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ABSTRACT

Numerical simulations based on the fundamental laws of quantum mechanics lead to in-
valuable insights into the microscopic behavior of molecules and materials. In the past
decades, quantum mechanical simulations are becoming an increasingly important compo-
nent for chemical and materials science and industry. In this dissertation, I will present
several advancements in the development and application of quantum mechanical methods
for first-principles simulations of molecular and condensed systems.

First, I will present a finite-field algorithm for evaluating density response functions
based on density functional theory calculations under finite electric fields. The finite-field
algorithm enables accurate many-body perturbation theory calculations beyond the random
phase approximation. Based on the finite-field approach, we demonstrated GW and Bethe-
Salpeter equation calculations of excitation energies of molecules and materials beyond the
random phase approximation.

Next, I will present a quantum embedding theory for the study of strongly-correlated
electronic states in condensed systems. The quantum embedding theory is capable of con-
structing a simple, effective model for a selected part of a physical system, where the rest
of the system acts as a dielectric screening media that renormalizes the electron-electron
interactions in the effective model. We demonstrated quantum simulations of effective mod-
els using both classical and quantum computers. This development helps bridge the gap
between the systems sizes required to study realistic materials science problems and those
that can be tackled with the resources of near-term quantum computers.

In addition to electronic properties, I will present a novel approach to predict certain spin
properties (e.g. the hyperfine coupling) for paramagnetic systems using density functional
theory calculations on finite-element basis sets. We demonstrated all-electron finite-element
DFT calculations of spin properties for both finite and periodic systems. We showed that the
results of such calculations can be systematically converged with respect to the basis set size.

This development enables robust all-electron calculations of spin properties for paramagnetic
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molecules and materials.

Finally, T will present several applications of first-principles methods for the study of
spin-defects in semiconductors. Spin-defects in semiconductors are promising physical re-
alizations of quantum bits for quantum information technologies. We present a number of
theoretical predictions on various properties of spin-defects that are important for their op-
eration as quantum bits. In particular, we applied density functional theory and many-body
perturbation theory to predict the stability and excitation energies of several novel spin-
defects in silicon carbide and aluminum nitride; we applied the quantum embedding theory
to predict the strongly-correlated excited states of group-4 vacancy centers in diamond; we
applied DFT and group theory to construct a microscopic theory for spin-phonon coupling of
divacancy defects in silicon carbide; we performed quantum dynamics simulations using the
cluster correlation expansion method to predict the coherence time of divacancy spins in the
environment of other electron spins and nuclear spins. These studies greatly expanded our
understanding of various physical properties of existing spin-defects as well as novel ones,
and provided important guidance for the experimental realization and manipulation of these

spin-defects as solid-state quantum bits.
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CHAPTER 1
INTRODUCTION

The law of quantum mechanics governs all the microscopic processes in nature. The quan-
tum mechanical description of electromagnetic interactions among electrons and nuclei lays
the foundation for the human understanding of the world on the molecular level. Thanks
to a century of exploration by numerous pioneers, great progress has been made in both
theoretical understanding and numerical simulation of molecules and materials using quan-
tum mechanics [146, 191, 133, 237]. Today, quantum mechanical theories and simulations are
playing an increasingly important role in the discovery and design of molecules and materials
for energy conversion, healthcare, catalysis and quantum technologies.

Many important chemical and materials science problems require an accurate description
of electronic states and electronic processes. The first theme of this dissertation is the
development of methods and algorithms for electronic structure simulations. The microscopic
description of electrons in the electric field of nuclei is given by the many-electron Schrodinger
equation. In principle, if the many-electron Schrodinger equation can be solved, one can
predict numerous important properties of molecules and materials. Unfortunately, the direct
solution of many-electron Schrodinger equation is computationally very demanding as the
electronic wavefunction becomes exponentially more complex as the system size increases
(the curse of dimensionality). A frequently quoted sentence from P. A. M. Dirac says that
the fundamental laws necessary for the mathematical treatment of a large part of physics and
the whole of chemistry are thus completely known, and the difficulty lies only in the fact that
application of these laws leads to equations that are too complex to be solved.

At first sight, the development of electronic structure theory is nothing but finding nu-
merical tricks to tackle the equations that are too complex to be solved. This is far from the
complete picture. For simulations of realistic systems, one almost always needs to introduce
a certain number of approximations to reduce the computational complexity, and many im-

portant approximations are based on physical insights of the physical and chemical process
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instead of bare numerical considerations. Furthermore, oftentimes one needs to first cast
the many-electron Schrodinger equation into a dramatically different form, based on which
one can devise smart approximations that greatly reduce the computational cost without a
significant sacrifice of accuracy. Such reformulation requires deep insight into the collective
motion of interacting electrons, and is far from obvious if one merely views the electronic
structure problem as finding numerical solutions to complex equations.

Two such reformulations are of particular relevance to this work, namely the density
functional theory (DFT) [146, 191] and the many-electron perturbation theory (MBPT)
[133], summarized in Chapter 2. In the Kohn-Sham formulation of DFT, the many-electron
Schrodinger equation is transformed into the Schrodinger equation of non-interacting elec-
trons (Kohn-Sham equations). The past decades witnessed an enormous success of DFT
in the prediction of various properties of molecules and materials, especially ground state
properties. Despite great effort, DFT is generally considered to be less accurate for predict-
ing excited state properties. MBPT is based on a refomulation of the Schrodinger equation
using the language of Green’s function, and has been successfully applied to predict excited
state properties of molecular and condensed systems, often achieving higher accuracy than
DFT. Unfortunately, MBPT is computationally more expensive than DFT, limiting its ap-
plicability to large systems. Furthermore, most MBPT calculations are performed with the
so-called random-phase approximation (RPA), which limits the accuracy of the description
of dielectric screening between electrons. In Chapter 3, we represent a novel approach to
compute dielectric screening by performing DFT calculations in finite electric fields, and we
apply the finite-field approach to perform efficient MBPT calculations beyond the RPA. In
addition to excitation energies, another outstanding challenge for DFT is the description of
strongly-correlated electronic states, which are states that cannot be represented by single
determinants of one-electron orbitals. In Chapter 4, we describe a quantum embedding the-
ory based on the development in Chapter 3, which is capable of constructing effective models

of the strongly-correlated part of a physical system. The effective model can be solved by a



high level of theory such as exact diagonalization, with the rest of the system treated with
a lower level of theory such as DFT.

Most electronic structure calculations are performed within two fundamental approxima-
tions: nonrelativistic approximation and Born-Oppenheimer approximation. The prediction
of certain molecular or materials properties requires going beyond the two fundamental ap-
proximations. For instance, certain spin properties of magnetic molecules and materials
such as the hyperfine coupling involve magnetic interactions missing in the nonrelativistic
Hamiltonian. In Chapter 5, we describe a finite element DFT approach for computing such
spin properties of magnetic molecules and materials. Another example is charge transport
processes in molecules and materials. Charge transport in many systems involves transitions
(hopping) between electronic states that are not eigenstates of the Born-Oppenheimer elec-
tronic Hamiltonian. In Appendix B.2, we present an implementation of constrained density
functional theory (CDFT) for first-principles calculation of charge transport properties.

The second theme of this dissertation is the first-principles studies of materials for quan-
tum information science (QIS). QIS involves measuring, processing and communicating in-
formation by exploiting quantum mechanical phenomena such as superposition and entan-
glement. QIS represents one of the most ambitious human endeavors in the control and
manipulation of quantum mechanical objects on the molecular level, and has the poten-
tial to fundamentally revolutionize information technologies. The greatest impact of QIS is
likely to be seen first in sensing and metrology, then in communication and simulation, and
finally digital computing [332]. Currently, several different types of quantum systems are
being explored to act as quantum bits (qubits), the basic units that carry quantum infor-
mation. Popular realizations include superconducting circuits, trapped ions, semiconductor
spin-defects, quantum dots, etc. Each realization has its unique advantages and challenges,
and different types of qubits can be coupled to construct hybrid quantum devices with more
sophisticated functionalities. In this work, we focus on semiconductor spin-defects, which

feature long coherence time and allow for room temperature operation. In Chapter 6 we



present first-principles simulations of spin-defects in diamond, silicon carbide and other host
materials. We investigated their ground and excited state electronic structure, as well as
their spin properties and quantum coherence dynamics.

The two themes mentioned above are deeply interwoven in several ways. First, the de-
velopment of novel electronic structure methods and algorithms facilitates the theoretical
interpretation of experimental measurements and the computational discovery of novel spin
qubits. Second, the simulation of spin-defects provides several challenges for current elec-
tronic structure methods and motivates interesting theoretical developments. For instance,
the development of the finite-element approach in Chapter 5 is motivated by the study of
spin-defects, although it is general and can be applied to other systems as well. Finally, the
development of materials for QIS can benefit the electronic structure theory in a more fun-
damental way. One of the most exciting and challenging areas in QIS is the development of
quantum computers, which promise to solve certain tasks exponentially faster than classical
computers. The simulation of interacting electrons in molecules and materials is expected
to be one of the first areas that will benefit from quantum computation. In Chapter 4, we
show proof-of-principle simulations of spin-defects using quantum computers, demonstrating
how quantum embedding theory helps quantum computers to tackle complex chemical and

materials science problems.



CHAPTER 2
THEORETICAL BACKGROUND

2.1 The electronic structure problem

The microscopic behavior of molecules and materials are governed by interactions among
electrons and nuclei. The electronic structure theories focus on the motion of electrons under
the influence of nuclei, and are usually formulated within two fundamental approximations:
the nonreletivistic approximation and the Born-Oppenheimer approximation. Under the
nonreletivistic approximation, electrons and nuclei interacts through Coulomb interaction,

and is governed by the well-known Hamiltonian:
1 Zr ZiZy 1
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where the five terms represent nuclear kinetic energy operator, electron kinetic energy oper-
ator, electron-nuclei attraction, nuclei-nuclei repulsion and electron-electron repulsion; I, J
and 7, j index nuclei and electrons, respectively; R and r represent nuclear and electron co-
ordinate; M and Z represent nuclear mass and charge. The nonreletivistic approximation
is generally a good approximation for light elements, where the velocity of electrons are
much lower than the speed of light. However, the nonreletivistic approximation neglects
the magnetic interactions among electrons and nuclear spins, which are important for the
determination of certain spin properties of magnetic molecules and materials. In Chapter 5
we will present a formalism to compute spin properties in a perturbative manner starting
from nonrelativistic finite-element DF'T calculations.

Based on Eq. 2.1, the Born-Oppenheimer approximation is usually applied to separate

the degrees of freedom of electrons and nuclei. Under the Born-Oppenheimer approximation,



the electronic motion is governed by the time-independent Schrodinger equation

where Ep and W, represents the energy and wavefunction of the N th eigenstates of the

Born-Oppenheimer electronic Hamiltonian

2 212y
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Solving Eq. 2.2 is the central task for nonrelativistic electronic structure theory.

The eigenstates Wy are usually called adiabatic states. He depends parametrically on
nuclear coordinates, and the energy E as a function of nuclear coordinates give rise to the
N adiabatic potential energy surface. Within the Born-Oppenheimer approximation, nu-
clei move on adiabatic potential energy surfaces. However, for the study of certain processes
such as charge transfer, it is sometimes desirable to compute the so-called diabatic states,
which are states that retain the character as nuclei move. Diabatic states are generally not
eigenstates of the Born-Oppenheimer electronic Hamiltonian and are therefore not directly
accessible from common electronic structure calculations. In Section B.2, we describe an
implementation of the constrained density functional theory for first-principles calculations
of diabatic states and charge transfer rates.

In most electronic structure calculations, Eq. 2.2 is solved using a discrete one-electron
basis set. In the second quantized form, the Born-Oppenheimer electronic Hamiltonian reads

(neglecting the constant nuclear repulsion term)

He = Ztm a;a; +vakla a;ajay, (2.4)
17kl
where a' and a are creation and annihilation operators on given single-particle basis state

labeled by 1, j, k,[; ¢;; represents the matrix elements of kinetic and electron-nuclei intera-
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tions; Vj;p (known as electron repulsion integrals) represents matrix elements of Coulomb
interaction between electrons.

As mentioned in Chapter 1, the exact solution of eigenvalues and eigenstates of Hgj
grows exponentially as the system size increases, and it is often desirable to reformulate the
problem into a form where approximations can be made to facilitate practical calculations.
In the following two sections of this chapter, we describe two such reformulations, namely
the density functional theory (DFT) and many-body perturbation theory (MBPT). Both
DFT and MBPT have been applied to predict various ground and excited state properties of
molecules and materials, and is particularly successful for systems where the electron corre-
lations are weak. For systems exhibiting strongly-correlated electrons, accurate calculations
become very challenging for DF'T and MBPT, In Chapter 4 we describe a quantum embed-
ding theory to construct effective Hamiltonians similar in form to Eq. 2.4, but acts only
on the strongly-correlated part of the system. The effective Hamiltonian can then be solved
with quantum chemistry methods such as full configuration interaction, or more ambitiously,

with quantum computation.

2.2 Density functional theory

DFT is one of the most successful electronic structure theories so far. The seminal work by
Hohenberg and Kohn demonstrates [146] that all the ground and excited state properties
of a system of interacting electrons are completely determined by its ground state electron
density, and that the ground state electron density can be obtained by minimizing the total

energy functional:

Eln] = / Vst (F)n(r)dr + Fln] (2.5)

where F' is a universal functional of electron density n. Most DFT calculations performed

today are based on the Kohn-Sham scheme [191], which casts the solution of Eq. into the



solution of the Kohn-Sham equation
H¥Sy; = g1, (2.6)

The Kohn-Sham equation is a Schrodinger equation of independent electrons governed

by the Kohn-Sham Hamiltonian HXS
HSS =T 4 Vi, + Vi + Vie (2.7)

where T' denote kinetic energy operator and Vi,,, Vg and Vi denote ionic, Hartree and
exchange-correlation potential, respectively. The exchange-correlation potential Vi is de-
fined as the functional derivative of the so-called exchange-correlation functional Fy. with

respect to electron density n

dExc[n]

Ve = on

(2.8)

The exact form of exchange-correlation functional Fy. is unknown, and approximate
forms are required to perform practical DFT calculations. The development of exchange-
correlation functional is one of the central topics for DFT research. In the past decades,
more than 200 approximate forms of Fy. has been proposed, which can be roughly classified
using the Jacob’s ladder for DFT. The first rung of Jacob’s ladder denotes the local density
approximation (LDA), where Ex is a functional of electron density only. Higher rungs of
Jacob’s ladder corresponds to more sophisticated functionals where Fy. depends also on
derivatives of electron density and contains nonlocal terms from wavefunction theory.

It is often stated that DFT is a mean-field theory, and this thesis also mentioned this
statement in several places. Here, I hope to emphasize that this statement needs to be inter-
preted with caution. The Kohn-Sham formulation of DFT solves the Kohn-Sham equation

that describes the Kohn-Sham reference system of noninteracting electrons, and yields the



exact energy and electron density of the system if the exact exchange-correlation functional
is used. The Kohn-Sham reference system (hence the Kohn-Sham orbitals and Kohn-Sham
eigenvalues) does not have direct physical meaning. In practical calculations, one often as-
sociates Kohn-Sham eigenvalues and their differences to various excitation energies of the
physical system, which in many cases lead to reasonable predictions and provide valuable
insights to the physical system. However, such association is not theoretically rigorous, and
by using such association one is attaching physical meaning to the mean-field solutions of
the Kohn-Sham reference system. Therefore, in some sense it would be more accurate to
say that DFT is often used as a mean-field theory, as one assumes that the excitation ener-
gies and wavefunction of Kohn-Sham systems are reasonable approximations to those of real

systems.

2.3 Many-body perturbation theory

MBPT is a mathematical reformulation of the Schrodinger equation of interacting electrons
using Green’s functions. The seminal paper by Hedin [133] presents a set of equations
that connects five important fundamental quantities of a physical system including the one-
electron Green’s function G, self-energy 3, screened Coulomb interaction W, irreducible

polarizability P and vertex function I

3(1,2) = iG(1, )W (1T, 3)T'(4,2;3), (2.9)

W(1,2) = ve(1,2) +ve(1,3)P(3, )W (4,2), (2.10)

P(1,2) = —iG(1,3)G(4,1)T(3,4,2), (2.11)

P(1,2:3) = 6(1,2)(1,3) + %G@, 6)G(7,5)1(6.7.3). (2.12)

G(1,2) = G°(1,2) + GY(1,3)%(3, )G (4, 2). (2.13)



where Gy denotes the one-electron Green’s function of independent electrons; v, denotes the
(bare) Coulomb interaction; indices 1, 2, ... are shorthand notations for space-time points
(r1,t1), (ro,t9), ...; indices with bars are integrated over.

Exact solution of Hedin’s equation yield the exact one-electron Green’s function, which
encodes the excitation energies of charge excitations (electron addition or removal) of the
physical system. Unfortunately, in practical calculations it is difficult to solve the entire set
of Hedin’s equations in a self-consistent manner. In the famous GW approximation, the
vertex function I' is assumed to be a delta function (random phase approximation, RPA),

and the self-energy is approximated as

¥(1,2) =iG(1,2)W (17, 2) (2.14)

GW calculations have been successfully applied to predict bandgaps of semiconductors.
Most practical GW calculations are performed in a perturbative manner (GoWy) on top of
a mean-field description of the system. If Kohn-Sham eigenvalues and orbitals from DFT
calculations are used as the starting point for a GoWj calculation, the charged excitation
energies (quasiparticle energies 6QP) of a system can be computed by adding perturbative

corrections to the Kohn-Sham eigenvalues

W g + <E(€QP) — Vie) (2.15)

7

The RPA assumed in most GW calculations equates the irreducible polarizability P to
that of independent electrons, which is the density response function of the Kohn-Sham sys-
tem (commonly denoted as yq) if a DFT starting point is used. This neglects the exchange-
correlation effects in the description of dielectric screening. Section 3.1 presents a finite-field
algorithm for evaluating density response functions and dielectric screening effects beyond

the RPA.

In addition to charged excitations, MBPT can also predict neutral excitation energies

10



through the solution of the Bethe-Salpeter equation (BSE) for two-electron Green’s functions.

Section 3.2 presents the application of the finite-field algorithm to the solution of BSE.
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CHAPTER 3
FINITE FIELD ALGORITHM FOR MANY-BODY
PERTURBATION THEORY

As briefly summarized in the previous chapter, many-body perturbation theory (MBPT) is a
Green’s function theory for electronic excitations of condensed and molecular systems. The
two most common types of MBPT calculations are the GW calculation and Bethe-Salpeter
equation (BSE) calculation, which are capable of predicting charged excitation energies and
neutral excitation energies of the physical system, respectively. MBPT calculations require
a microscopic description of the dielectric screening effect, which is characterized by density
response functions. As mentioned earlier, most MBPT calculations assume the random
phase approximation (RPA) when evaluating density response functions, which neglects
exchange-correlation effects in the dielectric screening. In Section 3.1 we describe a finite-
field algorithm for evaluating density response functions and performing GW calculations
beyond the RPA. In Section 3.2 we present the application of the finite-field algorithm in

BSE calculations.
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3.1 Finite field calculation of response functions

Adapted with permission from H. Ma, M. Govoni, F. Gygi, and G. Galli. Journal of Chemical
Theory and Computations. 15 (1), 154 (2019). Copyright (2019) by the American Chemical
Society. https://doi.org/10.1021 /acs.jctc.8b00864.

We describe a finite-field approach to compute density response functions, which allows
for efficient GoWy and GoWyl' calculations beyond the random phase approximation. The
method is easily applicable to density functional calculations performed with hybrid func-
tionals. We present results for the electronic properties of molecules and solids and we
discuss a general scheme to overcome slow convergence of quasiparticle energies obtained
from GoWyl'y calculations, as a function of the basis set used to represent the dielectric

matrix.

3.1.1 Introduction

Accurate, first principles predictions of the electronic structure of molecules and materials
are important goals in chemistry, condensed matter physics and materials science [271]. In
the past three decades, density functional theory (DFT) [146, 191] has been successfully
adopted to predict numerous properties of molecules and materials [28]. In principle, any
ground or excited state properties can be formulated as functionals of the ground state
charge density. In practical calculations, the ground state charge density is determined by
solving the Kohn-Sham (KS) equations with approximate exchange-correlation functionals,
and many important excited state properties are not directly accessible from the solution of
the KS equations. The time-dependent formulation of DFT (TDDFT) [314] in the frequency
domain [49] provides a computationally tractable method to compute excitation energies and
absorption spectra. However, using the common adiabatic approximation to the exchange-
correlation functional, TDDFT is often not sufficiently accurate to describe certain types

of excited states such as Rydberg and charge transfer states [51], especially when semilocal
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functionals are used.

