yang, Marco Govoni, Arpan Kundu and Giulia Galli. Combined first-principles

calculations of electron-electron and electron-phonon self-energies in condensed sys-
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tems. Submitted. arXiv:2106.13073, 2021

4. Han Yang, Arpan Kundu, Marco Govoni, and Giulia Galli. Electron-phonon interac-

tions at the level of hybrid functionals. In preparation.

6.2 Code development

1. Solving the kinetic Sternheimer equation to generate the kinetic PDEP basis as a part

of the WEST code.

2. Combining the calculations of GW approximation and electron-phonon interactions in

solids, with k and q sampling, as a part of the WEST code.

3. Electron-phonon interactions at the level of hybrid functional by solving the Liouville

equation, as a part of the WEST code.
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APPENDIX A

CALCULATION OF PHONONS WITHIN LINEAR RESPONSE

THEORY

A.1 Born-von Kármán boundary conditions

We describe a solid using Born-von Kármán periodic boundary conditions: we consider

wavefunctions to be periodic within a supercell (with volume Ωs), which contains Nc replicas

of the unit cell (with volume Ωc), so that Nc = Ωc
Ωs

. We use µ to label the index of the unit

cell within the supercell, and I to label the index of one atom within one unit cell. There

are Nat and Nc ×Nat in one unit cell and in the supercell, respectively.

A.2 Force constants and dynamical matrices

The total energy of a supercell, Etot({RµI}), is a function of the coordinates of Nc × Nat

ions. We displace all ions within the supercell by uµI , and proceed with the following Taylor

expansion

Etot({RµI + uµI}) = Etot({RµI}) +
∑
µIα

∂Etot

∂uµIα
uµIα (A.1)

+
1

2

∑
µIα,µ′Jβ

uµIα
∂2Etot

∂uµIα∂uµ′Jβ
uµ′Jβ , (A.2)

and the kinetic operator can be written as

K̂ = −1

2

∑
µIα

1

MI

∂2

∂u2
µIα

(A.3)

93



where xµIα is the displacement of I-th atom, in the µ-th cell, and along α Cartesian direction.

The displacements u satisfy the following Fourier transform relations,

uµIα =
1√
Nc

∑
q

uIαqe
iq·Rµ (A.4)

uIαq =
1√
Nc

∑
µ

uµIαe
−iq·Rµ (A.5)

where q is a wave vector and Nc is the number of unit cells in the supercell. uIαq is periodic

in terms of unit cells.

Using the equations above, we can also write the equations for their derivatives,

∂

∂uIαq
=

1√
Nc

∑
µ

eiq·Rµ
∂

∂uµIα
(A.6)

∂

∂uµIα
=

1√
Nc

∑
q

e−iq·Rµ
∂

∂uIαq
(A.7)

So, we can rewrite kinetic energy as

K̂ = −1

2

∑
Iαq

1

MI

∂2

∂u∗Iαq∂uIαq
(A.8)

and second derivative of potential energy as

∑
µIα,νJβ

uµIα
∂2Etot

∂uµIα∂uµ′Jβ
uµ′Jβ =

∑
Iα,Jβ

∑
q

u∗Iαq
∂2Etot

∂u∗Iαq∂uJβq
uJβq (A.9)

and we define

CIα,Jβ(q) =
∂2Etot

∂u∗Iαq∂uJβq
(A.10)
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the force constant matrix and

DIα,Jβ(q) =
1√

MIMJ
CIα,Jβ(q) (A.11)

the dynamical matrix. DIα,Jβ(q) is a q-dependent (3×Nat)× (3×Nat) matrix.

A.3 Derivatives of wavefunction, density and potential

Before discussing Sternheimer equation, we first analyze the periodicity of the derivatives of

wavefunction,

∂ψnk(r)

∂uIαq
= eik·r

∂φnk(r)

∂uIαq
(A.12)

where ψnk = φnke
+ik·r according to Bloch theorem and φnk is lattice periodic. However,

the derivative of φnk with respect to uIαq is not lattice periodic.