A promising approach to predict excited state properties of molecules and materials is
many-body perturbation theory (MBPT) [133, 157, 237]. Within MBPT, the GW approx-
imation can be used to compute quasiparticle energies that correspond to photoemission
and inverse photoemission measurements; furthermore, by solving the Bethe-Salpeter equa-
tion (BSE), one can obtain neutral excitation energies corresponding to optical spectra. For
many years since the first applications of MBPT [157], its use has been hindered by its high
computational cost. In the last decade, several advances have been proposed to improve
the efficiency of MBPT calculations [376, 258, 214], which are now applicable to simulations
of relatively large and complex systems, including nanostructures and heterogeneous inter-
faces [291, 285, 211]|. In particular, GW and BSE calculations can be performed using a
low rank representation of density response functions [260, 286, 117, 118], whose spectral
decomposition is obtained through iterative diagonalization using density functional pertur-
bation theory (DFPT) [22, 21]. This method does not require the explicit calculation of
empty electronic states and avoids the inversion or storage of large dielectric matrices. The
resulting implementation in the WEST code has been successfully applied to investigate nu-
merous systems including defects in semiconductors [334, 335], nanoparticles[322], aqueous
solutions[93, 285, 95|, and solid/liquid interfaces[117, 104] .

In this work, we developed a finite-field (FF) approach to evaluate density response func-
tions entering the definition of the screened Coulomb interaction W. The FF approach can
be used as an alternative to DFPT, and presents the additional advantage of being applica-
ble, in a straightforward manner, to both semilocal and hybrid functionals. In addition, FF
calculations allow for the direct evaluation of density response functions beyond the random
phase approximation (RPA).

Here we first benchmark the accuracy of the FF approach for the calculation of several
density response functions, from which one can obtain the exchange correlation kernel (fxc),

defined as the functional derivative of the exchange-correlation potential with respect to the
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charge density. Then we discuss GoWj calculations for various molecules and solids, carried
out with either semilocal or hybrid functionals, and by adopting different approximations to
include vertex corrections in the self-energy. In the last two decades a variety of methods
(350, 89, 323, 233, 48, 371, 249, 340, 338, 311, 121, 56, 202, 203, 226] has been proposed
to carry out vertex-corrected GW calculations, with different approximations to the vertex
function I' and including various levels of self-consistency between GG, W and I'. Here we
focus on two formulations that are computationally tractable also for relatively large systems,
denoted as GOVV(‘)fXC and GoWpl'g. In GOW({XC, fxc is included in the evaluation of the
screened Coulomb interaction W; in GogWyl'g, fxc is included in the calculation of both W
and the self-energy 3 through the definition of a local vertex function. Most previous GoWy*
and GoWyIl'g calculations were restricted to the use of the LDA functional [350, 89, 371, 249,
for which an analytical expression of fxc is available. Paier et al. [275] reported GWJ *¢ results
for solids obtained with the HSE03 range-separated hybrid functional [141], and the exact
exchange part of fx¢ is defined using the nanoquanta kernel [300, 234, 353, 48]. In this work
semilocal and hybrid functionals are treated on equal footing, and we present calculations
using LDA [281], PBE [279] and PBEO [280] functionals, as well as a dielectric-dependent
hybrid (DDH) functional for solids [346].

A recent study of Thygesen and co-workers [325] reported basis set convergence issues
when performing GoWyl'g@QLDA calculations, which could be overcome by applying a proper
renormalization to the short-range component of fx. [268, 269, 277]. In our work we gener-
alized the renormalization scheme of Thygesen et al. to functionals other than LDA, and we
show that the convergence of GoWyl'g quasiparticle energies is significantly improved using
the renormalized fxc.

The rest of the paper is organized as follows. In Section 2 we describe the finite-field
approach and benchmark its accuracy. In Section 3 we describe the formalism used to
perform GW calculations beyond the RPA, including a renormalization scheme for fxc, and

we compare the quasiparticle energies obtained from different GW approximations (RPA or
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vertex-corrected) for molecules in the GW100 test set [378] and for several solids. Finally,

we summarize our results in Section 4.

3.1.2  The finite-field approach

We first describe the FF approach for iterative diagonalization of density response functions

and we then discuss its robustness and accuracy.

Formalism

Our GoW)j calculations are based on DFT single-particle energies and wavefunctions, ob-

tained by solving the Kohn-Sham (KS) equations:

Hyggm(r) = embm(r), (3.1)

where the KS Hamiltonian Hgg =T + Voo = T + Vion + Vig + Vie. T is the kinetic energy
operator; Vgop is the KS potential that includes the ionic Vi, the Hartree Vjy and the
exchange-correlation potential Vic. The charge density is given by n(r) = > 7% b (1)]2.
For simplicity we omitted the spin index.

We consider the density response function (polarizability) of the KS system yo(r, ') and
that of the physical system x(7,7’); the latter is denoted as xgpa (7, 7’') when the random
phase approximation (RPA) is used. The variation of the charge density due to either a

variation of the KS potential 6Vgcp or the external potential dVexy is given by:
Sn(r) = / K(r, v )5V (') dr, (3.2)

where K = xo(r,7') if V(') = 6Vgcp(r') and K = x(r,7’) if 6V(r') = §Vexs(r’). The

density response functions of the KS and physical system are related by a Dyson-like equa-
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tion:

(. 7') = xo(rr') + / ar" / dr" o (r, 7" [ue(r" 1) + Fro(” )] x(r" 7)  (3.3)

where ve(r,r) = —|r,1 O (r)

o is the Coulomb kernel and fxc(r,r') = T is the exchange-
correlation kernel.

Within the RPA, fxc is neglected and x (7, 7’) is approximated by:

xrpA(r, ) = xo(r, 7') + / ar" / dr"xo(r, 7" Yoe(r” P (e 7). (3.4)

In the plane-wave representation (for simplicity we only focus on the T' point of the

175(G.G)

Brillouin zone), v.(G,G’) = ap

(abbreviated as v.(G) = éﬁ) We use K(G,G")
to denote a general response function (K € {xo, XRpa,X}), and define the dimensionless
response function K(G,G’) (K € {X0, Xrpa, X}) by symmetrizing K (G, G’) with respect

to ve:

K(G, G) = vc% (G)K(G, G’)vc% (G"). (3.5)

The dimensionless response functions ygpa and Xo (see Eq. 3.4) have the same eigen-

vectors, and their eigenvalues are related by:

RPA _ A}
_ 1
A = - )\? (3.6)
where )\ZRPA and )\g are eigenvalues of Ygrpa and xg, respectively. In general the eiegenvalues
and eigenvectors of ygppa are different from those of x due to the presence of fxc in Eq. 3.3.
In our GW calculations we use a low rank decomposition of K:
Nppep

K= Z X 1€ (&l (3.7)

where \ and [£) denote eigenvalue and eigenvectors of K, respectively. The set of € constitute
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a projective dielectric eigenpotential (PDEP) basis [260, 286, 117], and the accuracy of
the low rank decomposition is controlled by Nppgp, the size of the basis. In the limit of
Npprp = Npw (the number of plane waves), the PDEP basis and the plane wave basis are
related by a unitary transformation. In practical calculations it was shown that [260, 286]
one only need Npprp < Npw to converge the computed quasiparticle energies. To obtain
the PDEP basis, an iterative diagonalization is performed for K, e.g. with the Davidson
algorithm [66]. The iterative diagonalization requires evaluating the action of K on an

arbitrary trial function &:

(@)K (G, G2 (GG

Orol—

(KE)(G) = v
G/

= 02 (G)FT { / K(r,v') (]—"T‘l [ﬁ (G/)g(G’)D (r’)dr’} (G)

where FT and FT ! denote forward and inverse Fourier transforms respectively. By using
Eq. 3.8 we cast the evaluation of K¢ to an integral in real space.
1
Defining a perturbation 6V (G’) = vZ (G")&(G’), the calculation of the real space integral

in Eq. 3.8 is equivalent to solving for the variation of the charge density dn due to JV:

/ K(r. ) <FT‘1 {vé(a’)g(a’)D (r')dr! = / K(r,#\oV(r)dr' = on(r).  (3.9)

In previous works dn(r) was obtained using DFPT for the case of K = xqg [117]. In
this work we solve Eq. 3.9 by a finite-field approach. In particular, we perform two SCF

calculations under the action of the potentials +6V:

(His % 0V) (1) = et (), (3.10)
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and dn(r) is computed through a finite difference:

occ. occ.

n(r) = 5 | Y )] = 3 () (3.11)

In Eq. 3.11 we use a central difference instead of forward /backward difference to increase
the numerical accuracy of the computed on(r).

If in the SCF procedure adopted in Eq. 3.10 all potential terms in the KS Hamiltonian
are computed self-consistently, then the solution of Eq. 3.11 yields K = x (see Eq. 3.9). If
Vie is evaluated for the initial charge density (i.e. Vic = Vie[ng]) and kept fixed during the
SCF iterations, then the solution of Eq. 3.11 yields K = ygpa- If both Vi and Vg are kept
fixed, the solution of Eq. 3.11 yields K = yyp.

Unlike DFPT, the finite-field approach adopted here allows for the straightforward cal-
culation of response functions beyond the RPA (i.e. for the calculation of x instead of xq or
XRPA ), and it can be readily applied to hybrid functionals for which analytical expressions of
fxc are not available. We note that finite-field calculations with hybrid functionals can easily
benefit from any methodological development that reduces the computational complexity of
evaluating exact exchange potentials [125, 127, 68].

Once the PDEP basis is obtained by iterative diagonalization of y(, the projection of ¥ on
the PDEP basis can also be performed using the finite-field approach. Then the symmetrized
exchange-correlation kernel fxc = 2 fxeVe : can be computed by inverting the Dyson-like
equation (Eq. 3.3):

fre=Xg'-x -1 (3.12)

On the right hand side of Eq. 3.12 all matrices are Nppgp X Nppgp and therefore the
resulting fxc is also defined on the PDEP basis.

When using orbital-dependent functionals such as meta-GGA and hybrid functionals,
the fyec computed from Eq. 3.12 should be interpreted with caution. In this case, DFT

calculations for Hgg £ 0V can be performed using either the optimized effective potential
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(OEP) or the generalized Kohn-Sham (GKS) scheme. In the OEP scheme, vy is local in

space and fxe(r, 7)) = 55‘2‘(‘375,7')) depends on 7 and 7/, as in the case of semilocal functionals.
/
In the GKS scheme, Vi, is non-local and fxc(r,r";7") = % depends on three position

vectors. We expect on to be almost independent of the chosen scheme, whether GKS or
OEP, since both methods yield the same result within first order in the charge density [200].
We conducted hybrid functional calculations within the GKS scheme, assuming that for
every GKS calculation an OEP can be defined yielding the same charge density; with this

assumption the fxc from Eq. 3.12 is well defined within the OEP formalism.

Implementation and Verification

We implemented the finite-field algorithm described above by coupling the WEST [117]
and Qbox [124] codes in client-server mode, using the workflow summarized in Fig. 3.1.
In particular, in our implementation the WEST code performs an iterative diagonalization
of K by outsourcing the evaluation of the action of K on an arbitrary function to Qbox,
which performs DFT calculations in finite field. The two codes communicate through the
filesystem.

RPA, X for selected

To verify the correctness of our implementation, we computed xg, X
molecules in the GW100 set and we compared the results to those obtained with DFPT.
Section 3.1.4 summarizes the parameters used including plane wave cutoff E.yt, Npprp and
size of the simulation cell. In finite-field calculations we optimized the ground state wave-
function using a preconditioned steepest descent algorithm with Anderson acceleration|7].
The magnitude of V" was chosen to insure that calculations were performed within the linear
response regime (see Section 3.1.4). All calculations presented in this section were performed
with the PBE functional unless otherwise specified.

Fig. 3.2a shows the eigenvalues of ygrpa for a few molecules obtained with three ap-

proaches: iterative diagonalization of ygpa with the finite-field approach; iterative diagonal-

ization of xo with either the finite-field approach or with DFPT, followed by a transformation
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WEST code Qbox code

- — N
Itera’;l(E/EaNdla?ona(ljlrzalt)lon of Calculation of &n for a given 6V by
Xo» XrRpA OF X):
Nppgp sV (r) the finite-field approach:
K= Ai|§X&il T TR EEERRE e ;
L — Ha y Y | T+ Vion + Vulno] + Vic [no] =K = %o |
‘ U Hys :{ T+ Vion + Vi + Vac [no] = K = rea|
. NI T+ Vion + Vit + e —~K=7
Computation of f,. in the space {|¢;)} e ae
p 2 . Hgs £ 8V = em¥im
fxc=X01_X 1_1 ( KS )lpm ml/)m

. J occ. occ.

3 \tsn(r) = 2O WP = ) W@l

| 6W calculations within or beyond RPA |

Figure 3.1: Workflow of finite-field calculations. The WEST code performs an iterative
diagonalization of K (X0, XRpA, X)- In GW calculations beyond the RPA, fx¢ is computed
from Eq. 3.12, which requires computing the spectral decomposition of xg and evaluating y
in the space of yq eigenvectors. Finite-field calculations are carried out by the Qbox code.
If the Hartree (Vfg) and exchange correlation potential (Vi) are updated self-consistently
when solving Eq. 3.10, one obtains K = y; if Vi is evaluated at the initial charge density
ng and kept fixed during the SCF procedure, one obtains K = xgrpa; if both Vic and Vg
are evaluated for ng and kept fixed, one obtains K = yg. The communications of dn and
0V between WEST and Qbox is carried through the filesystem.

of eigenvalues as in Eq. 3.6. The three approaches yield almost identical eigenvalues.

The eigenvectors of the response functions are shown in Fig. 3.2b, where we report
elements of the matrices defined by the overlap between finite-field and DFPT eigenvectors.
The inner product matrices are block-diagonal, with blocks corresponding to the presence of
degenerate eigenvalues. The agreement between eigenvalues and eigenvectors shown in Fig.
3.2 verifies the accuracy and robustness of finite-field calculations.

Fig. 3.3 shows the eigendecomposition of xy compared to that of Yrpa-

As indicated by Fig. 3.3a, including fxc in the evaluation of x results in a stronger
screening. The eigenvalues of y are systematically more negative than those of Ygpa, though
they asymptotically converge to zero in the same manner. While the eigenvalues are different,

the eigenvectors (eigenspaces in the case of degenerate eigenvalues) are almost identical, as

indicated by the block-diagonal form of the eigenvector overlap matrices (see Fig. 3.3b).
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Figure 3.2: Comparison of the eigenvalues(a) and eigenfunctions(b) of xgpa obtained from
density functional perturbation theory (DFPT) and finite-field (FF) calculations. Three
approaches are used: diagonalization of xog by DFPT, diagonalization of x¢ by FF (denoted
by FF(0)) and diagonalization of xgpa by FF (denoted by FF(RPA)). In the case of DFPT
and FF(0), Eq. 3.6 was used to obtain the eigenvalues of Ygpa from those of x¢. In (b) we
show the first 32 x 32 elements of the (¢PFPT|cFF(0)y ang (¢PFPT|FFRPA)Y matrices (see

Eq. 3.7).

Finally, fxe can be computed from ¥ and ¥q according to Eq. 3.12. Due to the similarity
of the eigenvectors of x and xgpa (identical to that of xg), the fxe matrix is almost diagonal.
In Section 3.1.4 we show the fy matrix in the PDEP basis for a few systems. To verify the
accuracy of fXC obtained by the finite-field approach, we performed calculations with the
LDA functional, for which fx. can be computed analytically. In Fig. 3.4 we present for a

number of systems the average relative difference of the diagonal terms of the fx. matrices
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Figure 3.3: Comparison of eigenvalues(a) and eigenfunctions(b) of y and XRfPA obtained
from finite-field calculations. In (b), the first 32 x 32 elements of the (¢RPA|flly matrices
are presented.

obtained analytically and through finite-field (FF) calculations. We define A fx. as

N
1 PDEP

2.

1

[ (IR — (el Faeiele)

Afxc =
< 52‘ fanalytlczﬂ’ 52)

- 3.13
NppEP (3:13)

As shown in Fig. 3.4, Afxc is smaller than a few percent for all systems studied here.
To further quantify the effect of the small difference found for the fy. matrices on GW
quasiparticle energies, we performed GOW({ *@QLDA calculations for all the systems shown
in Fig. 3.4, using the analytical fxc and fxc computed from finite-field calculations. The two
approaches yielded almost identical quasiparticle energies, with mean absolute deviations of

0.04 and 0.004 eV for HOMO and LUMO levels, respectively.
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Figure 3.4: Average relative differences Afxc (see Eq. 3.13) between diagonal elements
of the fyxc. matrices computed analytically and numerically with the finite-field approach.
Calculations were performed with the LDA functional.

3.1.3 GW calculations

Formalism

In this section we discuss GW calculations within and beyond the RPA, utilizing fx. com-
puted with the finite-field approach. In the following equations we use 1, 2, ... as shorthand
notations for (ry,¢1), (r9,t9), ... Indices with bars are integrated over. When no indices
are shown, the equation is a matrix equation in reciprocal space or in the PDEP basis. The
following discussion focuses on finite systems; for periodic systems a special treatment of the
long-range limit of y is required and relevant formulae are presented in Section 3.1.4.
Based on a KS reference system, the Hedin equations [133] relate the exchange-correlation
self-energy Y. (abbreviated as ¥), Green’s function G, the screened Coulomb interaction

W, the vertex I' and the irreducible polarizability P:

¥(1,2) =iG(1,HW (AT, 3)(4,2;3), (3.14)
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W(L,2) = ve(1,2) + ve(1,3)P(3, D)W (4, 2), (3.15)

P(1,2) = —iG(1,3)G(4,1)I(3,4,2), (3.16)
[(1,2:3) = 6(1,2)5(1,3) + %G(i, 6)G(7,5)0(6.7.3), (3.17)
G(1,2) = G°(1,2) + GY(1,3)%(3,1)G(4, 2). (3.18)

We consider three different Gy approximations: the first is the common GyW( formu-

lation within the RPA, here denoted as GOW§PA, where I'(1,2;3) = 6(1,2)0(1,3) and ¥ is

given by:
¥(1,2) = iG(1,2)Wrpa(17,2), (3.19)
where
WRPA(L 2) = UC(L 2) + UC(L 3)XRPA(37 ZDUC(ZL 2)7 (320)
and
Xrpa = (1= x0ve)  x0. (3.21)

The second approximation, denoted as GoWy™, includes fxc in the definition of W.

Specifically, y is computed from Y and fxc with Eq. 3.3:

X = (I —xo(ve + fxc))71XO> (3.22)

and is used to construct the screened Coulomb interaction beyond the RPA:

Wi, = ve(1,2) + ve(1,3)x(3, A)ve(4, 2). (3.23)

The third approximation, denoted as GgWyl'g, includes fxc in both W and Y. In partic-

ular, an initial guess for ¥ is constructed from Vi:

S0(1,2) = 6(1, 2) Vi (1) (3.24)
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from which one can obtain a zeroth order vertex function by iterating Hedin’s equations once

350:

To(1,2;3) = 6(1,2)(1 = fxexo) ' (1,3). (3.25)
Then the self-energy X is constructed using G, Wy, and I'¢:

2(1,2) =iG(1, )Wy, (17,3)T0(4,2;3)

(3.26)
—iG(1,2)Wr(17,3)
where we defined an effective screened Coulomb interaction
Wr = ve(1,2) + ve(1, 3)x1(3,4)ve (4, 2), (3.27)
X1 = [ve — vexo(ve + fxe)] F — et (3.28)

The symmetrized forms of the three different density response functions (reducible po-

larizabilities) defined in Eq. 3.21, 3.22, 3.28 are:

Krpa = [1- %ol %o (3.29)
=1%ol + fx)) %0 (3.30)
Xr=[1-X1+fxe) ' =1 (3.31)

Egs. 3.29-3.31 have been implemented in the WEST code [117].

We note that finite-field calculations yield fx matrices at zero frequency. Hence the
results presented here correspond to calculations performed within the adiabatic approxi-
mation, as they neglect the frequency dependence of fxc. An interesting future direction

would be to compute frequency-dependent fXC by performing finite-field calculations using
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real-time time-dependent DFT (RT-TDDFT).

When using the GoWyI'g formalism, the convergence of quasiparticle energies with respect
to Nppgp turned out to be extremely challenging. As discussed in Ref.325 the convergence
problem originates from the incorrect short-range behavior of fxc. In Section 3.2 below we

describe a renormalization scheme of fxe that improves the convergence of GoWoI'y results.

Renormalization of fy.

Thygesen and co-workers [325] showed that GoWyI'g@LDA calculations with fx. computed
at the LDA level exhibit poor convergence with respect to the number of unoccupied states
and plane wave cutoff. We observed related convergence problems of GoWyl'y quasiparticle
energies as a function of Nppgp, the size of the basis set used here to represent response
functions (see Section 3.1.4). In this section we describe a generalization of the fxc renormal-
ization scheme proposed by Thygesen and co-workers [268, 269, 277] to overcome convergence
issues.

The approach of Ref.325 is based on the properties of the homogeneous electron gas
(HEG). For an HEG with density n, fHEG[n)(r, /) depends only on (r — ') due to transla-
tional invariance, and therefore fiFG[n]oar(q) is diagonal in reciprocal space. We denote
the diagonal elements of fHFG[n)qar(q) as fHFG[n)(k) where k = ¢ + G. When using

the LDA functional, the exchange kernel f, exactly cancels the Coulomb interaction v. at

wavevector k = 2k (the correlation kernel f. is small compared to fx for k > 2kp), where kp
HEG-LDA

XC shows an incorrect asymptotic behavior,

is the Fermi wavevector. For k > 2kp,
leading to an unphysical correlation hole [268, 269]. Hence Thygesen and co-workers intro-
duced a renormalized LDA kernel fIEGTLDA (1) by setting fHEGTLDA () — pHEG-LDA (1)
for k < 2kp and fHEGILDA(LY — _y (k) for k > 2kp. They demonstrated that the
renormalized fxc improves the description of the short-range correlation hole as well as the
correlation energy, and when applied to GW calculations substantially accelerates the basis

set convergence of GoWyl'y quasiparticle energies.

27



While within LDA fx. can be computed analytically and v+ fx = 0 at exactly k = 2kp,
for a general functional it is not known a priori at which %k this condition is satisfied.
In addition, for inhomogenous systems such as molecules and solids the fy. matrix is not
diagonal in reciprocal space. The authors of Ref 325 used a wavevector symmetrization
approach to evaluate f}I({CEG'ILDA for inhomogenous systems, which is not easily generalizable
to the formalism adopted in this work, where fy¢ is represented in the PDEP basis.

To overcome these difficulties, here we first diagonalize the fyxe matrix in the PDEP basis:

NppEP

fxe = Z filGi) (Gl (3.32)

where f and ( are eigenvalues and eigenvectors of fxc. Then we define a renormalized fXC

as:
NppEP

fie=">_ max(f;,—1)|G) (Gl (3.33)

)

Note that for fxc = —1, fxc = —v¢, therefore fI. is strictly greater or equal to —v.. When
applied to the HEG, the f].QLDA is equivalent to f)I({CEG'rLDA in the limit Nppgp — 00,
where the PDEP and plane-wave basis are related by a unitary transformation. Thus, Eq.
3.33 represents a generalization of the scheme of Thygesen et al. to any functional and to
inhomogeneous electron gases. When using fy., we observed a faster basis set convergence of
GoWpl'g results than GOW(;RPA results, consistent with Ref. 325. In Section 3.1.4 we discuss
in detail the effect of the fx. renormalization on the description of the density response
functions x and xr, and we rationalize why the renormalization improves the convergence of
GoWpl'g results. Here we only mention that the response function yp may possess positive
eigenvalues for large PDEP indices. When the renormalized fx. is used, the eigenvalues of
XT are guaranteed to be nonpositive and they decay rapidly toward zero as the PDEP index
increase, which explains the improved convergence of GogWyl'y quasiparticle energies.

All GoWyl'y results shown in Section 3.3 were obtained with renormalized fx. matrices,
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while GoW ;3™ calculations were performed without renormalizing fxc, since we found that
the renormalization had a negligible effect on GoW;j*¢ quasiparticle energies (see Section

3.1.4).

Results

In this section we report GW quasiparticle energies for molecules in the GW100 set [378]
and for several solids. Calculations are performed at GOW&)‘PA, GOWOf * and GogWyl'g levels
of theory and with semilocal and hybrid functionals. Computational parameters including
Ecut and Nppgp for all calculations are summarized in Section 3.1.4. A discussion of the

convergence of G Wg{PA quasiparticle energies with respect to these parameters can be found

in Ref.118.
We computed the vertical ionization potential (VIP), vertical electron affinity (VEA)
and fundamental gaps for molecules with LDA, PBE and PBEO functionals. VIP and VEA

are defined as VIP = g¥a¢ — cHOMO 4,4 VEA = gvac _ ;LUMO respectively, where V4 is

HOMO LUMO .16

the vacuum level estimated with the Makov-Payne method [227]; and €
HOMO and LUMO GW quasiparticle energies, respectively. The results are summarized in
Fig. 3.5, where VIP and VEA computed at GoW* and GoWyl'g levels are compared to
results obtained at the GOWg{PA level.

Compared to G0W§PA results, the VIP computed at the GoWy™ and GoWpI'¢ level are
systematically lower, the VEA computed at the GOWOf * [GoWol'g level are systematically
higher /lower. The deviation of GoWyI'y from G0W§PA results is more than twice as large
as that of GOW({XC results.

In Fig. 3.6 we compare GW results with experiments and quantum chemistry CCSD(T)
results [195]. The corresponding MD and mean absolute deviations (MAD) are summarized
in Table 3.1. At the GOWORPA@PBE level, the MAD for the computed VIP values compared
to CCSD(T) and experimental results are 0.50 and 0.55 eV respectively, and the MAD for
the computed VEA compared to experiments is 0.46 eV. These MAD values (0.50/0.55/0.46
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eV) are comparable to previous benchmark studies on the GW100 set using the FHI-aims
(0.41/0.46/0.45 V) [378], VASP (0.44/0.49/0.42 eV) [226] and WEST codes (0.42/0.46/0.42
eV) [118], although in this work we did not extrapolate our results with respect to the basis

set due to the high computational cost.

Table 3.1: Mean deviation and mean absolute deviation (in brackets) for GW results com-
pared to experimental results and CCSD(T) calculations. We report vertical ionization
potentials (VIP), vertical electron affinities (VEA) and the fundamental electronic gaps. All
values are given in eV.

CCSD(T) VIP  Exp. VIP  Exp. VEA  Exp. Gap
GoWHPAQLDA  -0.23 (0.34) -0.19 (0.43)  0.04 (0.45) 0.21 (0.56)
GoWQLDA  -0.39 (0.48) -0.35 (0.53)  0.21 (0.51)  0.50 (0.69)
GoWoTo@LDA  -0.58 (0.62) -0.54 (0.63) -0.49 (0.59)  0.04 (0.53)
GoWIPAGPBE  -0.43 (0.50) -0.39 (0.55) -0.09 (0.46) 0.28 (0.57)
GoWX@PBE  -0.56 (0.62) -0.52 (0.65)  0.08 (0.49)  0.56 (0.75)
GoWoTo@PBE  -0.99 (1.01) -0.95 (0.98) -0.77 (0.84)  0.15 (0.58)
GoWHPA@QPBED  -0.05 (0.20) -0.01 (0.34) -0.26 (0.41) -0.26 (0.47)
GoW¥**@PBE0  -0.29 (0.39) -0.25 (0.48)  0.04 (0.43)  0.26 (0.52)
GoWoTg@PBEO  -0.45 (0.49) -0.41 (0.54) -1.10 (1.11) -0.68 (0.75)

Finally we report GOW&{PA, GOW({XC and GoWpl'g results for several solids: Si, SiC
(4H), C (diamond), AIN, WO4; (monoclinic), SisN, (amorphous). We performed calcula-
tions starting with LDA and PBE functionals for all solids, and for Si we also performed
calculations with a dielectric-dependent hybrid (DDH) functional [346]. All solids are rep-
resented by supercells with 64-96 atoms (see Section 3.1.4) and only the I-point is used to
sample the Brillioun zone. In Table 3.2 we present the band gaps computed with different
GW approximations and functionals. Note that the supercells used here do not yield fully
converged results as a function of supercell size (or k-point sampling); however the com-
parisons between different GW calculations are sound and represent the main result of this
section.

Overall, band gaps obtained with different GW approximations are rather similar, with
differences much smaller than those observed for molecules. To further investigate the
positions of the band edges obtained from different GW approximations, we plotted in
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Table 3.2: Band gaps (eV) for solids computed by different GW approximations and
exchange-correlation (XC) functionals. All calculations are performed at the I'-point of
supercells with 64-96 atoms (see Section 3.1.4 for details).

DFT G()W(%{PA GoWy™  GoWplg

System XC
Si LDA  0.55 1.35 1.32 1.26
PBE 0.73 1.39 1.36 1.31
DDH 1.19 1.57 1.48 1.51
C LDA  4.28 5.99 5.92 5.88
PBE  4.46 6.05 5.97 5.93
SiC (4H) LDA  2.03 3.27 3.16 3.24
PBE 2.21 3.28 3.15 3.25
AIN LDA  3.85 5.67 5.51 5.89
PBE 4.04 5.67 5.48 5.83
WO; (monoclinic) LDA  1.68 3.10 2.69 3.26
PBE 1.78 2.97 2.52 3.13
SisN, (amorphous) LDA  3.04 4.84 4.65 4.83
PBE 3.19 4.87 4.64 4.84

Fig. 3.7 the GW quasiparticle corrections to VBM and CBM, defined as Aygyn/cpm =

GW DFT GW DFT : :
EVBM/CBM ~ SVBM/CBM where EVBM/CBM and EVBM/CBM 1€ the GW quasiparticle en-

ergy and the Kohn-Sham eigenvalue corresponding to the VBM/CBM, respectively.
Compared to G0W§PA, VBM and CBM computed at the G’OW({ *¢ level are slightly lower,
while VBM and CBM computed at the GoWyl'g level are significantly higher. The difference
between band edge energies computed by different GW approximations is larger with the
DDH functional, compared to that of semilocal functionals. Overall the trends observed for

solids are consistent with those found for molecules.
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Figure 3.5: Difference (AF) between vertical ionization potential (VIP) and vertical electron
affinity (VEA) of molecules in the GW100 set computed at the GQWOf X |GoWyly level and

corresponding GOW($PA results. Mean deviations (MD) in eV are shown in brackets and
Results are presented for three different functionals

represented with black dashed lines.

(LDA, PBE and PBEO) in the top, middle and bottom panel, respectively.
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Figure 3.6: Vertical ionization potential (VIP), vertical electron affinity (VEA) and electronic

gap of molecules in the GW100 set computed at GOWg{PA, GOW({ * and GogWyl'g levels of
theory, compared to experimental and CCSD(T) results (black dashed lines).
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3.1.4 Technical details

Computational setup of DF'T and GW calculations

In this section we describe the computational setup of DF'T and GW calculations presented
in our paper. The energy cutoff (FE¢yt), number of eigenpotentials for the spectral decompo-
sition of the response functions (Nppgp) and the cell size for all systems studied in our work

are summarized in Table 3.3 and 3.4. All calculations are performed with norm-conserving

pseudopotentials of the SG15 library [324].

The values of E¢yt are chosen such that the HOMO’s for molecules and the VBM’s
for solids are converged within 0.01 eV at the DFT(PBE) level.
interactions between periodic images, cubic cells with edge of 25A are used for molecules;

for solids, we used PBE lattice constants. For molecules, Nppgp = 10N, where N, is the

number of valence electrons [118]; Nppgp = 2048 for solids.

Table 3.3: The parameters F¢u; and Nppgp for molecules. Molecules are

simulated in cubic cells with edge of 25A.

To minimize spurious

Index Formula CAS Number Ecut (Ry) Nppgp
I Cgly, 100-41-4 60 420
2 3 10028-15-6 70 180
3 BN 10043-11-5 95 80
4 CHy, 106-97-8 5 260
5 C.Hg 108-88-3 55 360
6 CgHgO 108-95-2 60 360
7 C.H.N 110-86-1 60 300
8 Cy 12184-80-4 60 160
9 Py 12185-09-0 35 100
10 Ag, 12187-06-3 45 380
11 Cu, 12190-70-4 80 380
12 CO, 124-38-9 60 160
13 BeO 1304-56-9 95 100
14 MgO 1309-48-4 50 160
15 BH;j 13283-31-3 45 60
16 H, 1333-74-0 50 20
17 BF 13768-60-0 60 100
18 Li, 14452-59-6 50 60
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Table 3.3: Continued.

Index Formula CAS Number Ecut (Ry) Nppgp
19 SiH,, 14868-53-2 5 320
20 SiyHg 1590-87-0 40 140
21 COSe 1603-84-5 65 160
22 GaCl 17108-85-9 60 200
23 PN 17739-47-8 60 100
24 ByHg 19287-45-7 50 120
25 As, 23878-46-8 30 100
26 Na, 25681-79-2 40 180
27 K, 25681-80-5 30 180
28 Rb, 25681-81-6 30 180
29 N,i, 302-01-2 45 140
30 CgFg 392-56-3 60 660
31 Nay 39297-86-4 45 360
32 Nag 39297-88-6 40 540
33 COS 463-58-1 65 160
34 H,CO 50-00-0 65 120
35 Cly 507-25-5 55 720
36 CyHg 542-92-7 60 260
37 CuCN 544-92-3 75 280
38 CBry 5H8-13-4 95 320
39 CCly 56-23-5 55 320
10 CHN,O0  57-136 55 240
41 CyH3Br 593-60-2 60 180
42 CyHgl 593-66-8 45 280
43 (CyH,),0  60-29-7 55 320
44 CgHyNH, 62-53-3 95 360
45 CgHyg 629-20-9 55 400
46 CO 630-08-0 65 100
47 CH3CH,OH  64-17-5 55 200
48 HCOOH 64-18-6 70 180
19 CsHEN,O,  65-71-4 65 480
50 C,HN,O, 66-22-8 65 420
51 CH30H 67-56-1 55 140
52 C,HN;O  71-30-7 65 420
53 CgHg 71-43-2 60 300
54 CH.N,  73-24°5 65 500
55 C.H.N,O  73-40-5 65 560
56 CH, 74-82-8 45 80
57 CyHg 74-84-0 50 140
58 C,H, 74-85-1 55 120
59 C,H, 74-86-2 55 100
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Table 3.3: Continued.

Index Formula CAS Number Ecut (Ry) Nppgp
60 HCN 74-90-8 65 100
61 CyHg 74-98-6 5 200
62 Kr 7439-90-9 30 80
63 Ne 7440-01-9 45 80
64 Ar 7440-37-1 30 80
65 He 7440-59-7 70 20
66 Xe 7440-63-3 45 180
67 SO, 7446-09-5 65 180
68 CyHyCl 75-01-4 60 180
69 CyH3F 75-02-5 60 180
70 CH3;CHO 75-07-0 65 180
71 CSy 75-15-0 60 160
72 Cyf, 75-19-4 5 180
73 CF, 75-73-0 65 320
41, 7553-56-2 30 340
75 LiH 7580-67-8 55 40
76 HCI 7647-01-0 30 80
77 NaCl 7647-14-5 40 160
78 HF 7664-39-3 65 80
79 NHgq 7664-41-7 45 80
80 KH 7693-26-7 30 100
81 H,0, 7722-84-1 70 140
82 Br, 7726-95-6 30 140
83 N, 7727-37-9 70 100
84 H,O 7732-18-5 50 80
85 BrK 7758-02-3 30 160
86 T, 7782-41-4 65 140
87 Cl, 7782-50-5 40 140
88 GeHy 7782-65-2 45 180
89 HNj 7782-79-8 65 160
90 SH, 7783-06-4 30 80
91 Mgk, 7783-40-6 65 240
92 SFy 7783-60-0 60 340
93 TiF, 7783-63-3 70 400
94  AllF, 7784-18-1 70 320
95 Allg 7784-23-8 40 620
96 AsH, 7784-42-1 40 80
97  MgCl, 7786-30-3 40 240
98 LiF 7789-24-4 65 100
99 PH,4 7803-51-2 40 80
100 SiH, 7803-62-5 45 80

37



Table 3.4: The parameter Ecut, Natom (number of atoms), cell type and lattice constants
for solids. Natom and cell types are reported for the supercells used in actual calculations.
Lattice constants are reported for the unit cells used to construct supercells. Nppgp = 2048
is used.

System  Feyt (Ry)  Natom Cell type Lattice constants (A)
AIN 60 96 orthorhombic a=3.13, ¢c=5.02
C 60 64 cubic a = 3.57
Si 30 64 cubic a = 5.48
SigN, 60 56 cubic a = 8.3
4H-SiC 45 96 orthorhombic a=3.10, c = 5.07
WO, 55 32 monoclinic a = 7.31, b = 7.54, ¢ = 7.69, 8 = 90.88°

Convergence of finite-field calculations

In finite-field calculations, the response dn = dn(a, Ngcp; K) to an applied potential 6V
depends on the amplitude of 6V (we denote with a the scaled amplitude, see below), the
number of SCF cycles Ngcp, and the type of response function K: xo, xgRpa, x- In this
section we investigate the dependence of on on a and Ngcp. All calculations were carried
out with the PBE functional and the wavefunction was optimized with a preconditioned
steepest descent algorithm with Anderson acceleration.

Amplitude of the applied potential 6V

We define the amplitude of a given §V as amp(6V) = maxy |dV ()| and we compute
on(a) as:

sn(a) = amme / K(r o) {m(ﬂ/(r’)} dr', (3.34)

where the integration is performed by the finite-field approach. In principle, for any a chosen
within the linear response regime, one should get identical results for on(a). In practice, a
value of a that is too small gives rise to large numerical errors.

To determine the optimal range for a, we computed on(a) for 6V = vc% &1, where & is
the first eigenvector of K, for a number of systems, and we varied a between 1072 to 102

Hartree. All calculations were performed with 10 self-consistent cycles. In Fig 3.8 we plot

the relative difference of én computed with different amplitudes for two molecules (Ar, SiH,)

and for bulk Si.
38



Ar SiH4

S
10729 X0 10724 X0 1072
1073 - 1073 1073
-4 —4 —4
1075 - 1075 1075 .

10 107 10 105 102 10 10~ 1075 102 107 107 1079
1072 { XRPA 1072 { XRPA 102 10°3
107 107 107
¥ 0] 107 107
107 107 1 1073 r 107

1072 1073 1074 107° 1072 107 107* 107° 1072 1073 107* 1073

10729 X 107244 1072
L -5
107 1073 1073 10

105 1075 10
T T T T T T T T — 0
1072 1073 107* 1073 1072 1073 10™* 1073 1072 1073 107* 1073
aj
. . . on(a;)—dn(a; .
Figure 3.8: Relative difference A;; = W, where |...| is the 2-norm of dn’s (see
J

Eq. 3.34) defined on a real space grid.

We found that for all choices of K = xq, XRPA, X, the relative differences of dn’s are
smaller than 10~2 for amplitudes between 102 and 10~ Hartree.

Number of SCF cycles

For a given response function K, we tested the convergence of dn as a function of Ngcp.
In Fig. 3.9 we show the convergence of dn with respect to Ngcp for Ar, SiH, and bulk Si.

We see that for all choices of K = xq, XRPA, X, on converges within 0.02 with Ngcp = 10.

The convergence of XRPA

and x requires a slightly smaller number of SCF cycles compared
to that of xg. The same trend was observed for other molecules and solids considered in this
work.

Comparison of finite-field approach and density functional perturbation the-

ory
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Figure 3.9: Relative difference between dn(Ngcp) and the converged result dng. dong is
computed with Ngcp = 50. See Eq. 3.34 for the definition of dn.

Based on the results of the two previous subsections, we carried out all the calculations
shown in the previous sections with @ = 1073 Hartree and Ngcp = 10. Here we show that
this choice of a and Ngcf gives accurate spectral decomposition of response functions for
GoWj calculations.