Lemma A.3.1. e−iq·r ∂φnk∂uIαq
is lattice periodic.

Proof.

∂φnk(r + Rµ′)

∂uIαq
e
−iq·(r+Rµ′) =

1√
Nc

∑
µ

∂φnk(r + Rµ′)

∂uµIα
eiq·Rµe

−iq·(r+Rµ′)

=
1√
Nc

∑
µ

∂φnk(r)

∂uµ−µ′,Iα
e
iq·(Rµ−Rµ′)e−iq·r

=
∂φnk(r)

∂uIαq
e−iq·r

(A.13)

Now, we define

∂φnk(r)

∂uIαq
= e+iq·r ∂̃φnk(r)

uIαq
(A.14)
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where ∂̃φnk/uIαq is a lattice periodic function. So, we have

∂ψnk(r)

∂uIαq
= ei(k+q)·r ∂̃φnk(r)

∂uIαq
. (A.15)

Using the same approach above, we define the derivatives of potentials

∂V (r)

∂uIαq
= e+iq·r ∂̃V (r)

∂uIαq
, (A.16)

where ∂̃V/∂uIαq is lattice periodic, and the derivatives of charge densities,

∂n(r)

∂uIαq
= eiq·r

∂̃n(r)

∂uIαq
, (A.17)

where ∂̃n(r)/∂uIαq is lattice periodic.

In addition, second derivatives of potentials
∂2V (r)

∂u∗Iαq∂uJβq
are lattice periodic. The poten-

tials above are generic; they can be external potential Vext or scf potential Vscf .

A.4 Sternheimer equation

Now, we derive Sternheimer equation to connect the derivatives of wavefunctions, potentials

and charge densities.

We start from Kohn-Sham equation,

(HKS − εnk)ψnk = 0, (A.18)

where HKS = −∇2/2 + Vscf is the Kohn-Sham Hamiltonian, εnk is the n-th energy level at
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k point and ψnk is the Kohn-Sham orbital. We expand the quantities in Taylor expansion,

Vscf = V 0
scf +

∑
Iα

∂Vscf

∂uIαq
uIαq

ψnk = ψ0
nk +

∑
Iα

ψnk
∂uIαq

uIαq.

(A.19)

where the quantities with superscipts 0 are those of the unperturbed system. Putting the

potentials and wavefunctions into the Kohn-Sham equation and keeping terms up to first

order in spirit of linear response theory, we have the Sternherimer’s equation

(HKS − εnk)
∂ψnk
∂uIαq

= − ∂Vscf

∂uIαq
ψnk (A.20)

The change of density is

∂n

∂uIαq
= 2

Nocc∑
µ

∑
k

[
Pc

∂ψ∗nk
∂uIαq

ψnk + ψ∗nkP
c ∂ψnk
∂uIαq

+ Pv
∂ψ∗nk
∂uIαq

ψnk + ψ∗nkP
v ∂ψnk
∂uIαq

]
,

(A.21)

where Pv and Pc are projection operators onto valence and conduction bands. The sum of

the two terms containing Pv is zero. So the change of density depends only on Pc∂ψ/∂u.

Now, we can rewrite Sternheimer equation,

(HKS − εnk)Pc ∂ψnk
∂uIαq

= −Pc ∂Vscf

∂uIαq
ψnk. (A.22)

This can be further simplified by using the lattice periodic functions introduced above. Note
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that,

Pc = 2

Nocc∑
n

∑
k′
ψnk′(r)ψ∗nk′(r

′)

= 2

Nocc∑
n

∑
k′
e+ik′·rφnk′(r)φnk′(r

′)e−ik
′·r′

(A.23)

and

∂ψnk
∂uIαq

= e+i(k+q)·r ∂̃φnk
∂uIαq

. (A.24)

So, only the component k′ = k + q gives nonzero contribution. This conclusion is also

applicable to the derivative of potential on the right hand side of Sternheimer equation. The

Sternheimer equation now reads

(HKS − εnk)e−i(k+q)·rPck+q
∂̃φnk
∂uIαq

= −ei(k+q)·rPck+q
∂̃vscf

∂uIαq
φnk (A.25)

So,

(HHS
k+q − εnk)Pck+q

∂̃φnk
∂uIαq

= −Pck+q
∂̃Vscf

∂uIαq
φnk, (A.26)

where HKS
k+q is the deflated Hamiltonian Pck+qH

KSPck+q.

It is worth noting that, we did not distinguish the lattice periodic wavefunction φnk from

ψnk in the main text for convenience, but the lattice periodic wavefunction should be used

in implementation.

The change of density is

∂̃n(r)

∂uIαq
= 2

Nocc∑
n

∑
k

[
φ∗nk(r)Pck+q

∂̃φnk(r)

∂uIαq
+ c.c.

]
(A.27)

where the prefactor 2 accounts for spins.
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A.5 Evaluation of force constants

Recall that the Born-Oppenheimer[16] approximation decomposes the Hamiltonian into the

electronic and ionic part, thus the force constants also consist the electronic and ionic part,

CIα,Jβ(q) = Cel
Iα,Jβ(q) + C ion

Iα,Jβ(q) (A.28)

The ionic part is trivial to evaluate and its expression can be found in the appendix of

Ref. 10.

The electronic part consists the following parts,

Cel
Iα,Jβ(q) = 2

Nocc∑
n

∑
k

[〈
∂ψnk
∂uIαq

∣∣∣∣∣ ∂Vext

∂uJβq

∣∣∣∣∣ψnk
〉

+ c.c.

+

〈
ψnk

∣∣∣∣∣ ∂2Vext

∂u∗Iαq∂Jβq

∣∣∣∣∣ψnk
〉] (A.29)

The last term is,

〈
ψnk

∣∣∣∣∣ ∂2Vext

∂u∗Iαq∂uJβq

∣∣∣∣∣ψnk
〉

= δIJ

〈
φnk

∣∣∣∣∣ ∂2Vext

∂u∗Iα(q = 0)∂uJβ(q = 0)

∣∣∣∣∣φnk
〉

(A.30)

and its expression can also be found in the appendix of Ref. 10. This quantity remains the

same for all q points.

The rest term requires more effort,

CIα,Jβ(q) ∝

〈
∂ψnk
∂uIαq

∣∣∣∣∣ ∂Vext

∂uJβq

∣∣∣∣∣ψnk
〉
, (A.31)

and it is the main topic of Chapter 4 and Chapter 5.

99



REFERENCES

[1] C. Adamo and V. Barone. Toward reliable density functional methods without ad-
justable parameters: The PBE0 model. J. Chem. Phys., 110(13):6158–6170, Apr.
1999.

[2] S. L. Adler. Quantum theory of the dielectric constant in real solids. Phys. Rev.,
126(2):413, 1962.

[3] P. B. Allen and M. Cardona. Theory of the temperature dependence of the direct gap
of germanium. Phys. Rev. B, 23(4):1495, Feb. 1981.

[4] P. B. Allen and V. Heine. Theory of the temperature dependence of electronic band
structures. J. Phys. C: Solid State Phys., 9(12):2305, June 1976.

[5] P. W. Anderson. More is different. Science, 177(4047):393–396, Aug. 1972.
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[7] G. Antonius, S. Poncé, E. Lantagne-Hurtubise, G. Auclair, X. Gonze, and M. Côté.
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[58] D. R. Hamann, M. Schlüter, and C. Chiang. Norm-conserving pseudopotentials. Phys.
Rev. Lett., 43(20):1494–1497, Nov. 1979.

[59] D. R. Hartree. The wave mechanics of an atom with a non-coulomb central field. part
II. some results and discussion. Math. Proc. Cambridge Philos. Soc., 24(1):111–132,
Jan. 1928.