We carried out GOWS{PA calculations for the GW100 test set, with the spectral decom-
position of yg computed by either the finite-field (FF) approach with a and N as specified
above or by density functional perturbation theory (DFPT). All parameters (Nppgp, etc.)
for GOWg{PA calculations are the same as those given in Section 3.1.4. In Fig 3.10 we
compare the VIP and VEA obtained with FF and DFPT.

Calculations based on yg computed with FF and DFPT yield almost identical VIP and
VEA. The mean absolute deviation for VIP (VEA) between the two sets of calculations is

0.005 (0.005) eV.
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Figure 3.10: Comparison of VIP and VEA for the GW100 set obtained at the GOWORPA@PBE
level, with yo computed with either the finite-field (FF) approach or DFPT. Diagonal dash
lines are DFPT results, dots are FF results.

Exchange-correlation kernel in the PDEP basis

Fig. 3.11 presents the symmetrized exchange-correlation kernel fxe matrix in the PDEP

basis for Ar, SiH, and CO, molecule.

Ar SiHy o, 0

32 32 32

Figure 3.11: First 32 x 32 matrix elements of the exchange-correlation kernel in PDEP basis
(the space of xq eigenvectors) for Ar, SiH, and CO, molecule.

As shown in Fig. 3.11, the fxe matrix is almost diagonal in the PDEP basis due to the

similarity of yp and x eigenvectors.
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GW calculations beyond the random phase approximation for periodic sys-
tems

In this section we derive the expression of response functions for periodic systems. For
periodic systems, we partition ¥, Xo and fze in G space into different components: the head
(G =G =0), wing (G=0,G'"#0o0r G'=0,G #0) and body (G # 0 and G’ # 0). We

write yo and fxe as:

i ho wi
X0 = (3.35)

W B

- —a 0
fxe = (3.36)

0 F

where h, W and B are head, wing and body of xg. F and —« are body and head of fxc.
In the GW formalism adopted in this work, B and F' are approximated by their low-rank
decomposition, and they correspond to the xo and fXC discussed previously.

Inserting Eq. 3.35, 3.36 into Eq. 3.29, 3.30, 3.31 and solving for the head and body of

X, one obtains:

Lo GywRPA
)zhead _ k(ll;ka) GOWO xc (3,37)
-1 GoWolo
(VB4 Lywwim GoW A
KON = MB+ O MWW + (I + F)MB] GoW (3.38)
| M+ MWW + F)M — 1 GoWolg
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where [ is the Npprp X Nppgp identity matrix, and

1—h—-WiMW GoWHPA
b= (3.39)

1-(1-a)h—(1—a)WI(I+F)MW GoW*,GoWyly

(I —B)~1 GoWRPA
M = (3.40)

[ —BI+F)Y GoWg, GoWply

Finally, the screened Coulomb interaction is computed from Eq. 21, 22, 23 of Ref.117
using the head and body of y, as derived above.

In the calculation for solids presented in the previous sections we neglected the head of
fXC by setting a = 0. In selected cases, we included the head by computing « from the
high-frequency dielectric constant of the material, as suggested in Ref.41, and we found that
the effect of the head on the computed quasiparticle energies was negligible. In Fig. 3.12
we present the quasiparticle energies of Si computed with @ = 0 and o = 0.016 (note that
a = 0.016 here corresponds to o = 0.2 in Ref.41 due to a difference of 47 in the normalization
factors used here and in Ref.41). We see from Fig. 3.12 that o = 0 and a = 0.016 lead to

very similar quasiparticle energies for both GOW({ * and GoWpl'g calculations.

Renormalization of the exchange-correlation kernel

To illustrate the effect of renormalization on GW calculations, in Fig. 3.13 we present the
X0, fxes 1 — xo(1+ fxc)]_l, XRPA: X and Xp matrices in the PDEP basis for the SiH,
molecule. Calculations were performed with the PBE functional. Since xq is by definition
diagonal in the PDEP basis and fx¢ is nearly diagonal (see Fig. 3.11), in Fig. 3.13 only the
diagonal elements of matrices are shown, and in the following discussion when we refer to
these matrices we consider only their diagonal elements, which correspond approximately to

their eigenvalues.
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Figure 3.12: Quasiparticle energies of Si (64-atom supercell, PBE functional) computed with
and without the head of fy.. VBM obtained at GOWRPA level is set as the zero of energy.

According to Fig. 3.13, as the PDEP index increases, xg asymptotically decays to zero
while the magnitude of fyc keeps increasing, leading to the slow decaying tail of the 11—
Y0(1 + fxe)] ™! matrix. In the case of ¥, the slow decaying tail of [1 — Yo(1 + fxc)] ™! is
suppressed by being multiplied by xq (see Eq. 3.30), leading to similar tails for y and Xrpa;
on the other hand, Y shows the same slow decay as [1 — Xo(1 + fxe)] ™! (see Eq. 3.31).
Note that for large PDEP indices x can be positive as fxe decreases below —1. An effective
response function (xr) with positive eigenvalues may be unphysical. On the contrary, YRpa
and y are always negative.

By renormalizing fc (see Fig. 3.14) we exclude the short-range components of fxc that
are smaller than —v. (i.e. eigenvalues of fxc smaller than —1), and therefore we enforce the
negativity of xp and ensure its fast convergence toward zero.

To illustrate the effect of the fxc renormalization on GW quasiparticle energies, in Fig.
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Figure 3.13: Diagonal elements of Yo, fxc, [1 — Xo(1+ fxc)] ™', XrpA, X and Xp for the SiH,
molecule.

3.15 we present the electronic gap of Si and SiH, computed at GoWy* and GoWyl'g levels of
theory as a function of Nppgp, using either un-renormalized or renormalized fxc. GoWy™
results are barely affected by the renormalization, which primarily acts on the tail of fxe,
which is suppressed by being multiplied by xo when computing x. On the other hand, the

convergence of GoWLg results is significantly improved with renormalized fyc.

45



SiHa Si

_5 T T
0 2000 4000
0.0 0.0
—0.2 A
& —0.2 1 —04
— xr(nn) =0.6 4 — r(nn)
—0.4 A . N
— Xr(r) —0.84 — xr(n
0 100 0 2000 4000
ipDEP ipDEP

Figure 3.14: Diagonal elements of un-renormalized (nr) and renormalized (r) fyc matrices
and resulting xp matrices for the SiH, molecule and bulk Si.
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using either un-renormalized (nr) or renormalized (r) fxc matrices.
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3.1.5 Conclusions

In summary, we developed a finite-field approach to compute density response functions (g,
XrpA and x) for molecules and materials. The approach is non-perturbative and can be
used in a straightforward manner with both semilocal and orbital-dependent functionals.
Using this approach, we computed the exchange-correlation kernel fy. and performed GW
calculations using dielectric responses evaluated beyond the RPA.

We evaluated quasiparticle energies for molecules and solids and compared results ob-
tained within and beyond the RPA, and using DFT calculations with semilocal and hybrid
functionals as input. We found that the effect of vertex corrections on quasiparticle energies
is more notable when using input wavefunctions and single-particle energies from hybrid
functionals calculations. For the small molecules in the GW100 set, GoIVy* calculations
yielded lower VIP and higher VEA compared to GOWg{PA results; GoWpl'g calculations
yielded lower VIP and VEA compared to G’OW(?PA results. In the case of solids, the energy
of the VBM and CBM shifts in the same direction, relative to RPA results, when vertex
corrections are included, and overall the band gaps were found to be rather insensitive to
the choice of the GW approximation.

In addition, we reported a scheme to renormalize fxc, which is built on previous work
[325] using the LDA functional. The scheme is general and applicable to any exchange-
correlation functional and to inhomogeneous systems including molecules and solids. Using
the renormalized fxc, the basis set convergence of GoWpI'g results was significantly improved.

Overall, the method introduced in our work represents a substantial progress towards
efficient computations of dielectric screening and large-scale GoW) calculations for molecules

and materials beyond the random phase approximation.
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3.2 Bethe-Salpeter equation

Reprinted with permission from N. L. Nguyen, H. Ma, M. Govoni, F. Gygi, and G. Galli.
Physical Review Letters. 122, 237402 (2019). Copyright (2019) by the American Physical
Society. https://doi.org/10.1103 /PhysRevLett.122.237402

We present a method to compute optical spectra and exciton binding energies of molecules
and solids based on the solution of the Bethe-Salpeter equation (BSE) and the calculation
of the screened Coulomb interaction in finite field. The method does not require the explicit
evaluation of dielectric matrices nor of virtual electronic states, and can be easily applied
without resorting to the random phase approximation. In addition, it utilizes localized
orbitals obtained from Bloch states using bisection techniques, thus greatly reducing the
complexity of the calculation and enabling the efficient use of hybrid functionals to obtain
single particle wavefunctions. We report exciton binding energies of several molecules and
absorption spectra of condensed systems of unprecedented size, including water and ice

samples with hundreds of atoms.

3.2.1 Introduction

The ability to simulate optical properties of materials from first principles is key to building
predictive strategies for the design of new materials and molecules, as well as to interpret-
ing increasingly complex experimental results [52, 283, 287]. The last three decades have
witnessed a tremendous success of many-body perturbation theory (MBPT) [271, 237] in
the description of the interaction of molecules and condensed matter with light. MBPT,
a Green’s function method, can be used to accurately compute various excitation proper-
ties, based on single particle energies and orbitals obtained, e.g. within density functional
theory (DFT) [146, 191]. In particular, by solving the Dyson equation [88] within the GW
approximation [133] and the Bethe-Salpeter equation (BSE) [271, 317], one can accurately

predict the energy of charged and neutral excitations [271], excitonic and charge transfer
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states [32, 304], and optical absorption spectra [130, 357, 309, 33, 291]. However, the so-
lution of the BSE is computationally demanding, more so, for example, than the use of
time-dependent density functional theory (TD-DFT) with semi-local or hybrid exchange-
correlation (xc) functionals [314, 235, 386]. Therefore, TD-DFT is still widely used to com-
pute absorption spectra, albeit often yielding less accurate results than the BSE.

The unfavorable cost of conventional approaches [5, 310, 29, 232, 238, 50] to solve the
BSE is mainly due to the evaluation of explicit summations over virtual states and to the
need of evaluating and inverting large dielectric matrices. In particular, the straightforward
diagonalization of the two-body exciton Hamiltonian in the basis of electron-hole pairs re-
quires a workload of order O(N®), where N is the number of electrons in the system [5, 309).
A formulation of the BSE without empty states that sidesteps the diagonalization of the
two-body exciton Hamiltonian, and does not require the inversion of dielectric matrices was
recently proposed [304, 305, 291], and shown to accurately yield absorption spectra over
a wide range of frequencies using the Liouville-Lanczos algorithm [386, 303]. A distinctive
feature of this formalism based on density matrix perturbation theory (DMPT) is the utiliza-
tion of projective dielectric eigenpotentials (PDEP) [400, 399] to compute screened exchange
integrals. Despite the advantages of the DMPT formulation and its more favourable O(N?)
scaling, drawbacks remain, including the need to extrapolate the results as a function of
the number of dielectric eigenpotentials and, most importantly, the difficulty to use DFT
calculations with hybrid density functionals [280, 45, 346] as a starting point for the BSE
solution.

In this Letter, we present a novel method to solve the BSE by performing calculations
in finite electric fields. The two key features of the method are: (i) the direct evaluation of
the screened Coulomb interaction in finite field (FF), thus eliminating the need to compute
dielectric matrices altogether; (ii) the use of a compact, localized representation [125] of
the ground state Kohn-Sham (KS) wavefunctions, leading to a great reduction of the cost

to evaluate screened exchange integrals. We show that these features lead to a major im-
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provement in the efficiency of the BSE solution and, importantly, to the straightforward use
of the results of hybrid functionals as a starting point for GW and BSE calculations. The
FF-BSE can be used to compute not only the properties of single molecules or solids, but its
solution may be easily coupled to first principles molecular dynamics (FPMD) simulations
to obtain, e.g. optical spectra over multiple snapshots extracted from trajectories at finite
temperature and pressure, as we show below. We report examples for the optical spectra
of liquid water and ice as obtained by averaging over multiple trajectories, for systems with
up to 2,048 electrons. In addition, we present the results of calculations using ground state

wavefunctions computed with hybrid functionals [346].

3.2.2  Method

Absorption spectra of solids and molecules can be obtained by computing the imaginary

0p;

part of the macroscopic dielectric function Imef\f = drImazgt, where E is the macroscopic
J
electric field, and P = —%Tr {rp} the macroscopic polarization, I is the position operator,

and p the density matrix. We obtain % from the solution of the Liouville equation for
the density matrix.[386] For a system described by a mean-field Hamiltonian H(p) subject
to a monochromatic electrostatic potential ¢p(w) = —E(w) - r, the time evolution of the
density matrix is given by the Liouville equation wp = [H(p) — &, p]. Upon linearization,
we obtain the first order variation of the density matrix as the solution of the following

non-homogeneous linear system:
(w - ,C)Aﬁ = —[gg, ﬁo] ) (341)

where p? is the unperturbed density matrix. The Liouville superoperator £ acting on Ap is
defined as
LAp = [H?, Ap]+ [AVi, 1°] + [AS, 57, (3.42)
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where H? is the unperturbed Hamiltonian, and AVH and AY. are the first-order variation of
the Hartree and the exchange-correlation (xc) self-energy induced by Ap, respectively. The
change in polarization induced by E, entering the definition of the absorption spectrum, can
hence be expressed as % QTr {TZT}. As previously noted [304], the homogeneous
linear system corresponding to Eq. 3.41 is a secular equation with neutral excitation energies
as eigenvalues; these energies are equivalent to those obtained by solving the BSE with static
screening if an effective Hamiltonian and the COHSEX self-energy [133, 237| are utilized for
H° and AY, respectively. However, unlike BSE solvers based on the diagonalization of the
two-particle electron-hole Hamiltonian[271], Eq. 3.41 can be solved without defining a transi-
tion space, and hence a direct product of occupied and unoccupied active subspaces. In order
to avoid such definition and the need to compute virtual electronic orbitals, we introduce
the auxiliary functions |a%> = PC%E? | o), where , is the v-th occupied state of the un-
perturbed Hamiltonian (with energy e,); P. = 1 — ZNOCC low) (o] is the projector onto the
unoccupied manifold [21], and Ny is the number of occupied states. It has been shown that

an Hermitian solution of Eq. 3.41 can be written as g—%ﬂg = ZNOCC <\90v> (ad| + |al) (gpv|>,

and the functions a{, are obtained from the solution of the following non-homogeneous linear
systems:
NOCC .
3 (mw — Dyy — KX 4 K;g,) jal)) = Buj o) (3.43)
'—1

where the three terms on the RHS of Eq. 3.42 are:

Dyylaly) = B (H°=20) byylal) . (3.44)
Kle |a ) = 2P. (/dr'vc(r,r’)gpi,(r’)ai,(r/)) ou(r), (3.45)
KMy = Peryy(r)d,(r). (3.46)

and we have defined the screened integrals 7,,/(r) = [ W(r,r')py(r')f (r/)dr’, where W

and v, are the screened and bare Coulomb interactions, respectively. Eq. 3.43 can be solved
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for multiple frequencies using the Lanczos algorithm. The evaluation of the integrals 7,
represents the most expensive part of the calculation because it entails a computation of the
dielectric matrix. Recently, Eq. 3.43-3.46 were solved using Kohn-Sham (KS) states as input,
using DFT calculations with semi-local functionals, and a spectral representation of the
dielectric matrix via its eigenvectors, called projective dielectric eigenpotentials (PDEP).[305,
293, 292]

Here we introduce a new approach with two key features: (i) the screened integrals
are directly computed from finite field calculations avoiding any explicit evaluation of the
dielectric matrix; in addition, (ii) the total number of required integrals, in principle equal

to N2

oces 1s reduced to a much smaller number that scales linearly with the system size, by

using a compact, localized representation of single particle wavefunctions. The very same
representation is adopted to increase the efficiency of hybrid-DFT calculations[125], leading
to a formulation of BSE which requires the very same workload when using local or hybrid-
DFT starting points. We now illustrate steps (i) and (ii) in detail.

Using the definition of the screened Coulomb interaction in terms of the density-density
response function, W = ve + vexve, we express the screened integrals as 7, = 7., +
vexTy s, where 7 (r) = [we(r, r')@y(r')@¥ (r')dr’ are obtained by multiplying orbitals in
real space and then applying the bare Coulomb potential v, in reciprocal space. For each 7'17;‘”,
we determined two densities (pi},) by solving self-consistently the uncoupled-perturbed KS
equations with Hamiltonian (f[ ¢+7",). The screened exchange integrals are then obtained

as:

dr’ (3.47)

where a central finite difference formula was used to compute the linear variation of the den-
sity, i.e. x7,. The algorithm described above was implemented by coupling the WEST [117]
and Qbox [124] codes, operating in client-server mode, thus enabling massive parallel calcu-
lations by assigning independent finite field calculations to different Qbox instances, which

may be started at any point during, e.g. a first principle MD simulation.
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Next we reduced the number of integrals to compute, in principle equal to Ngcc, by local-
izing single particle wavefunctions in appropriate regions of real space and neglecting those
orbital pairs that do not overlap. To do so we used the recursive bisection technique[125],
whereby orbitals are truncated in subdomains of variable size while controlling the 2-norm
error caused by the truncation procedure. This technique was previously used to improve the
efficiency of calculations of exact exchange integrals and is here applied to screened exchange
integrals. When using orbital bisection, a unitary transformation U: |@m) = >, Unw|@w)
of the occupied KS states is evaluated, and used to transform the matrix 7 = UrU f (and
similarly 7%) into a sparse form, where only a relatively small number of selected elements
need to be computed using Eq. 3.47. The number of required non-zero screened integrals
scales linearly with system size. Different types of localized orbitals were used previously
to solve the BSE, e.g. atomic-orbital basis sets [215], or maximally localized Wannier or-
bitals [239, 236]. However, there are several advantages of the localization technique used
here: (i) it is adaptive, i.e. the orbitals can be localized in domains of different shapes and
sizes; (ii) it allows to systematically control the localization error with a single parameter,
and (iii) it is consistently applied to reduce the number of screened integrals and, at the same
time, to speed up hybrid-DFT calculations[127, 68]. Hence the workload of our calculations
is of O(N 4) for the evaluation of 7,/ and of O(N 3) for the evaluation of Eq. 3.46, irrespec-
tive of whether semilocal or hybrid functionals are used. This is an important achievement,
especially for the study of optical properties of materials, e.g. complex oxides, for which
semi-local functionals do not even represent a qualitatively correct starting point to solve
the BSE. In addition, we note that the computational gain of the method presented here
increases as the size of the system increases, that is the prefactor in our calculations is in-
creasingly smaller, compared to that of density functional perturbation theory calculations,

as the size of the system increases (see Section 3.2.4).
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3.2.8 Results

To demonstrate the accuracy of the FF-BSE methodology, we first calculated the neutral
singlet excitation energies for the Thiel’s set [343, 344], which consists of 28 small organic
molecules. We compared our results with the best theoretical estimates as obtained from
quantum chemistry calculations, i.e. coupled cluster and complete active space second-order
perturbation theory using the aug-cc-pVTZ atomic basis set [343, 344]. This molecular set
was recently used to benchmark GW-BSE [47, 297, 165] and TD-DFT calculations (with
PBEO [165] and dielectric-dependent hybrid functionals [45]). We evaluated the screened in-
tegrals in Eq. 3.47 with and without the RPA, and using either the Perdew—Burke—Ernzerhof
(PBE) [279] or the PBEO hybrid functional [4]. As shown in Fig.3.16, we obtained a good
agreement with benchmark calculations, thus validating our methodology for molecules. A
small change is observed when we compute the screened integrals with and without the
Random Phase Approximation (RPA). Our results also show that BSE calculations based
on GoWj starting from the PBE (PBEO) ground state underestimate excitation energies
by ~ 0.7 eV (~ 0.1 ¢V). The improvement observed with the PBE0 functional underscores
the importance of an accurate ground state starting point. We also validated our method
for solid LiF and compared our calculations with experiment and previous results (Section
3.2.4).