[60] D. R. Hartree and W. Hartree. Self-consistent field, with exchange, for beryllium.
Proc. R. Soc. London A - Math Phys. Sci., 150(869):9–33, May 1935.

[61] L. Hedin. New method for calculating the one-particle green's function with application
to the electron-gas problem. Phys. Rev., 139(3A):A796–A823, Aug. 1965.

[62] M. Higuchi, S. Sugawa, E. Ikenaga, J. Ushio, H. Nohira, T. Maruizumi, A. Teramoto,
T. Ohmi, and T. Hattori. Subnitride and valence band offset at Si3N4/Si interface
formed using nitrogen-hydrogen radicals. Appl. Phys. Lett., 90(12):123114, 2007.

[63] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136(3B):B864–
B871, Nov. 1964.

[64] M. S. Hybertsen and S. G. Louie. Electron correlation and the band gap in ionic
crystals. Phys. Rev. B, 32:7005–7008, Nov. 1985.

[65] M. S. Hybertsen and S. G. Louie. First-principles theory of quasiparticles: Calculation
of band gaps in semiconductors and insulators. Phys. Rev. Lett., 55(13):1418–1421,
Sept. 1985.

[66] M. S. Hybertsen and S. G. Louie. Electron correlation in semiconductors and insulators:
Band gaps and quasiparticle energies. Phys. Rev. B, 34(8):5390, 1986.

[67] E. R. D. J. III. NIST Computational Chemistry Comparison and Benchmark Database,
NIST Standard Reference Database Number 101, Release 18, 2016.

[68] F. Karsai, M. Engel, E. Flage-Larsen, and G. Kresse. Electron–phonon coupling in
semiconductors within the gw approximation. New J. Phys., 20(12):123008, 2018.

[69] J. W. Keister, J. E. Rowe, J. J. Kolodziej, H. Niimi, T. E. Madey, and G. Lucovsky.
Band offsets for ultrathin SiO2 and Si3N4 films on Si(111) and Si(100) from photoemis-
sion spectroscopy. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process.,
Meas., Phenom., 17(4):1831–1835, 1999.

104



[70] C. Kittel. Introduction to solid state physics. Wiley, 2005.

[71] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation
effects. Phys. Rev., 140(4A):A1133–A1138, Nov. 1965.

[72] A. Kundu, M. Govoni, H. Yang, M. Ceriotti, F. Gygi, and G. Galli. Quantum vibronic
effects on the electronic properties of solid and molecular carbon. Phys. Rev. Materials,
5(7):L070801, July 2021.

[73] H. Lambert and F. Giustino. Ab initioSternheimer-GW method for quasiparticle cal-
culations using plane waves. Phys. Rev. B, 88(7):075117, Aug. 2013.

[74] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. J. Res. Natl. Bur. Stand., 45(4):255, Oct. 1950.

[75] Z. Li, G. Antonius, M. Wu, H. Felipe, and S. G. Louie. Electron-phonon coupling
from ab initio linear-response theory within the gw method: Correlation-enhanced
interactions and superconductivity in Ba1−xKxBiO3. Phys. Rev. Lett., 122(18):186402,
May 2019.

[76] Z. Li, M. Wu, Y.-H. Chan, and S. G. Louie. Unmasking the origin of kinks in the
photoemission spectra of cuprate superconductors. Phys. Rev. Lett., 126(14):146401,
Apr. 2021.

[77] D. L. Lichtenberger, K. W. Nebesny, C. D. Ray, D. R. Huffman, and L. D. Lamb.
Valence and core photoelectron spectroscopy of c60, buckminsterfullerene. Chem. Phys.
Lett., 176(2):203–208, Jan. 1991.

[78] V. L. Lignères and E. A. Carter. An introduction to orbital-free density functional
theory. In Handbook of Materials Modeling, pages 137–148. Springer Netherlands,
2005.