Next, we show how the use of bisected orbitals can reduce the computational cost of BSE
calculations of optical spectra of the Cgg fullerene in the gas phase. The computed electronic
gap at the optimized PBE geometry and at the GoWy@PBE level of theory is 4.23 eV. This
value is smaller than that obtained at the experimental geometry (4.55 eV) at the same
level of theory, consistent with Ref. 296, and it is ~ 0.7 eV lower than the experimental
value, estimated as the energy difference between the measured ionization potential and the
electronic affinity [421, 389]. To evaluate the exciton binding energy, ELY, we computed the
energy difference between the electronic gap and the lowest optically-allowed singlet excited
state (the lowest neutral eigenstate has Tg1 symmetry). Cgo has 120 doubly occupied valence
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Figure 3.16: The lowest singlet excitation energies of the 28 molecules of the Thiel’s set
computed by solving the Bethe Salpeter equation in finite field (FF-BSE) with (green) and
without (blue) the Random Phase Approximation (RPA), using the PBE and the PBEO hy-
brid functional (red). Results are compared (AFE) with the best theory estimates obtained
using quantum chemistry methods [343, 344]. The horizontal lines denote the maximum,
mean, and minimum of the distribution of results, compared with quantum chemistry meth-
ods. x denotes the response function computed with and without the RPA. The numerical
values are reported in Section 3.2.4.
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Figure 3.17: Optical absorption spectra of Cgg in the gas phase computed by solving the
BSE with several thresholds £ for the screened exchange integrals. The resulting number of
integrals is indicated. The inset shows the same spectra plotted as a function of w — Fy, and
compared with experiment [176]. Eg is the electronic gap. Note that an accurate spectrum
is obtained when using 4,284 integrals instead of the total number which is more than three
times larger (14,400).
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states, and in principle 14,400 integrals should be evaluated. As shown in Fig. 3.17, the
number of screened integrals entering Eq. 3.47 can be greatly reduced without hardly any

loss for accuracy in the computed absorption spectrum.
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Figure 3.18: Imaginary part of the macroscopic dielectric constant (ej7) as a function of the
photon frequency (w) for a proton-disorder hexagonal ice model (left panel) and liquid water
(right panel) computed as an average over nine samples extracted from path-integral molec-
ular dynamics (PIMD) trajectories [95] generated with the MBPol potential. Experimental
results (from Refs. 136 and 187 for water and ice, respectively) are shown by the blue solid
lines. The black and red arrows indicate the positions of the first excitonic peak and the
onset of the spectra, respectively.

Finally, we report results for the optical absorption spectra of liquid water and ice. Even
though the first measurement of these spectra dates back to 1974 [187, 136, 179], experimental
estimates of the exciton binding energy, EJ¥, are yet uncertain due to uncertainties in the
values of ice and water electronic gaps [93, 95] and to the presence of a low energy tail
in the absorption spectra (~ 1.0 eV) [187, 136, 179] hampering a precise determination
of the onset energy. Thus far, only a few GW-BSE computations of the optical spectra
of water and ice have been carried out; several theoretical studies used rather small unit
cells (~ 17 water molecules) and approximations for the static dielectric matrix [100, 139,
140, 128, 101] (e.g. homogeneous electron gas model). Here, we performed calculations for
several samples of 64 water molecules of liquid water, extracted from MD trajectories [95]
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and for 96 water molecules of a proton-disorder hexagonal ice model [94], whose structure
was optimized with the PBEO functional at 0 K [94]. In Fig.3.18, we compare our results
with experiments [187, 136]. Due to the underestimation of the GoWo@QPBE [288, 55, 93]
electronic gaps of both systems, GW-BSE absorption spectra are red-shifted with respect to
the experimental one. Hence we aligned the first peak of the computed GW-BSE spectrum
with experiment, and we shifted the TD-DFT and GW-IPA (independent particle) spectra by
the same energy. We found a remarkable agreement between GW-BSE and experiment both
for the relative energy positions and intensities of the peaks over a wide range of energy. As
expected, the TD-DFT and GW-IPA approximations predict significantly different spectra.
We examined the influence of the DFT wavefunctions and eigenvalues chosen as starting
point of the calculation, finding a good qualitative agreement between spectra for one water
configuration computed at the DFT-PBE and dielectric hybrid (dielectric-dependent hybrid
(DDH)[346]) level of theory (see Section 3.2.4). We also investigated the effect of different
structural models on the computed spectra, by comparing results obtained using trajectories
generated with the MB-pol potential [15] and path integral MD, with those computed for
PBE trajectories, extracted from the PBE400 set [69]. Our results show a broadening of
the averaged PIMD absorption spectrum, and a red-shift of ~ 0.5 eV with respect to the
averaged FPMD@PBE spectrum (see Section 3.2.4).

The exciton binding energies of liquid water and ice were computed using 64 and 96 water
molecules, and were evaluated as the energy differences between the onset (EJY}) and the first
main peak (EJ5) of the absorption spectra (marked by black and red arrows respectively in
Fig. 3.18). We obtained Ef] = 1.64 eV and 1.82 eV, and Ef§ = 2.3 eV and 3.12 eV for water
and ice, respectively. The values for Ef are consistent with those reported in previous
calculations, i.e. 2.5 [101] and 3.2 [128] eV. Finally, we also performed calculations for a
larger supercell including 256 water molecules (2048 valence electrons) and concluded that
size effects, although not fully negligible, are rather minor on the value of the exciton binding

energies (of the order of ~0.2-0.3 eV).
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3.2.4 Technical details

Solution of the Bethe Salpeter equation within density matrix perturbation
theory

Within density matrix perturbation theory (DMPT) [386, 304], the first order variation of

the density matrix is expressed as:

— pcApAp'U “I'_ P’UAﬁPC B (349)

where P, = > i i) (@il P.=1— Py, Noec is the number of occupied states, and ¢; is the
i-th occupied state of the unperturbed Hamiltonian (with energy ¢;). In Eq. 3.48 we have
used the completeness of the eigenvectors of the unperturbed Hamiltonian, and in Eq. 3.49
we have used the property: P,ApP, = P.ApP. = 0. Introducing the following functions in
Eq. 3.49:

’CLU> = pcAﬁ’<PU> (3.50)

bo) = PeART o) (3.51)

we obtain an expression for Ap that does not contain any explicit summation over empty

states:
NOCC

Ap = Z (lav) {pvl +lev) (bul) - (3.52)

v=1

The function a, and b, are obtained solving the linearized Liouville equation:

~

wAp— [H°, Ap] — [AViy, p°] = [AS, 5] = [0, 5. (3.53)
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Multiplying Eq. 3.53 and its Hermitian conjugate by P. to the left, and by |¢v) to the right,

we obtain:

(wf o €v> lay) — B, [AVH +AS, pO} o) = —P.dlow) (3.54)

(wf + 70 = 20) oo} + Pe [AV + A5, 2°] o0) = Pedln) (3.55)

where [ is the identity operator. Because the two commutators in Eq. 3.54 and in Eq. 3.55

couple the set of a, and b, we introduce the following matrix notation:

wI—'D—}Cle—i—/Cld —/CQe—i—/CQd A {_pc§5|90v>} (3 56>
K2_kx oI+ D+kle—xkd |\ B {Bblen} |
TA=A, IB=25, (3.57)
DA = {Pc(sza —epl)Jay) sv el NOCC]} , (3.58)
NOCC
KleA = Q/dr'PC(r,r')gov(r’) Z /dr”vc(r',r”)gpz,(r'/)avl(r’/) :v € [1.. Noce| ¢ »
U/
(3.59)
NOCC
K2 A = 2/dr'PC(r,r')gov(r’) Z /dr”vc(r’,r”)a?’i,(r”)@v/(r") :v € [1.. Noce| ¢ »
7}/
(3.60)
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NOCC
Kl A — / ' ol ) S () / ar"W (e 2o (1" o) 0 € (L. Noce] § -

'U/

(3.61)

NOCC
KA = /dr'Pc(r,r’) Z o (1)) /dr”W(r’,r”)a;,(r”)gpv(r”) :v € [1.. Nocc]

(%

(3.62)

Equations for the application of D, Kcle, K2, ICld, and K2 on B can be obtained
substituting a,, with b, in Eq.s 3.58-3.62, where W and v, are the screened and bare Coulomb
interactions, respectively. In Eqgs. 3.58, HP is defined in terms of the GoW( quasiparticle

energies ET%P, the KS eigenvalues egns and KS wavefunctions |py,) as:

Ncut

A A~ P A

Ao =HYg+ Y lomdlen — €S — Ae)(om| + Acl, (3.63)
m=1

In our calculations, GogW( eigenvalues are obtained for all the occupied states and for some

of the empty states up to a given number N¢yt. For the systems studied in this work, Neyt

was chosen to correspond to energies about ~ 10 eV and ~ 20 eV above the conduction

band minimum for the molecules of the Thiel’s set, and for water and ice, respectively. For
QP KS

the remaining states higher in energy, we approximated Ae = € Nws ~ ENows”

In Eqgs. 3.61 and 3.62, W is the statically screened Coulomb potential:
W = E_lvc = Ve + (UC _|‘ f;(;c)ch, (364)

where Y is the density-density response function, v. is the bare Coulomb potential, and fy
is the functional derivative of the xc potential with respect to the electron density.

2
Within the plane wave basis set, the bare Coulomb potential, v, = MZ{:_T—EP(SGG/ (0 is
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the Kronecker delta), is divergent in the long wavelength limit (q — 0). The divergence in

Eq. (3.64) occurring when G = G’ = 0 can be numerically integrated as:

—1
dq €y —1
W(0,0) = (0, 0) + dre? / 4 S - (3.65)
Ry—o (2’/T) q
where €); = %1 is the macroscopic dielectric constant. The first term, v.(0,0), in the

€00
right-hand side of Eq. 3.65 was formally treated with the Gygi-Baldereschi method [126] to

compute the Fock exact exchange matrix elements in reciprocal space. The integration in
the second term is evaluated in the region Ry—( of the first Brillouin zone (BZ) enclosing
the I-point (i.e. q = 0). The integration in Eq. (3.65) can be evaluated approximating the
BZ with a sphere, or by using a Monte Carlo integration method to take into account the
specific shape of the BZ [117]. €,y is evaluated using the Qbox code [124] by computing
the variation of macroscopic polarization of the system in response to a macroscopic electric
field.

Finally, in this work we considered an Hermitian form of Ap (i.e. |by) = |ay)), which is

referred to as the Tamm-Dancoff [65] approximation and has been extensively discussed in

the literature [306, 365, 318].

Finite field algorithm

In this section, we describe the steps followed when solving the BSE using the finite field
(FF) approach and bisection techniques; we also discuss the scaling of the algorithm.

Step 1: Ground state calculation

The first step of the calculation involves the solution of the KS equations to obtain
ground state single particle orbitals and energies. KS equations may be solved using local
or semi-local exchange-correlation functionals (we call this approximation simply DFT) or
hybrid-exchange correlation functionals (we call this approximation hybrid-DFT). Within a

plane-wave implementation, the solution of the KS equations is of O(N 3) with both local or
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hybrid functionals. N is the number of valence electrons. However hybrid-DFT calculations
are computationally much more expensive, due to different prefactors and different relative
weights of the various parts of the calculations, as indicated in Table 3.5. In our work, the
efficiency of solving the KS equations with hybrid functionals is greatly improved by using

the bisection algorithm of Refs. 125, 127.

Table 3.5: The scaling of GGA and hybrid-DFT calculations is illustrated for the two main
parts involved in the solution of the KS equations: the calculations of H % glwi) (application of
the KS Hamiltonian to single particle orbitals) and {(¢;|y;) = d;; (orbital orthogonalzation).
M denotes the number of plane waves. With (hybrid-DFT); we denote hybrid calculations
carried out using the bisection technique [125, 127]; a? is the number of non zero orbital pairs
included in the calculations of the exchange potential and energy. ab is usually much smaller
than N. We note that in (hybrid-DFT); the workload to evaluate FI% glpi) can be reduced
to O(N) by computing the overlap integrals only in the domain where the bisected orbitals
are non zero (not yet implemented; work is in progress to estimate how the implementation

may affect parallelization).

GGA Hybrid-DFT (Hybrid-DFT),
HO|p;) N M log(M) NQMlog(M) QN M log(M) log(N)
{@ilej) N?M N2M N2M height

Step 2: Excited state energies

Excited state energies have been obtained within the GogW( approximation starting from
DFT ground states (for water and ice) or from hybrid-DFT (for the molecules belonging
to the Thiel’s set and for one snapshot of water). The scaling of GyW( calculations is of
O(N*), while that of hybrid-DFT, as mentioned above, is of O(N3).

In the following, factors log(M) and log(N) will be neglected.

Step 3: Solution of the Bethe Salpeter equation

Two main operations are involved in the solution of the BSE within a DMPT [304, 305,
291] approach: the evaluation of the screened Coulomb interaction W, Eq.(3.64) and the
application of the matrix in Eq. 3.56.

3.1 Calculation of W

Using density functional perturbation theory (DFPT) [21] to obtain the spectral decom-

position [400, 399] of the dielectric matrix €, the scaling of the calculation is of O(N%),
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namely proportional to NppepN® where Nppgp is the number of eigenpotentials included
in the spectral decomposition of e. We define oPFPT = %.

Using the FF method, the workload to compute W is proportional to N2 multiplied by
the workload of either DFT or hybrid-DF T calculations, hence it is of O(N®). However it can
be decreased to O(N*) using the bisection technique [125], and it becomes proportional to

DFPT and, importantly, the larger the system, the smaller

ab x N4, where in general b <«
is the ratio OZDQ%. Most importantly, the scaling of FF computations is the same for DFT
and hybrid-DFT calculations. The screening in the Random-Phase Approximation (RPA)
can be recovered within FF by skipping updates of the xc potential during self-consistency.

3.2 Application of the Liouville superoperator

The scaling of this step is O(N3), similar to the method of M. Marsili et al. [236], with
a pre-factor greatly reduced when using bisected orbitals, compared to calculations using
Bloch orbitals.

In addition to the overall scaling discussed above, pre-factors and parallelization tech-
niques play an important role in determining the feasibility and efficiency of any algorithm.
Our FF calculations is fully parallelized via coupling the WEST [117] and Qbox [124] codes
operating in client-server mode; the WEST code prepares simultaneously multiple unscreened
exchange integrals 7./ ,; the calculations of the perturbed KS equations are performed by dif-

ferent Qbox instances, which in return yield the response densities, thus enabling WEST to

evaluate the screened exchange integrals 7,,,/.

Convergence of BSE calculations as a function of bisection threshold

We used the bisection technique[125, 127, 68] to obtain localized orbitals from the KS wave-
functions by applying a unitary transformation U: |@m) = >, Unov|ew). We then defined
the transformed screened integral matrix 7 = UrU f, and leveraged the sparsity of the latter
to compute the FF response only for selected elements. In the bisection method [125], the

degree of localization of an orbital ¢, in a subdomain Q) is given by the singular value
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07(5) of the Walsh projector[387] P(¥) associated with the m-th orbital. Elements of 7 are
computed only if the corresponding orbitals have a sizable 2-norm in a common subdomain,
i.e. they are neglected if 3pk) . (cﬁ?)z < & and <C£Lk))2 > (1—=¢) or (aﬂi))Q > (1-¢)
and (c%k)>2 < &, where £ € [0, 1] is the bisection threshold[127].

In Fig. 3.19, we show the convergence of the BSE spectra of water as a function of the
number of screened exchange integrals included in the calculations. We show results for
three different snapshots. Note the similarity of the spectra computed with ~ 5,000 and
~ 10,000 integrals and the nearly identical results in the low part of the spectra (below 7.5
eV). The total number of integrals for the system shown in Fig. 3.19 (64 water molecules at
the experimental density) is 65,536.

In Tab. 3.6, we show the convergence of the exciton binding energy of Cgg as a function
of the number of screened exchange integrals included in the calculations.

We found that a convenient way to determine the threshold £ for which spectra are
reasonably well converged is by determining the convergence of the Fock energy, E,, as a
function of £. In Tables 3.7, 3.8 and 3.9, we show how the Fock energy and the relative
error 7 = |[Ex(&) — Ex(€ = 0)]/Ex(¢ = 0)|, vary as a function of the bisection threshold, &,

for Cgp, water and ice samples. See also Fig. 3.20, 3.21, and 3.22.

Table 3.6: The number of screened exchange integrals (Nj,¢) entering Eq. 3.46 and the
computed exciton energy of the first singlet transition of the Cgg molecule as a function of
the bisection threshold, &, compared with experiment. The bisection orbitals were obtained
using 5 bisection layers in each direction.

§ Nint E*X (eV)

0.500 132 3.05

0.282 420 3.03

0.032 4284 3.01

0.010 9558 3.00

0.000 14400 3.00

Expt. - 3.01
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Figure 3.19: Imaginary part of the macroscopic dielectric constant (ej;) of three snapshots
representing liquid water, as a function of the photon frequency (w), computed with two
different bisection thresholds of 0.07 and 0.02. The number of the screened exchange integrals
corresponding to these threshold values are shown in the inset of each panel. The bisection
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orbitals were obtained using 2 bisection layers in each direction.
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Figure 3.20: The Fock energy, E,, as a function of the number of screened exchange integrals
(Nint), for the Cgp molecule.
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Figure 3.21: The Fock energy, E,, as a function of the number of screened exchange integrals
(Nint), for a representative liquid water sample.
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Table 3.7: The number of the screened exchange integrals (Vi) and the Fock energy Ey as
function of the bisection threshold, £. The last two columns show s = Ny (& = 0)/Nint (§)

and the relative error r = |[Ex(€) — FEx(& = 0)]/Ex(€ = O)‘ (in %), for the Cgp molecule (see

also in Table 3.6). The bisection orbitals were obtained using 5 bisection layers in each
direction. The function Ey(Niy) is shown in Fig.(3.20).
§ Nt  Ex (Ry) s r(%)

0.0000 14400 -187.79985  1.00000  0.00000
0.0032 12954 -187.79268 1.11163  0.00382
0.0100 9558 -187.66025  1.50659  0.07433
0.0316 4296 -186.67825  3.35196  0.59723
0.0400 3894 -186.38910  3.69800  0.75120
0.1000 1956 -183.12780  7.36196  2.48778
0.2000 732  -155.66261 19.67213 17.11250
0.2815 420  -154.75853 34.28571 17.59390
0.5000 132 -153.20143 109.09091 18.42303

Table 3.8: The same quantities as in Table 3.7 are reported for a liquid water snapshot.
The bisection orbitals were obtained using 2 bisection layers in each direction. The function
Ex(Niyt) is shown in Fig.(3.21).
§ N EB®y) s (%)

0.0000 65536 -501.77258  1.00000  0.00000

0.0032 23818 -501.74415 2.75153  0.00567

0.0100 15388 -501.65208 4.25890  0.02402

0.0200 11700 -501.50407 5.60137 0.05351

0.0316 9404 -501.33773 6.96895 0.08666

0.1000 4198 -500.43546 15.61124 0.26648

0.3162 1838 -488.48393 35.65615 2.64834

0.4472 1430 -476.11718 45.82937 5.11296

Table 3.9: The same quantities as in Table 3.7 are reported for the ice model. The bisection
orbitals were obtained using 2 bisection layers in each direction. The function Ex(Nipt) is
shown in Fig.(3.22).

£ Ning Ex (Ry) 8 r(%)
0.0000 147456 -755.46176 1.00000 0.00000
0.0032 20878 -755.37680 7.06275 0.01125
0.0100 10416 -755.26208 14.15668 0.02643
0.0200 7622  -754.94636 19.34610 0.06822
0.0316 6194 -754.53863 23.80626 0.12219
0.1000 3318 -750.97496 44.44123 0.59391
0.3162 2948 -746.69768 50.01900 1.16010
0.4472 2368  -728.21575 62.27027 3.60654
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Figure 3.22: The Fock energy, E,, as a function of the number of screened exchange integrals
(Nipt ), for the ice model used in this work.

Computational setup for the calculation of neutral excitation energies of

molecules belonging to the Thiel’s set

The coordinates of the 28 organic molecules were taken from the supplementary material of
Ref. 327, where geometrical relaxations were performed at the Mgller-Plesset second-order
perturbation theory level with the 6-31G* basis (MP2/6-31G level). We performed DFT
calculations using both the Perdew—Burke-Ernzerhof (PBE) generalized gradient density
functional [279] and the PBEO hybrid functional [4] with the optimized norm-conserving
Vanderbilt (ONCV) pseudopotentials [324] to model the interaction between ionic cores and
electrons. The kinetic energy cutoff for the plane-wave basis set expansion was set to 60 Ry
(240 Ry for the charge density). We used periodic boundary conditions and orthorhombic
cells with the smallest distance between atoms belonging to different replicas equal to 15 A in
each direction.