[79] J. Lindhard. On the properties of a gas of charged particles. Dan. Vid. Selsk Mat.-Fys.
Medd., 28:8, 1954.

[80] E. P. J. Linstrom and W. G. Mallard. NIST Chemistry WebBook, NIST Standard Ref-
erence Database Number 69, National Institute of Standards and Technology, Gaithers-
burg MD, 20899.

[81] S. Logothetidis, J. Petalas, H. Polatoglou, and D. Fuchs. Origin and temperature
dependence of the first direct gap of diamond. Phys. Rev. B, 46(8):4483, Aug. 1992.

[82] D. Lu, F. Gygi, and G. Galli. Dielectric properties of ice and liquid water from first-
principles calculations. Phys. Rev. Lett., 100:147601, Apr. 2008.

[83] D. Lu, Y. Li, D. Rocca, and G. Galli. Ab initio calculation of van der waals bonded
molecular crystals. Phys. Rev. Lett., 102:206411, May 2009.

105



[84] H. Ma, M. Govoni, F. Gygi, and G. Galli. A finite-field approach for gw calculations
beyond the random phase approximation. J. Chem. Theory Comput., 15(1):154–164,
Dec. 2018.

[85] J. Ma, A. S. Nissimagoudar, and W. Li. First-principles study of electron and hole
mobilities of si and GaAs. Phys. Rev. B, 97(4):045201, Jan. 2018.

[86] E. Maggio, P. Liu, M. J. van Setten, and G. Kresse. GW 100: a plane wave perspective
for small molecules. J. Chem. Theory Comput., 13(2):635–648, 2017.

[87] G. D. Mahan. Many-Particle Physics. Springer US, Oct. 2000.

[88] A. A. Maradudin and S. H. Vosko. Symmetry properties of the normal vibrations of a
crystal. Rev. Mod. Phys., 40(1):1–37, Jan. 1968.
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S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. S. Tsirkin, M. Wierzbowska, N. Marzari,
D. Vanderbilt, I. Souza, A. A. Mostofi, and J. R. Yates. Wannier90 as a community
code: new features and applications. J. Phys.: Condens. Matter, 32(16):165902, Jan.
2020.
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[111] S. Poncé, E. Margine, C. Verdi, and F. Giustino. EPW: Electron–phonon coupling,
transport and superconducting properties using maximally localized wannier functions.
Comput. Phys. Commun., 209:116–133, Dec. 2016.

[112] X. Qian, P. Umari, and N. Marzari. First-principles investigation of organic photo-
voltaic materialsC60, c70, [c60]PCBM, and bis-[c60]PCBMusing a many-bodyG0w0-
lanczos approach. Phys. Rev. B, 91(24):245105, June 2015.

[113] R. Ramı́rez, C. P. Herrero, and E. R. Hernández. Path-integral molecular dynamics
simulation of diamond. Phys. Rev. B, 73(24):245202, June 2006.

[114] R. Ramı́rez, C. P. Herrero, E. R. Hernández, and M. Cardona. Path-integral molecular
dynamics simulation of3c-SiC. Phys. Rev. B, 77(4):045210, Jan. 2008.

[115] D. Rocca. Time-dependent density functional perturbation theory: new algorithms with
applications to molecular spectra. PhD thesis, Scuola Internazionale Superiore di Studi
Avanzati, Oct. 2007.

[116] D. Rocca. Random-phase approximation correlation energies from lanczos chains and
an optimal basis set: Theory and applications to the benzene dimer. J. Chem. Phys.,
140(18):18A501, May 2014.

[117] D. Rocca, R. Gebauer, Y. Saad, and S. Baroni. Turbo charging time-dependent density-
functional theory with lanczos chains. J. Chem. Phys., 128(15):154105, Apr. 2008.

[118] D. Rocca, D. Lu, and G. Galli. Ab initio calculations of optical absorption spectra:
Solution of the bethe–salpeter equation within density matrix perturbation theory. J.
Chem. Phys., 133(16):164109, Oct. 2010.

[119] D. Rocca, Y. Ping, R. Gebauer, and G. Galli. Solution of the bethe-salpeter equation
without empty electronic states: Application to the absorption spectra of bulk systems.
Phys. Rev. B, 85(4):045116, Jan. 2012.

[120] M. Rohlfing and S. G. Louie. Electron-hole excitations and optical spectra from first
principles. Phys. Rev. B, 62(8):4927–4944, Aug. 2000.

[121] G. Samsonidze, M. Jain, J. Deslippe, M. L. Cohen, and S. G. Louie. Simple ap-
proximate physical orbitals for GW quasiparticle calculations. Phys. Rev. Lett.,
107(18):186404, 2011.

[122] P. Scherpelz, M. Govoni, I. Hamada, and G. Galli. Implementation and validation of
fully relativistic GW calculations: Spin–orbit coupling in molecules, nanocrystals, and
solids. J. Chem. Theory Comput., 12(8):3523–3544, July 2016.

[123] M. Schlipf and F. Gygi. Optimization algorithm for the generation of oncv pseudopo-
tentials. Comput. Phys. Commun., 196:36–44, 2015.

108



[124] E. Schrödinger. An undulatory theory of the mechanics of atoms and molecules. Phys.
Rev., 28(6):1049–1070, Dec. 1926.

[125] P. Schwerdtfeger. The pseudopotential approximation in electronic structure theory.
ChemPhysChem, 12(17):3143–3155, Aug. 2011.

[126] H. Shang and J. Yang. Capturing the electron–phonon renormalization in molecules
from first-principles. J. Phys. Chem. A, 125(12):2682–2689, Mar. 2021.

[127] C. D. Sherrill and H. F. Schaefer. The configuration interaction method: Advances
in highly correlated approaches. In Advances in Quantum Chemistry, pages 143–269.
Elsevier, 1999.

[128] J. H. Skone, M. Govoni, and G. Galli. Self-consistent hybrid functional for condensed
systems. Phys. Rev. B, 89(19):195112, May 2014.

[129] J. H. Skone, M. Govoni, and G. Galli. Nonempirical range-separated hybrid functionals
for solids and molecules. Phys. Rev. B, 93(23):235106, June 2016.

[130] J. C. Slater. The theory of complex spectra. Phys. Rev., 34(10):1293–1322, Nov. 1929.

[131] J. Soininen, J. Rehr, and E. L. Shirley. Electron self-energy calculation using a general
multi-pole approximation. J. Phys.: Condens. Matter, 15(17):2573, 2003.

[132] R. Sternheimer. Electronic polarizabilities of ions from the hartree-fock wave functions.
Phys. Rev., 96(4):951, 1954.

[133] G. Strinati, H. Mattausch, and W. Hanke. Dynamical correlation effects on the quasi-
particle bloch states of a covalent crystal. Phys. Rev. Lett., 45(4):290, 1980.

[134] G. Strinati, H. Mattausch, and W. Hanke. Dynamical aspects of correlation corrections
in a covalent crystal. Phys. Rev. B, 25(4):2867, 1982.

[135] D. A. Strubbe, L. Lehtovaara, A. Rubio, M. A. L. Marques, and S. G. Louie. Re-
sponse functions in TDDFT: Concepts and implementation. In Fundamentals of
Time-Dependent Density Functional Theory, pages 139–166. Springer Berlin Heidel-
berg, 2012.

[136] R. Sundararaman and Y. Ping. First-principles electrostatic potentials for reliable
alignment at interfaces and defects. J. Chem. Phys., 146(10):104109, 2017.

[137] L. H. Thomas. The calculation of atomic fields. Math. Proc. Cambridge Philos. Soc.,
23(5):542–548, Jan. 1927.

[138] A. Tkatchenko and M. Scheffler. Accurate molecular van der waals interactions
from ground-state electron density and free-atom reference data. Phys. Rev. Lett.,
102(7):073005, Feb. 2009.