The quasi-particle energies of the molecules were computed with the GoWgy method
using the WEST code [117]. We used 10 x N projective dielectric eigenpotentials (PDEPs)
to represent the dielectric matrix (N is the number of valance electrons). Based on the

convergence tests performed for the GW100 set [118], 10 x N is sufficient to converge the
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computed vertical ionization potential (VIP) and vertical electron affinity (VEA) within 0.1
eV. We note that GoW calculations may also be carried out in finite field, without the need
of determining eigenpotentials of the dielectric matrix [220].

Table 3.10 shows the GoW( VIP energy of the molecules of the Thiel’s set [343, 344]
computed using the PBE and PBEO functional ground state wavefunctions. The GoWj
VIP energy of the molecules are in close agreement with experiments, with a mean absolute
deviation (MAD) of 0.59 (PBE) and 0.26 (PBEO) eV, respectively.

Table 3.11 shows the BSE singlet excitation energies of the molecules of the Thiel’s
set [343, 344] computed using PBE and PBEOQ hybrid functionals, and using different levels

of theory for W corresponding to different approximations for f,. and x.

Table 3.10: Vertical ionization potentials (eV) of 28 molecules computed
using DFT-PBE, GoWy@PBE and GogWo@QPBEOQ. Experimental values were
taken from the NIST Computational Chemistry Comparison and Benchmark
Database (with the exception of propanamide for which no experiment was
available). The last two rows show the mean absolute deviation (MAD) and
root mean squared deviation (RMSD) between the computed energies and
experimental values.

Molecule DFT-PBE GyWo@PBE GogWy@QPBEO Expt.
Ethene 6.61 10.25 10.39 10.68
Butadiene 5.71 8.69 8.89 9.07
Hexatriene 5.25 7.81 8.06 8.30
Octatetraene 5.05 7.28 6.31 7.79
Cyclopropene 5.93 9.62 9.75 9.86
Cyclopentadiene 5.16 8.17 8.34 8.61
Norbornadiene 5.10 8.17 8.38 8.38
Benzene 6.14 8.87 9.06 9.25
Naphthalene 5.27 7.61 7.82 8.14
Furan 5.47 8.52 8.71 8.90
Pyrrole 4.96 7.90 8.07 8.23
Imidazole 5.53 8.57 8.74 8.96
Pyridine 5.73 8.90 9.44 9.51
Pyrazine 5.70 9.00 9.47 9.63
Pyrimidine 5.80 9.04 9.53 9.73
Pyridazine 5.26 8.50 9.07 9.31
Triazine 6.37 9.73 10.22 10.40
Tetrazine 5.67 9.11 9.61 9.70

Continued on next page
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Table 3.10: Continued.

Molecule DFT-PBE GyWy@PBE GoWy@QPBEO Expt.
Formaldehyde 6.14 10.24 10.67 10.88
Acetone 5.51 8.93 9.46 9.80
Benzoquinone 6.15 8.88 9.77 10.11
Formamide 5.90 9.35 10.02 10.16
Acetamide 5.60 8.96 9.57 10.00
Propanamide 5.60 8.86 9.47 -
Cytosine 5.52 8.11 8.53 8.90
Thymine 5.83 8.50 8.88 9.10
Uracil 6.00 8.98 9.26 9.50
Adenine 5.30 7.7 8.08 8.40
MAD 3.65 0.59 0.27

RMSD 3.69 0.63 0.37

Table 3.11: The BSE singlet excitation energies (eV) of the Thiel’s molec-
ular set, computed with different levels of theory for the screened Coulomb
interaction W [see Eq. 3.64]: WERPA i obtained with y evaluated within
the Random Phase Approximation (RPA), and fz. = 0 in Eq. 3.64. WRPA
is obtained with y evaluated within RPA and f;. # 0 in Eq. 3.64. W is
obtained with y evaluated beyond RPA and fg. = 0. W is obtained with y
evaluated beyond RPA and f,. # 0 in Eq. 3.64. All BSE calculations were
performed using PBE wavefunctions except for those maked as W@QPBEQ,
where we used PBEO wavefunctions. The BSE results were compared with
the best theory estimates (BTE) reported in Ref. 344, and with the results of
BSEQGoWo@QPBEO reported in Ref. 165. The last two rows show the mean
deviation (MD) and mean absolute deviation (MAD) between BSE and BTE
energies for the data presented in the table.

Molecule State ~ BSE BTE

WRPA - RPA 7 7 WQ@PBEO  Ref. 165 | Ref. 344
Ethene 1B1, | 7.65 7.61 7.88 T7.87 8.18 7.02 7.80
E-Butadiene 1By, 5.53 557 564 5.70 6.11 5.36 6.18
E-Butadiene 2A4 5.39 547 544 554 5.99 6.20 6.55
E-Hexatriene 1By 4.55 4.56 4.65 4.67 5.11 4.41 5.10
E-Hexatriene 2A, 4.36 4.41 4.40 447 5.31 5.53 5.09
E-Octatetraene 2A, 3.53 3.57 357 3.62 4.12 4.93 4.47
E-Octatetraene 1By, 3.89 3.89 398 3.99 4.83 3.80 4.66
Cyclopropene 1B, 5.99 5.95 6.16 6.13 6.56 6.22 6.67
Cyclopropene 1B9 5.59 5.57  5.71 5.74 6.13 5.82 6.68
Cyclopentadiene | 1B9 5.39 5.56  5.43 5.61 5.78 4.58 5.55
Cyclopentadiene | 2Aq 5.31 538 537 5.45 6.01 6.07 6.28
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Table 3.11: Continued.

Molecule State ~ BSE BTE

WRPA g RPA g7 )7 W@PBEO  Ref. 165 | Ref. 344
Norbornadiene 1A9 4.64 4.62 477 4.75 5.17 4.61 5.37
Norbornadiene 1B9 4.89 503 4.92 507 5.26 5.45 6.21
Benzene 1B9,, | 4.39 4.45 448 455 4.93 4.76 5.08
Benzene 1By, | 6.07 6.19 6.15 6.29 6.50 5.59 6.54
Naphthalene 1B3, | 3.82 3.81 391 3.9 4.38 3.93 4.25
Naphthalene 1Bg,, | 3.57 3.60 3.63 3.68 4.04 3.96 4.82
Naphthalene 2A 4.91 494 498 5.02 5.27 5.45 5.90
Naphthalene I1Byy | 4.61 4.65  4.67 4.71 5.48 5.14 5.75
Naphthalene 2B3,, 5.45 5.41 5.00  5.52 6.04 5.39 6.11
Naphthalene 2By, | 5.37 539 545 548 5.95 5.58 6.36
Naphthalene 2Blg 5.40 5.42 5.45 5.51 6.29 - 6.46
Naphthalene 3Ay 5.57 562 5.59 5.66 6.37 - 6.49
Furan 1B9 5.66 583  5.69 5.87 6.04 5.50 6.32
Furan 2A4 5.57 564  5.62 5.71 5.98 5.98 6.57
Furan 3A4 7.00 7.19 7.01 7.22 7.40 - 8.13
Pyrrole 2A4 5.28 533 5.34 5.42 5.49 5.57 6.37
Pyrrole 1B9 4.90 506  4.95 5.11 5.29 6.38 6.57
Pyrrole 3A4 6.17 6.37 6.20 6.40 6.64 - 7.91
Imidazole oA 5.27 530 5.34 5.39 5.55 5.61 6.25
Imidazole 1A" | 464 480 467 484 493 - 6.65
Imidazole 3A' 5.74 587 576 5.94 6.10 6.39 6.73
Pyridine 1Bo 3.89 3.78 4.06 3.96 4.82 4.81 4.85
Pyridine 1B 4.49 4.54 4.52  4.60 5.04 4.34 4.59
Pyridine 1A9 4.08 4.09 416 4.19 4.95 4.68 5.11
Pyridine 2A4 5.44 557 547 5.63 6.13 5.77 6.26
Pyridine 2B9 6.12 6.25 6.16 6.30 6.65 - 7.27
Pyridine 3A4 5.65 563  5.76  5.72 6.33 - 7.18
Pyrazine 1Bs,, 4.51 4.55 4.56 4.61 4.96 3.49 4.13
Pyrazine 1A, 3.74 3.75 3.83 3.85 4.56 4.31 4.98
Pyrazine 1Boy, 4.37 4.21 459 4.44 3.98 4.61 4.97
Pyrazine 1Bgy | 6.93 709  6.95 7.12 7.62 4.96 5.65
Pyrazine lBlg 5.05 5.10 5.12 5.18 6.11 5.89 6.69
Pyrazine 1B1, | 6.00 5.95 6.11 6.09 6.54 5.93 6.83
Pyrazine 2By, | 644  6.62 6.46 6.63 7.11 - 7.81
Pyrazine 2By, | 6.29 6.46  6.33 6.51 7.00 - 7.86
Pyrimidine 1B, 3.28 3.22 346 341 5.26 3.80 4.43
Pyrimidine 1Ay 3.57 3.57 3.72  3.73 4.46 4.17 4.85
Pyrimidine 1Bo 4.65 4.71 4.74 4.82 4.19 5.02 5.34
Pyrimidine 2A4 5.85 581  6.00 5.97 6.58 6.01 6.82
Pyridazine 1B4 4.95 5.10 498 b5.14 5.63 3.11 3.85

Continued on next page

72



Table 3.11: Continued.

Molecule State ~ BSE BTE

WRPA pRPA 7 )7 W@PBEO Ref. 165 | Ref. 344
Pyridazine 1A, | 3.13  3.12 327 328 4.08 3.75 4.44
Pyridazine 2A1 | 461 466 4.69 4.77 5.11 4.86 5.20
Pyridazine 2A9 4.33 4.22 4.55 4.44 5.49 5.04 5.66
s-Triazine 1A] | 342 345 351 356 4.25 4.01 4.70
s-Tetrazine 1Bs, | 447 452 450 4.56 2.25 1.73 2.46
s-Tetrazine 1A, 2.56 2.55 2.65 2.66 3.41 3.11 3.78
s-Tetrazine 1Byy 3.99 3.88 4.16  4.06 4.59 4.08 4.87
s-Tetrazine 1Boy, 1.40 1.31 1.56 147 5.06 4.70 5.08
s-Tetrazine 1By, | 509 523 513 5.27 5.83 4.65 5.28
s-Tetrazine 2A, | 419 411 434 425 5.14 4.73 5.39
s-Tetrazine 1B3g4 4.18 4.12 4.31 4.26 5.07 — 5.76
Formaldehyde 1Ay | 268 264 299 2.96 3.70 3.15 3.88
Formaldehyde 1By | 550 577 552 583 6.15 8.11 9.04
Formaldehyde 9Ay | 6.74 702 677 7.08 7.45 - 9.29
Acetone 1A | 3.15  3.06 3.37 3.30 4.15 3.54 4.38
Acetone 1By 4.97 5.13 499 5.16 5.61 8.46 9.04
Acetone 2A1 | 628 646 631 6.49 6.95 8.16 8.90
p-Benzoquinone | 1By, 1.35 1.24 1.561 141 2.61 2.12 2.74
p-Benzoquinone 1A, 1.35 1.24 1.52 141 2.71 2.19 2.86
p-Benzoquinone | 1Bz, | 4.16 417  4.22  4.23 5.46 3.66 4.44
p-Benzoquinone | 1By, 4.55 4.56 4.61 4.63 5.20 4.58 5.47
p-Benzoquinone | 1Bsg, 5.56 5.69 559 5.72 6.65 5.17 5.55
p-Benzoquinone | 2Bjg 5.59 5.48 5.69 5.62 6.76 6.60 7.16
Formamide 1A/ 4.02 3.95 4.30 4.24 5.13 5.01 5.95
Formamide oA" | 514 533 519 541 5.93 6.93 7.35
Acetamide 1A” | 395 387 419 411 4.37 5.02 5.62
Acetamide oA | 494 513 497 5.16 5.56 6.85 7.14
Propanamide 1A" | 393 385 418 4.10 5.64 5.04 5.65
Propanamide 24’ 4.97 5.14  5.00 5.18 4.37 6.87 7.09
Cytosine oA | 376 378 382 385 4.41 4.12 4.66
Cytosine 1A” | 383 383 392 3093 473 4.49 4.87
Cytosine 2A" | 411 404 421 421 4.91 4.98 5.26
Cytosine 3A” | 453 457 459 464 5.18 5.02 5.62
Thymine 1A" | 353 344 370 3.63 4.69 4.20 4.82
Thymine 2A" | 428 420 434 437 5.01 4.57 5.20
Thymine 3A" | 506 508 512 5.15 5.86 5.65 6.27
Thymine 9A” | 464 455 481 4.73 5.25 5.41 6.16
Thymine 4A" | 549 552 554 5.60 6.06 - 6.53

Continued on next page
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Table 3.11: Continued.

Molecule State BSE BTE
WRPAJRPA 7 7 WW@QPBEO Ref. 165 | Ref. 344
Uracil 1A" | 348 340 365 358 4.61 416 5.00
Uracil 9A" | 438 440 445 448 5.16 4.68 5.25
Uracil sA" | 497 501 502 5.07 5.40 5.60 6.26
Uracil oA | 457 449 474 467 5.56 5.37 6.10
Uracil 4A" | 549 557 552 5.62 5.69 - 6.70
Uracil 3sA” | 503 513 507 5.18 6.27 - 6.56
Adenine 1A" | 397 395 408 4.08 4.69 4.59 5.12
Adenine oA" | 4921 4923 498 431 4.85 4.59 5.25
Adenine 3A” | 442 442 450 451 4.92 4.70 5.95
Adenine oA" | 452 447 457 4.62 5.01 5.19 5.75
MD (eV) 111 -1.08 -1.02 -097  -042 20.58
MAD (eV) 121 118 112 1.0 0.62 0.60

Computational setup for the Cgy fullerene

The geometry of Cgy was relaxed at the DF'T-PBE level of theory, and the calculations were
carried out in a supercell of edge 21 A. We used a ONCV pseudopotential [324], a kinetic
energy cut-off for the plane-wave basis of 30 Ry (120 Ry for the charge density). In GoWy
calculations, we employed 2048 PDEPs to represent the dielectric matrix. GoW corrections
were computed for 800 states above the lowest unoccupied molecular orbital, and they were

used to construct the effective GoWg Hamiltonian (see Eq. 3.63).

Computational setup for liquid water and ice

We used an ice model with 96-water molecules which was optimized using the PBEO func-
tional (Ref. 94). We considered two water models based on 64 water molecule samples.
The first one includes nine snapshots extracted from 1 ns trajectories obtained using the
MB-Pol potential and path integral molecular dynamics (PIMD); the snapshots were taken
from Ref. 95. The second model includes five equilibrated water snapshots, extracted from

the PBE400 dataset [69]. This dataset consists of simulations of an ensemble of 32 indepen-
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Figure 3.23: Imaginary part of the macroscopic dielectric constant (eps) as a function of
the photon frequency (w) for liquid water done on the same snapshot, computed using GW-
BSE starting from PBE and from dielectric-dependent hybrid (DDH)[346] functional ground
states. We used a global dielectric hybrid functional with the parameter determining the
fraction of exact exchange equal to the high frequency dielectric constant.

dent samples of liquid water performed using first-principles molecular dynamics simulations
(FPMD) at 400 K with the PBE functional[69]. The ground state calculations for ice and
water models were carried out with the PBE functional, using ONCV pseudopotentials [324]
and a plane-wave kinetic energy cutoff set to 60 Ry. For one water snapshot (see Fig. 3.23) we
also conducted calculations with dielectric dependent hybrid functionals. The quasiparticle
energies of the systems were obtained with the GogW( approximation, where quasi-particle
corrections were computed for 800 electronic states (corresponding to ~ 20 eV) above the
conduction band minimum, and they were used to construct the effective GoWqy Hamilto-
nian, see Eq. 3.63. GoW) calculations were performed using the WEST code [117] and were
carried out with 2048 PDEPs. In Fig. 3.24 and 3.25 we show the energy gaps and averaged

spectra computed for different PIMD and FPMD snapshots, respectively.

Computational setup for solid LiF

The calculation of solid LiF was carried out using a 216 atom cubic supercell with an edge

length of 22.83 a.u. We used ONCV pseudopotentials [324], a kinetic energy cut-off for the
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Figure 3.24: The BSE optical (Eopt) gap and the electronic (Eg) gaps computed with PBE
and GogWo@QPBE for different snapshots extracted from PIMD simulations with the MBPol
potential (left-panel) and FPMD with the PBE functional (right-panel).
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Figure 3.25: Imaginary part of the frequency-dependent macroscopic dielectric constant (€)
for liquid water computed as an average (blue line) over nine different snapshots (black-dotted
lines) extracted from the PIMD-MBPol trajectories [95] (top panel) and from FPMD-PBE

trajectories [69] (bottom panel).
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Figure 3.26: Imaginary part of the frequency-dependent macroscopic dielectric constant (e,7)
for solid LiF.

plane-wave basis of 60 Ry (240 Ry for the charge density). In GoW calculations, we em-
ployed 2160 PDEPs to represent the dielectric matrix. GoW( corrections were computed for
1800 states, and they were used to construct the effective GoWq Hamiltonian (see Eq. 3.63).
The optical absorption spectrum obtained with the proposed methodology is reported in
Fig. 3.26, and compares well with the theoretical results reported by Sagmeister[316] using
a (4 x 4 x 4) sampling of the Brillouin Zone. In the figure we also report theoretical results
obtained by Marini et al.[231], and by Sagmeister[316] using a (8 x 8 x 8) Brillouin zone
sampling. As is common procedure in the literature and adopted in ref. 316, we aligned
the position of the first peak to experiment[307]. The differences between our results and
those of Sagmeister[316] are due to a difference on k-point sampling (e.g. the spurious peak
at about 14 eV), which are also responsible for the difference between the results with two

different k-meshes reported by Sagmeister[316].
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3.2.5 Conclusions

In summary, we have presented a novel method to solve the BSE in finite field, which not
only avoids the calculations of virtual electronic states, but avoids all together the calculation
of dielectric matrices. In addition, our formulation uses linear combinations of Bloch orbitals
that are localized in appropriate regions of real space, leading to substantial computational
savings. There are several advantages of the method presented here: calculations beyond the
RPA are straightforward and the complexity and scaling of solving the BSE is the same when
using local or hybrid-DF'T starting points. As a consequence, the method proposed here leads
to an improvement in both accuracy and efficiency in the calculations of optical spectra of
large molecular and condensed systems, and to the ability of coupling such computations

with first principles molecular dynamics.
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CHAPTER 4
QUANTUM EMBEDDING AND QUANTUM SIMULATIONS
OF STRONGLY-CORRELATED ELECTRONIC STATES

Density functional theory (DFT) and post-DFT methods such as many-body perturbation
theory have been successfully applied to simulate a wide range of molecular and materials
systems. However, DF'T fails to give accurate descriptions of electronic structure in certain
cases. One of the outstanding challenges for DFT is the strongly-correlated (multireference)
electronic states, which are states that cannot be represented as a single determinant of one-
electron orbitals. Methods tailored for strongly-correlated states are usually computationally
expensive and thus limited to relatively small systems. Fortunately, in many important
chemical and materials systems, the strongly-correlated electronic states are localized in
certain regions of the space, which motivates a multi-scale description of the system where
the active region of the system is described by a high level of theory, with the rest of the
system (environment) treated with a low level of theory such as DFT.

In this chapter, we present a quantum embedding theory based on the concept of dielectric
screening. The quantum embedding theory is capable of constructing effective models of the
active region of the system, with the environment acting as a dielectric screening media
described as DFT level. We show that the quantum embedding theory can be used to
generate effective models for realistic materials science problems, which can be solved by

both classical and quantum computers.
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Adapted with permission from H. Ma, M. Govoni, and G. Galli. npj Computational Ma-
terials. 6, 85 (2020). Copyright (2020) by Springer Nature. https://doi.org/10.1038 /s41524-
020-00353-z.