109



[139] N. Troullier and J. L. Martins. Efficient pseudopotentials for plane-wave calculations.
Phys. Rev. B, 43(3):1993, Jan. 1991.

[140] C. G. Van de Walle and R. M. Martin. Theoretical study of band offsets at semicon-
ductor interfaces. Phys. Rev. B, 35:8154–8165, May 1987.

[141] M. van Schilfgaarde, T. Kotani, and S. Faleev. Quasiparticle self-consistent GW theory.
Phys. Rev. Lett., 96(22):226402, June 2006.

[142] M. J. van Setten, F. Caruso, S. Sharifzadeh, X. Ren, M. Scheffler, F. Liu, J. Lischner,
L. Lin, J. R. Deslippe, S. G. Louie, C. Yang, F. Weigend, J. B. Neaton, F. Evers,
and P. Rinke. GW100: Benchmarking g0w0 for molecular systems. J. Chem. Theory
Comput., 11(12):5665–5687, Nov. 2015.

[143] H. F. Wilson, F. Gygi, and G. Galli. Efficient iterative method for calculations of
dielectric matrices. Phys. Rev. B, 78(11):113303, Sept. 2008.

[144] H. F. Wilson, D. Lu, F. Gygi, and G. Galli. Iterative calculations of dielectric eigenvalue
spectra. Phys. Rev. B, 79(24):245106, June 2009.

[145] N. Wiser. Dielectric constant with local field effects included. Phys. Rev., 129(1):62,
1963.

[146] T. Yamasaki, C. Kaneta, T. Uchiyama, T. Uda, and K. Terakura. Geometric and
electronic structures of SiO2/Si(001) interfaces. Phys. Rev. B, 63:115314, Mar. 2001.

[147] H. Yang, M. Govoni, and G. Galli. Improving the efficiency of g0w0 calculations
with approximate spectral decompositions of dielectric matrices. J. Chem. Phys.,
151(22):224102, Dec. 2019.

[148] H. Yang, M. Govoni, A. Kundu, and G. Galli. Combined first-principles calculations
of electron-electron and electron-phonon self-energies in condensed systems, 2021.

[149] J.-J. Zhou, J. Park, I.-T. Lu, I. Maliyov, X. Tong, and M. Bernardi. Perturbo: A soft-
ware package for ab initio electron–phonon interactions, charge transport and ultrafast
dynamics. Comput. Phys. Commun., 264:107970, July 2021.

110


	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	Theoretical foundations
	The electronic structure problem
	Density functional theory (DFT)
	The Kohn-Sham equations
	Approximations to the exchange-correlation functionals
	Solution of the Kohn-Sham equations using the planewave basis sets and pseudopotentials

	Many-body perturbation theory
	Hedin's equations
	GW approximation
	Low-rank decomposition of the irreducible polarizibility

	Density functional perturbation theory (DFPT)
	Electron-phonon interaction from DFPT
	Electron-phonon interaction from non-perturbative methods
	Density matrix perturbation theory (DMPT)

	Improving the efficiency of G0W0 calculations with approximate spectral decompositions of dielectric matrices
	Introduction
	Methodology
	Validation and results
	Conclusion

	Combined first-principles calculations of electron-electron and electron-phonon self-energies in condensed systems
	Introduction
	Methodology
	Dynamical and electron-phonon coupling matrices
	Electron-phonon self-energy

	Verification protocol
	Large scale calculations: zero point renormalization in defective solids
	Conclusions

	Electron-phonon interaction using hybrid functionals
	Introduction
	Methodology
	Results
	Verification of the method
	Renormalization of energy gaps in small molecules
	Renormalization of the energy gap of diamond

	Conclusions

	Conclusions and Outlook
	List of publications
	Code development

	Calculation of phonons within linear response theory
	Born-von Kármán boundary conditions
	Force constants and dynamical matrices
	Derivatives of wavefunction, density and potential
	Sternheimer equation
	Evaluation of force constants

	References