4.1 Introduction

In the last three decades, atomistic simulations based on the solution of the basic equa-
tion of quantum mechanics have played an increasingly important role in predicting the
properties of functional materials, encompassing catalysts and energy storage systems for
energy applications, and materials for quantum information science. Especially in the case
of complex, heterogeneous materials, the great majority of first-principles simulations are
conducted using density functional theory (DFT), which is in principle exact but in practice
requires approximations to enable calculations. Within its various approximations, DFT has
been extremely successful in predicting numerous properties of solids, liquids and molecules,
and in providing key interpretations to a variety of experimental results; however it is often
inadequate to describe so-called strongly-correlated electronic states [61, 358]. We will use
here the intuitive notion of strong correlation as pertaining to electronic states that cannot
be described by static mean-field theories. Several theoretical and computational methods
have been developed over the years to treat systems exhibiting strongly-correlated elec-
tronic states, including dynamical mean-field theory [103, 194] and quantum Monte-Carlo
[53, 384]; in addition, ab initio quantum chemistry methods, traditionally developed for
molecules, have been recently applied to solid state problems as well [360]. Unfortunately,
these approaches are computationally demanding and it is still challenging to apply them to
complex materials containing defects and interfaces, even using high-performance computing
architectures.

Quantum computers hold promise to enable efficient quantum mechanical simulations of
weakly and strongly-correlated molecules and materials alike [11, 43, 14, 181, 252, 266, 347,

348, 25]; in particular when using quantum computers, one is able to simulate systems of
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interacting electrons exponentially faster than using classical computers. Thanks to decades
of successful experimental efforts, we are now entering the noisy intermediate-scale quantum
(NISQ) era [295], with quantum computers expected to have on the order of 100 quantum bits
(qubits); unfortunately this limited number of qubits still prevents straightforward quantum
simulations of realistic molecules and materials, whose description requires hundreds of atoms
and thousands to millions of degrees of freedom to represent the electronic wavefunctions.
An important requirement to tackle complex chemistry and material science problems using
NISQ computers is the reduction of the number of electrons treated explicitly at the highest
level of accuracy [313, 409]. For instance, building on the idea underpinning dynamical mean
field theory [103, 194], one may simplify complex molecular and material science problems
by defining active regions (or building blocks) with strongly-correlated electronic states,
embedded in an environment that may be described within mean-field theory [26, 196, 315].

In this work, we present a quantum embedding theory built on DFT, which is scalable
to large systems and which includes the effect of exchange-correlation interactions of the
environment on active regions, thus going beyond commonly adopted approximations. In
order to demonstrate the effectiveness and accuracy of the theory, we compute ground and
excited state properties of several spin-defects in solids including the negatively charged
nitrogen-vacancy (NV) center [67, 308, 75, 242, 58, 76, 112], the neutral silicon-vacancy (SiV)
center [79, 98, 120, 312, 119, 370] in diamond, and the Cr impurity (4+) in 4H-SiC [352,
189, 72]. These spin-defects are promising platforms for solid-state quantum information
technologies, and they exhibit strongly-correlated electronic states that are critical for the
initialization and read-out of their spin states [392, 334, 335, 160, 81, 6]. Our quantum
embedding theory yields results in good agreement with existing measurements. In addition,
we present theoretical predictions for the position and ordering of the singlet states of SiV
and of Cr, and we provide an interpretation of experiments which have so far remained
unexplained.

Importantly, we report calculations of spin-defects using a quantum computer [2]. Based
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on the effective Hamiltonian derived from the quantum embedding theory, we investigated
the strongly-correlated electronic states of the NV center in diamond using quantum phase es-
timation algorithm (PEA) [3, 11] and variational quantum eigensolvers (VQE) [282, 244, 173],
and we show that quantum simulations yield results in agreement with those obtained with
classical full configuration interaction (FCI) calculations. Our findings pave the way to the
use of near term quantum computers to investigate the properties of realistic heterogeneous

materials with first-principles theories.

4.2 Formalism

4.2.1 General strategy

We summarize our strategy in Fig. 4.1. Starting from an atomistic structural model of
materials (e.g. obtained from DFT calculations or molecular dynamics simulations), we
identify active regions with strongly-correlated electrons, which we describe with an effective
Hamiltonian that includes the effect of the environment on the active region. This effective
Hamiltonian is constructed using the quantum embedding theory described below, and its
eigenvalues can be obtained by either classical algorithms such as exact diagonalization (FCI)

or quantum algorithms.

4.2.2  Embedding theory

A number of interesting quantum embedding theories have been proposed over the past
decades [361]. For instance, density functional embedding theory has been developed to
improve the accuracy and scalability of DFT calculations [152, 115, 164, 102, 395]. Den-
sity matrix embedding theory (DMET) [185, 401, 284] and various Green’s function based
approaches [205, 83|, e.g. dynamical mean field theory (DMFT), have been developed to de-
scribe systems with strongly-correlated electronic states. At present, ab initio calculations
of materials using DMET and DMFT have been limited to relatively small unit cells (a few
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Figure 4.1: General strategy for quantum simulations of materials using quantum embedding.
The full system is separated into an active space and its environment, with the electronic
states in the active space described by an effective Hamiltonian solved with either classi-
cal (e.g. full configuration interaction, FCI) or quantum algorithms (e.g. phase estimation
algorithm (PEA), variational quantum eigensolver (VQE)). The effective interaction be-
tween electrons in the active space includes the bare Coulomb interaction and a polarization
term arising from the dielectric screening of the environment, which is evaluated including
exchange-correlation interactions.

tens of atoms) of pristine crystals, due to their high computational cost [420, 62]. In this
work, we present a quantum embedding theory that is applicable to strongly-correlated elec-
tronic states in realistic heterogeneous materials and we apply it to systems with hundreds
of atoms. The theory, inspired by the constrained random phase approximation (cRPA)
approach [9, 247, 143], does not require the explicit evaluation of virtual electronic states
[399, 117], thus making the method scalable to materials containing thousands of electrons.
Furthermore, cRPA approaches contain a specific approximation (RPA) to the screened
Coulomb interaction, which neglects exchange-correlation effects and may lead to inaccura-
cies in the description of dielectric screening. Our embedding theory goes beyond the RPA
by explicitly including exchange-correlation effects, which are evaluated with a recently de-
veloped finite-field algorithm [220, 261].

The embedding theory developed here aims at constructing an effective Hamiltonian

operating on an active space (A), defined as a subspace of the single-particle Hilbert space:

A A

f f 1 i

T =" ilala; + 5> Velalalaay,. (4.1)
ij ijkl
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Here t*f and Vel are one-body and two-body interaction terms that take into account the
effect of all the electrons that are part of the environment (E) in a mean-field fashion, at the
DFT level. An active space can be defined, for example, by solving the Kohn-Sham equations
of the full system and selecting a subset of eigenstates among which electronic excitations
of interest take place (e.g. defect states within the gap of a semiconductor or insulator).
To derive an expression for Vel that properly accounts for all effects of the environment
including exchange and correlation interactions, we define the environment density response
function (reducible polarizability) VB = X()E + X()E xE, where X()E = X0 — XS" is the difference
between the polarizability of the Kohn-Sham system y( and its projection onto the active
space X([? (see Section 4.2.3). XE thus represents the density response outside the active space.
The term f =V + fxc is often called the Hartree-exchange-correlation kernel, where V' is
the Coulomb interaction and the exchange-correlation kernel fxc is defined as the derivative
of the exchange-correlation potential with respect to the electron density. We define the

effective interactions between electrons in A as
vl = v+ By, (4.2)

given by the sum of the bare Coulomb potential and a polarization term arising from the
density response in the environment E. When the RPA is adopted, the exchange-correlation
kernel fyc is neglected in Eq. 4.2 and the expression derived here reduces to that used within
cRPA. We represent XE and f on a compact basis obtained from a low-rank decomposition
of the dielectric matrix [399, 117] that allows us to avoid the evaluation and summation
over virtual electronic states. Once Veff is defined, the one-body term tff can be computed
by subtracting from the Kohn-Sham Hamiltonian a term that accounts for Hartree and

exchange-correlation effects in the active space (see Section 4.2.3).

84



4.2.3  Deriwation of the embedding formalism

Within density functional theory (DFT), the single-particle electronic structure of a physical

system is determined by the Kohn-Sham (KS) equation

HKS Wm> =&m Wm> ) (4-3)

where the Kohn-Sham Hamiltonian HXS = 7'+ Vion + Va + Vxc includes the kinetic operator
as well as ionic, Hartree and exchange-correlation potentials; €, and 1, are eigenvalues and

eigenvectors of H KS . The density response function of the Kohn-Sham system is

Yiln(xy)[y) (Wjln(x2)]v)

51'_5j

Xo(@1, @) =2 (f; — fj)<

1<J

(4.4)

where n(x) is the density operator at « = ro and r and o are coordinate and spin indeces,
respectively, f; denotes the occupation number of the spin orbital i (not to be confused with
the Hartree-exchange-correlation kernel f).

The set of Kohn-Sham orbitals constitutes a complete orthogonal basis of the one-particle
Hilbert space. In this work we define an active space (denoted as A) as a subset of the orthog-
onal basis where relevant electronic excitations take place. We note that such a definition is
closely related to the notion of active spaces in multireference quantum chemistry methods,
in the sense that it is a set of single-particle orbitals among which all possible excitations
are explicitly taken into account; however, in the embedding theory developed here, the
environmental effects manifest as a renormalization of one-body and two-body terms in the
Hamiltonian, and we do not keep track of wavefunctions in the environment after effective
Hamiltonians are constructed.

For a given definition of A, xg can be partitioned into two parts:

Xo(x1, ®2) = iy (@1, 22) + xb (21, @) (4.5)
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igA j>i i j
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23 - gy ) sl 1)
i¢A j>i i ]
J¢A

where the superscript E denotes the environment of the active space.

Within the RPA, one can define the partial screened Coulomb interaction WII%P A aS
E Eyi/E
WrpA =V + VxoWrpa (4.8)

where V represents the bare Coulomb interaction. In the cRPA formalism, WII%P A 1s used as
effective electron interactions in A, and has the property that the full RPA screened Coulomb

interaction WRrpa can be obtained by further screening WP]%P A With Xé

Wrpa = Whpa + WEpaxd Wrpa (4.9)

To derive a formalism that goes beyond the RPA and includes exchange-correlation inter-
actions between electrons, we consider a system subject to a perturbative potential dV},4p0-
The corresponding screened potential is denoted as 6V.s. We define self-consistent and bare

charge density responses as

Onget = XOVhare = X00 Vet (4.10)

ONpare = X0 Vhare (4'11)

In the presence of a perturbation, the Hartree-exchange-correlation potential of the sys-
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5VHXC
T

Ngcf

tem changes by 0Viye = fOnges, where f = = V 4+ fxc is the Hartree-exchange-
correlation kernel introduced previously.

The functional derivative of  Viyy. with respect to dny e is equal to the screened Coulomb
interaction W

AL (4.12)

 Onpare
We note that W defined above represents the interaction between electrons in the system (i.e.
it is the electron-electron screened Coulomb interaction) and is widely used in first-principles
theories of electron-phonon coupling [108, 243]. W should not be confused with test-charge
test-charge screened Coulomb interaction Wrpc_c or electron-test-charge screened Coulomb
interaction Wg_pc [157, 350]. W, Wpo_1c, and Wg_pc all reduce to Wrpa when fye = 0,
but represent different types of screened Coulomb interactions beyond the RPA.

From Eq. 4.12, Vg, can be written as

0VHxe = Wonpare

= fanbare + fXOW(;nbare

SVig 8V, Vg OV (4.13)
= < H + XC) ONpare + ( i + l) XoW dnpare

ONgef  OMgef ONgef — OMgef

% oV, oV oV;
= < = + XC) OMNpare + < H + XC) dnscr

ONgef  OMgef ONgef — OMger

where we defined the screening density

Onser = XoWonpare = X f0Npare (4'14)

and the self-consistent charge density response is simply the sum of bare and screening
contributions:

ONgef = OMpare + ONscr (4.15)

Now we consider a bare change of density in the A space, denoted by 6néare, and we
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consider a constrained screening process that only occurs in the E space, characterized by

B
X()E = g?fs‘:i The resulting screening density dngcr thus belongs to the E space, and we denote
it by
E E A

5nSCI‘ =X f(;nbare (416)

where \E is defined as
E E E, E
X~ =Xx0 +x0fx (4.17)

The resulting change of the Hartree-exchange-correlation potential, denoted by 6V, . (c
stands for constrained, indicating the fact that screening processes in A are not included),

is given by:

n
b scr
ONgef — OMger are ONgef — OMgef

6V}€Ixc - <

oVi oWy ) oV,
—HénbAare + ( i + XC) 571504 + —Xcénﬁare (4'18)

ONgef ONgef — OMger ONgef

OV A L Vs s

bare 5nscf bare

ONgef

where we grouped terms in the square bracket and formally defined:

5Veff E
i o ((WH ) (WXC) onk (4.19)

Ongef Ongcf ONgef — OMgef 5nl§are

Recall that f = (?QLX; Thus, for a general change of density dng.f, the resulting change

of the Hartree-exchange-correlation potential is

% o4
—Hénscf + —Xcénscf (4.20)

Wive =
Hxe ONgef ONgef

By comparing Eq. 4.18 with Eq. 4.20, we see that the constrained change of Hartree-
exchange-correlation potential 6V, . induced by 5n§are is equivalent to the unconstrained

change of Hartree-exchange-correlation potential 0Viy. induced by dng.s in a system with
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effective electron-electron interaction:

Veff _

ot o ((WH N 5VXC> onk,
Onger ONgef

ONgef  OMgef 5néare (4.21)

=V + fx"f

We represent x=, f and other relevant quantities on a compact basis obtained through
a low-rank decomposition of the dielectric matrix [399, 400, 260, 286, 117] obtained using
density functional perturbation theory [21], and evaluate fxc with a finite-field algorithm
220, 261].

After Vel g obtained, the effective one-particle term t?jﬁ is computed from the Kohn-
Sham Hamiltonian by subtracting a double-counting term [39] computed at the Hartree-Fock

level
ff_ /KS f i
tiy = Hij” — <Z TN ‘G?kgpkz) (4.22)
ki kl

where p is the one-electron density matrix.

We note that throughout this work we used the following index notation for V:

o7 (@1) ] (w2)op (1) 01 (22)
[r1— 72

Vijkl = /dfvlde (4.23)

where ¢’s are spin orbitals spanning the active space.

4.3 Application of embedding theory to spin-defects

The embedding theory presented above is general and can be applied to a variety of systems
for which active regions, or building blocks, with strongly-correlated electronic states may
be identified: for example active sites in inorganic catalysts or organic molecules or defects
in solids and liquids (e.g. solvated ions in water). Here we apply the theory to spin-defects
including NV and SiV in diamond and Cr in 4H-SiC. Most of these defects’ excited states

are strongly-correlated (they cannot be represented by a single Slater determinant of single-
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particle orbitals), as shown e.g. for the NV center in diamond by Bockstedte et al.[39] using
cRPA calculations. We demonstrate that our embedding theory can successfully describe
the many-body electronic structure of different types of defects including transition metal
atoms; our results not only confirm existing experimental observations but also provide a
detailed description of the electronic structure of defects not presented before, which sheds
light into their optical cycles.

We first performed spin-restricted DFT calculations using hybrid functionals [346] to
obtain a mean-field description of the defects and of the whole host solid. The spin restriction
ensures that both spin channels are treated on an equal footing and that there is no spin-
contamination when building effective Hamiltonians. Based on our DFT results, we then
selected active spaces that include single-particle defect wavefunctions and relevant resonant
and band edge states. We verified that the size of the chosen active spaces yields converged
excitation energies (see Section 4.3.2). We then constructed effective Hamiltonians (Eq. 4.1-
4.2) by taking into account exchange-correlation effects, and we obtained many-body ground
and excited states using classical (FCI) and, for selected cases, quantum algorithms (PEA,
VQE). All calculations were performed at the spin triplet ground state geometries obtained
by spin-unrestricted DFT calculations, thus obtaining vertical excitation energies (equal to
the sums of zero phonon line (ZPL) and Stokes energies). It is straightforward to extend
the current approach to compute potential energy surfaces at additional geometries For
example, one may follow the strategy of Ref. [39] and compute excited states of defects along
given normal modes, which are usually obtained from delta-SCF calculations. This type of
treatment, albeit approximate, provides valuable insights into the vibrational properties of
defects in excited states., so as to include relaxations and Jahn-Teller effects [39, 370]. In Fig.
4.2 we present atomistic structures, single-particle defect levels and the many-body electronic
structure of three spin-defects. Several relevant vertical excitation energies are reported in
Table 1, and additional ones are given in the 4.3.1. In the following discussion, lower-case

symbols represent single-particle states obtained from DFT and upper-case symbols represent
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Figure 4.2: Electronic structure of spin-defects. Panels (a), (b), and (c) present results
for the negatively-charged nitrogen vacancy (NV) in diamond, the neutral silicon vacancy
(SiV) in diamond, and the Cr impurity (4+) in 4H-SiC, respectively. Left panels show spin
densities obtained from spin unrestricted DFT calculations. Middle panels show the position
of single-particle defect levels computed by spin restricted DF'T calculations. States included
in active spaces are indicated by blue vertical lines. Right panels show the symmetry and
ordering of the low-lying many-body electronic states obtained by exact diagonalization (FCI
calculations) of effective Hamiltonians constructed with exchange-correlation interactions
included.
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many-body states.

Table 4.1: Vertical excitation energies (eV) of the negatively charged nitrogen vacancy (NV)
and neutral silicon vacancy (SiV) in diamond and Cr (4+) in 4H-SiC, obtained using the
random phase approximation (RPA: third column) and including exchange-correlation in-
teractions (beyond RPA: fourth column). Experimental measurements of zero-phonon-line
(ZPL) energies are shown in brackets in the fifth column. Reference vertical excitation
energies are computed from experimental ZPL when Stokes energies are available.

System  Excitation RPA  Beyond-RPA Expt.
NV 349 <3 3F 1.921 2.001 2.180% (1.945%)
349 14, 1.376 1.759

349 & 1 0.476 0.561

g ola 0.900 1.198 (1.190°)

T4, & 3E 0.545 0.243 (0.344-0.430°)
Siv SAgg ¢ 3B, 1.590 1.594 1.5687 (1.31¢)

SAgg v 3A1, 1741 1.792

SAgg <+ 1E;  0.261 0.336
SAgg ++ 141, 0.466 0.583

SAgg ¢+ LAy, 1.608 1.623

3Agg <+ 1By 2.056 2.171

SAgg > LAg,  2.365 2.515

349, < 3E,  0.003 0.011 (0.007¢)
Cr 349 & 3E 1.365 1.304

349 347 1.480 1.406

349 < 3E" 1597 1.704

SAg >34, 1.635 1.755

34y - E 0.860 1.090 (1.1901)

349 1A 1.560 1.937

“Ref [67]. PRef [308]. “Estimated by Ref [112] with a model for intersystem crossing.
dComputed with Stokes energy from Ref [370]. “Ref [119]. fRef [352].

For the NV in diamond, we constructed effective Hamiltonians (Eq. 4.1) by using an
active space that includes a; and e single-particle defect levels in the band gap and states
near the valence band maximum (VBM). Our FCI calculations correctly yield the symmetry
and ordering of the low-lying 349, 3E, 1E and 1 Ay states. The vertical excitation energies
reported in Table 4.1 show that including exchange-correlation effects yields results in better

agreement with experiments than those obtained within the RPA. The results obtained
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within RPA (0.476/1.376/1.921 eV for L E/1 A1 /3F states) are in good agreement with cRPA
results reported in Ref. [39] (0.47/1.41/2.02 eV).

In the case of the SiV in diamond, we built effective Hamiltonians using an active space
with the e, and ey defect levels and states near the VBM, including resonant e, and e;
states. Effective Hamiltonians including or neglecting exchange-correlation effects yield sim-
ilar results, with the excitation energies obtained beyond RPA being slightly higher. We
predicted the first optically-allowed excited state to be a 3E, state with vertical excitation
energy of 1.59 eV, in good agreement with the sum of 1.31 eV ZPL measured experimentally
[79] and 0.258 eV Stokes shift estimated using an electron-phonon model [370]. Our calcu-
lations predicted a 3As, state 11 meV below the 3E,, state, in qualitative agreement with a
recent experimental observation by Green et al. [119], which proposed a 3 A9,,-3 E,, manifold
with 7 meV separation in energy. The small difference in energy splitting between our results
and experiment is likely due to geometry relaxation effects not yet taken into account in our
study. In addition to states of u symmetry generated by e, — e4 excitations, we observed
a number of optically dark states of g symmetry (grey levels in Fig. 4.2b) originating from
the excitation from the e’g level and the VBM states to the eg4 level.

Despite significant efforts [120, 312, 119, 370], several important questions on the singlet
states of SiV remain open. These states are crucial for a complete understanding of the
optical cycle of the SiV center. Our predicted ordering of singlet states of SiV is shown in
Fig. 4.2b. We find the vertical excitation energies of the 1A4;, state to be slightly higher
than that of the 3Ay,-3E, triplet manifold, suggesting that the intersystem crossing (ISC)
from 3Ay, or 3E, to singlet states may be energetically unfavorable (first-order ISC to
lower 1Eg and 1Alg states are forbidden). We note that the 1B, and 1Ay, states are much
higher in energy than 'A4;, and are not expected to play a significant role in the optical
cycle. In addition the first-order ISC process from the lowest energy singlet state 1Eg to
the 3A29 ground state is forbidden by symmetry. Overall our results indicate that the 3Agg

state is populated through higher-order processes and therefore the spin-selectivity of the full
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optical cycle is expected to be low. While more detailed studies including spin-orbit coupling
are required for definitive conclusions, our predictions shed light on the strongly-correlated
singlet states of SiV and provide a possible explanation for the experimental difficulties in
measuring optically-detected magnetic resonance (ODMR) of SiV.

We now turn to Cr in 4H-SiC, where we considered the hexagonal configuration. We
constructed effective Hamiltonians with the half-filling e level in the band gap and states near
the conduction band minimum (CBM) including resonance states. Upon solving the effective
Hamiltonian, we predict the lowest excited state to be a 1 E state arising from e — e spin-flip
transition, with excitation energy of 1.09 (0.86) eV based on embedding calculations beyond
(within) the RPA. Results including exchange-correlation effects are in better agreement with
the measured ZPL of 1.19 eV [352], where the Stokes energy is expected to be small given
the large Debye-Waller factor [72]. There is currently no experimental report for the triplet
excitation energies of Cr in 4H-SiC, but our results are in good agreement with existing
experimental measurements for Cr in GaN, a host material with a crystal field strength
similar to that of 4H-SiC [189]. We predict the existence of a 3E +3 A1 manifold at ~ 1.4 eV
and a 3E’+3 A} manifold at ~ 1.7 eV above the ground state (Fig. 4.2c), resembling the 3T}
manifold (1.2 eV) and 37} manifold (1.6 eV) for Cr in GaN observed experimentally [134].
We note that in many cases it is challenging to study materials containing transition metal
elements with DFT [8]. The agreement between FCI results and experimental measurements
clearly demonstrates that the embedding theory developed here can effectively describe the
strongly-correlated part of the system, while yielding at the same time a quantitatively

correct description of the environment.

4.3.1 FEzcitation energies of defects

In the following tables we list low-energy FCI solutions of the effective Hamiltonian for
defects. VBM and CBM denote valence band maximum and conduction band minimum,

respectively.
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Table 4.2: Energies (eV), symmetries and characters of low-energy eigenstates obtained
from FCI calculation of effective Hamiltonians for the NV center in diamond. Effective
Hamiltonians are constructed within and beyond the random phase approximation (RPA).
The ground state energy is set to zero. GS indicates ground state, GS-SF indicates spin-flip
excitations within the ground state orbital configuration.

State RPA Beyond-RPA
Energy Symmetry Character | Energy Symmetry Character
0 0.000 34, GS 0.000 34, GS
1 0.476 g GS-SF | 0.561 g GS-SF
2 1.376 LAy GS-SF | 1.759 LAy GS-SF
3 1.921 3E a; —e | 2.001 3E a; — e
4 2.996 lp a; —e | 3.461 lp a; — e

Table 4.3: Energies (eV), symmetries and characters of low-energy eigenstates obtained from
FCI calculation of effective Hamiltonians for the SiV in diamond. The ground state energy
is set to zero. GS indicates ground state, GS-SF indicates spin-flip excitations within ground
state orbital configurations.

State RPA Beyond-RPA

Energy Symmetry Character | Energy Symmetry Character
0 0.000 3 Agg GS 0.000 3 Agg GS
1 | 0261 1B, GS-SF 0.336 1B, GS-SF
2 | 0.466 144, GS-SF | 0.583 144, GS-SF
3 | 1.254 3By VBM — e | 1347 3By VBM — ¢y
4 | 1.268 1By VBM — e, | 1.363 1B, VBM — ¢y
5 1.424 SA1g ey — eg 1.508 SA1, ey — eg
6 | 1.441 3B, ey —eg | 1.530 3B, el — eg
7 | 1.469 14, ep —eg | 1.563 14y, ey — €g
8 | 1.545 3 Ay, g —eg | 1.583 3 Agy, ey — €g
9 1.587 3 Aq,, eu — €g 1.594 3E, eu — €g
10 | 1.590 3Ey, eu — €g 1.623 LA, eu — €g
11 | 1.608 1A, ey — g 1.636 3 Ay, ey — eg
12 | 1.619 1B, ey —eg | 1723 1B, ey — eg
13 | 1.692 144, el — eg 1.792 344, ey — g
14 | 1.741 341, ey — g 1.812 14, ey — eg
15 | 2.056 oy ew —eg | 2171 oy ey — €g
16 | 2.365 1 A5, ey — g 2.515 1 Ao, ey — g

4.3.2  Convergence of the active space size

In previous sections we report results obtained with active spaces sufficiently large to converge

the excitation energies; they include 21/38/23 spatial orbitals (42/76/46 spin orbitals) for
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Table 4.4: Energies (eV), symmetries and characters of low-energy eigenstates obtained from
FCI calculation of effective Hamiltonians for Cr in 4H-SiC. The ground state energy is set to
zero. GS indicates ground state, GS-SF indicates spin-flip excitations within ground state
orbital configuration. Excitations from e level to the CBM are positioned more than 3 eV
above the ground state.

State RPA Beyond-RPA
Energy Symmetry Character | Energy Symmetry Character

0 0.000 34, GS 0.000 34, GS

1 0.860 g GS-SF | 1.090 g GS-SF
2 1.365 3E e—t 1.304 3E e—t
3 1.480 344 e—t 1.406 344 e—t
4 1.560 14, GS-SF 1.704 3E e—t
5 1.597 3E e—t 1.755 34, e—t
6 1.635 34, e—t 1.937 14, GS-SF
7 1.770 lp et 1.948 lp et

NV/SiV/Cr defects, respectively. As an example, in Fig. 4.3 we show the convergence of FCI
eigenvalues of the NV center as a function of the size of the active space. The minimum model
{a1, e} already yields excitation energies within 0.2 eV of the converged results. Inclusion
of a’l level and other valence band states near the VBM yields results that converge rapidly.

Including empty states does not affect the computed excitation energies.

4.4 Quantum simulations

The results presented in the previous section were obtained using classical algorithms. We
now turn to the use of quantum algorithms. To perform quantum simulations with PEA and
VQE, we constructed a minimum model of an NV center including only a1 and e orbitals in
the band gap. This model (4 electrons in 6 spin orbitals) yields excitation energies within
0.2 eV of the converged results using a larger active space. In Fig. 4.4 we show the results
of quantum simulations.

We first performed PEA simulations with a quantum simulator (without noise) [2] to
compute the energy of SAQ, SE , 1B and 1A1 states. We used molecular orbital approxima-

tions of these states derived from group theory [75] as initial states for PEA, which are single
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Figure 4.3: (a) Single-particle level diagrams for the NV center in diamond. The minimum
model for the NV center includes the a1 and e levels in the band gap. (b) Convergence of
FCI eigenvalues as functions of the size of active space (represented by intervals between
the lowest and highest single-particle levels). Empty and full circles represent RPA and
beyond-RPA results, respectively.

Slater determinant for 34y (Mg = 1) and 3E (Mg = 1) states, and superpositions of two
Slater determinants for 1 E and 1A, states. As shown in Fig. 4.4a, PEA results converge to
classical FCI results with an increasing number of ancilla qubits.

We then performed VQE simulations with a quantum simulator and with the IBM Q 5
Yorktown quantum computer. We estimated the energy of the 3 As ground state manifold by
performing VQE calculations for both the single-Slater-determinant Mg = 1 component and
the strongly-correlated Mg = 0 component. Within a molecular orbital notation, Mg = 1
and Mg = 0 ground states can be represented as |aaezey) and % (Jaaegey) + |aaerey)),
respectively, where a, ey, ey (spin-up) and a, €z, €y (spin-down) denote a1 and e orbitals.
To obtain the Mg = 0 ground state, we used a closed-shell Hartree-Fock state |aaezéz) as
reference; the Mg = 1 ground state is itself an open-shell Hartree-Fock state, so we started

with a higher energy reference state |aezézey) in the 3 F manifold. We used unitary coupled-

cluster single and double (UCCSD) ansatzes [282] to represent the trial wavefunctions. Fig.
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Figure 4.4: Quantum simulations of a minimum model of the NV center in diamond using
the phase estimation algorithm (PEA) and a variational quantum eigensolver (VQE). The
energy of the 3Ay ground state manifold is set to zero for convenience. (a) PEA estimation
of ground and excited states of the NV center. Error bars represent the uncertainties due to
the finite number of ancilla qubits used in the simulations; dashed lines show classical FCI
results. (b) VQE estimation of ground state energy, starting from |ae;eéyey) state (Mg = 1).
(c¢) VQE estimation of ground state energy, starting from |aaez€,) state (Mg = 0); strongly-
correlated % (|aaesey) + |aaerey)) state (Mg = 0 state in the 3 Ay manifold) is obtained
with VQE.
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4.4b and Fig. 4.4c show the estimated ground state energy as a function of the number of
VQE iterations, where VQE calculations performed with the quantum simulator correctly
converges to the ground state energy in both the Mg = 1 and Mg = 0 case. Despite the
presence of noise, whose characterization and study will be critical to improve the use of
quantum algorithms [174], the results obtained with the quantum computer converge to the
ground state energy within a 0.2 eV error. Calculations of excited states with quantum

algorithms will be the focus of future works.

4.5 Technical details

Density Functional Theory

All ground state DFT calculations are performed with the Quantum Espresso code [106]
using the plane-wave pseudopotential formalism. Electron-ion interactions are modeled with
norm-conserving pseudopotentials from the SG15 library [324]. A kinetic energy cutoff of
50 Ry is used. All geometries are relaxed with spin-unrestricted DFT calculations using
the Perdew—Burke-Ernzerhof (PBE) functional [279] until forces acting on atoms are smaller
than 0.013 eV/A. NV and SiV in diamond are modeled with 216-atom supercells; Cr in
4H-SiC is modeled with a 128-atom supercell. The Brillouin zone is sampled with the I’

point.

Construction of effective Hamiltonians

Construction of effective Hamiltonians is performed with the WEST code [117], starting from
wavefunctions of spin-restricted DFT calculations. For this step, we remark that the use of
hybrid functional is important for an accurate mean-field description of defect levels, even
though the geometry of defects are well represented at the PBE level. We used a dielectric
dependent hybrid (DDH) functional [346] which self-consistently determines the fraction of
exact exchange based on the dielectric constant of the host material. In particular, 17.8 %

99



and 15.2 % of exact exchange were used for the calculations of defects in diamond and 4H-SiC,
respectively. The DDH functional was shown to yield accurate band gaps of diamond and
silicon carbide, as well as optical properties of defects [334, 335, 285, 349, 104]. After hybrid
functional solutions of the Kohn-Sham equations are obtained, iterative diagonalizations of
xo are performed, and density response functions and fx. of the system are represented on
a basis consisting of the first 512 eigenpotentials of x. Finite field calculations of fx. are
performed by coupling the WEST code with the Qbox [124] code. FCI calculations [186] on

the effective Hamiltonian are carried out using the PySCF [360] code.

Quantum simulations

In order to carry out quantum simulations, a minimum model of the NV center is constructed
by applying the embedding theory with a; and e orbitals beyond the RPA.

In PEA simulations, the Jordan-Wigner transformation [170] is used to map the fermionic
effective Hamiltonian to a qubit Hamiltonian, and Pauli operators with prefactors smaller
than 1076 a.u. are neglected to reduce the circuit depth, which results in less than 10~ a.u.
(0.003 eV) change in eigenvalues. In order to achieve optimal precision, the Hamiltonian is
scaled such that 0 and 2.5 eV are mapped to phases ¢ = 0 and ¢ = 1 of the ancilla qubits,
respectively. We used the first-order Trotter formula to split time evolution operators into 4
time slices.

In VQE simulations, the parity transformation [43] is adopted. For the simulation of the
Mg = 1 state, the resulting qubit Hamiltonian acts on 4 qubits and there are 2 variational
parameters in the UCCSD ansatz. For the simulation of the Mg = 0 state, we fixed the oc-
cupation of the a orbital and the resulting qubit Hamiltonian acts on 2 qubits. We replicated
the exponential excitation operator twice, with parameters in both replicas variationally op-
timized. Such a choice results in 6 variational parameters, providing a sufficient number of
degrees of freedom for an accurate representation of the strongly-correlated Mg = 0 state.

Parameters in the ansatz are optimized with the COBYLA algorithm [294].
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Quantum simulations are performed with the QASM simulator and the IBM Q 5 York-
town quantum computer using the IBM Qiskit package [2]. Each quantum circuit is executed

8192 times to obtain statistically reliable sampling of the measurement results.

4.6 Discussion

With the goal of providing a strategy to solve complex materials problems on NISQ com-
puters, we proposed a first-principles quantum embedding theory where appropriate active
regions of a material and their environment are described with different levels of accuracy,
and the whole system is treated quantum mechanically. In particular, we used hybrid den-
sity functional theory for the environment, and we built a many-body Hamiltonian for the
active space with effective electron-electron interactions that include dielectric screening and
exchange-correlation effects from the environment. Our method overcomes the commonly
used random phase approximation, which neglects exchange-correlation effects; importantly
it is applicable to heterogeneous materials and scalable to large systems, due to the algo-
rithms used here to compute response functions [220, 261]. We emphasize that the embedding
theory presented here provides a flexible framework where multiple effects of the environment
may be easily incorporated. For instance, dynamical screening effects can be included by
considering a frequency-dependent screened Coulomb interaction, evaluated using the same
procedure as the one outlined here for static screening; electron-phonon coupling effects can
be incorporated by including phonon contributions in the screened Coulomb interactions.
Furthermore, for systems where the electronic structure of the active region is expected to
influence that of the host material, a self-consistent cycle in the calculation of the screened
Coulomb interaction of the environment can be easily added to the approach.

We presented results for spin-defects in semiconductors obtained with both classical and
quantum algorithms, and we showed excellent agreement between the two sets of techniques.
Importantly, for selected cases we showed results obtained using a quantum simulator and

a quantum computer, which agree within a relatively small error, in spite of the presence
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of noise in the quantum hardware. We made several predictions for excited states of SiV
in diamond and Cr in SiC, which provide important insights into their full optical cycle.
We also demonstrated that a treatment of the dielectric screening beyond the random phase
approximation leads to an accurate prediction of excitation energies.

The method proposed in our work enables calculations of realistic, heterogeneous ma-
terials using the resources of NISQ computers. We demonstrated quantum simulations of
strongly-correlated electronic states in considerably larger systems (with hundreds of atoms)
than previous studies combining quantum simulation and quantum embedding [313, 409,
26, 196, 315]. We have studied solids with defects, not just pristine materials, which are of
great interest for quantum technologies. The strategy adopted here is general and may be
applied to a variety of problems, including the simulation of active regions in molecules and
materials for the understanding and discovery of catalysts and new drugs, and of aqueous
solutions containing complex dissolved species. We finally note that our approach is not
restricted to strongly-correlated active regions and will be useful also in the case of weakly
correlated systems, where different regions of a material may be treated with varying levels
of accuracy. Hence we expect the strategy presented here to be widely applicable to carry

out quantum simulations of materials on near-term quantum computers.
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CHAPTER 5
FIRST-PRINCIPLES CALCULATION OF SPIN PROPERTIES
OF MOLECULES AND MATERIALS

Many important physical and chemical processes involve the magnetic interactions among
electron and nuclear spins. Such interactions are relativistic in nature and are not directly
accessible from the solution of the nonrelativistic electronic structure problem. This chapter
discusses density functional theory (DFT) calculation of spin properties of paramagnetic
molecules and semiconductor defects including the hyperfine interaction, zero-field splitting
and nuclear quadruple interaction. These properties are numerically difficult to compute
using usual basis sets such as plane waves or Gaussian orbitals. In Section 5.1 we describe a
novel approach based on finite-element basis sets, which enables all-electron DFT calculation
of spin properties and leads to results that can be systematically converged as a function of
basis set size. In Section 5.2 we present an extension of the formalism in Section 5.1 where
only selected atoms need to be treated at the all-electron level and the rest of the system
can be treated with pseudopotentials. This mixed all-electron-pseudopotential approach is
highly scalable and allows for calculations of spin properties for systems containing more

than one thousand atoms.
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5.1 All-electron calculation of spin properties using

finite-element DFT

Reprinted with permission from K. Ghosh, H. Ma, V. Gavini, and G. Galli. Physical Re-
view Materials. 3, 043801 (2019). Copyright (2019) by the American Physical Society.
https://doi.org/10.1103/PhysRevMaterials.3.043801

The interaction between electronic and nuclear spins in the presence of external magnetic
fields can be described by a spin Hamiltonian, with parameters obtained from first principles,
electronic structure calculations. We describe an approach to compute these parameters,
applicable to both molecules and solids, which is based on Density Functional Theory (DFT)
and real-space, all-electron calculations using finite elements (FE). We report results for
hyperfine tensors, zero field splitting tensors (spin-spin component) and nuclear quadrupole
tensors of a series of molecules and of the nitrogen-vacancy center in diamond. We compare
our results with those of calculations using Gaussian orbitals and plane-wave basis sets,
and we discuss their numerical accuracy. We show that calculations based on FE can be
systematically converged with respect to the basis set, thus allowing one to establish reference

values for the spin Hamiltonian parameters, at a given level of DFT.

5.1.1 Introduction

Electron spins in molecules, nanostructures and solids are important resources in many areas
including spintronics [158] and quantum information science [392]. For instance, high-spin
magnetic molecules can be utilized as single-molecule magnets and are promising platforms
for next-generation data storage devices [122]; in the solid state, spin-carrying deep centers
in semiconductors can serve as quantum bits for quantum information processing [190]. In
order to understand the physical properties of electron spins in molecules and solids, one
needs to describe the interaction of electron and nuclear spins, in the presence of external

electromagnetic fields. Such a description may be achieved by using spin Hamiltonians, with
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parameters derived from experiments or from calculations. For systems with a single effective

electron spin, the leading terms in the spin Hamiltonian are [331, 131, 1]:
H=ppB-g-S+Y B Iy+> S-Ay-Iy+S-D-S+Y Iy-Py-Iy (51)
N N N

where pp is Bohr magneton; S is the effective electron spin; B is the external magnetic
field; Iy and v are the spin and gyromagnetic ratio of the N th nucleus; g, A, D, and P
are rank-2 tensors that characterize the strength of electron Zeeman interaction, hyperfine
interaction, zero-field splitting and nuclear quadrupole interaction, respectively. Nuclear
spin-spin interactions and the chemical shielding effect in nuclear Zeeman interactions are
neglected in Eq. 5.1.

The spin Hamiltonian parameters g, A, D and P may be obtained by electron para-
magnetic resonance (EPR), nuclear quadrupole resonance (NQR) and related spectroscopic
techniques [393]. Theoretically their values can be determined by first-principles electronic
structure calculations, which also provide important information complementary to experi-
ments. For example, in the case of spin defects in solids often times the atomistic structure
and charge state of the defect are not straightforward to determine, experimentally. Com-
paring the computed spin Hamiltonian parameters for candidate structures and charge states
with experimental results is a useful means to identify the properties of the defect. In addi-
tion, first-principles calculations can provide insights into the structure-property relations of
molecules and spin defects, thus facilitating the rational design of molecules and materials
with desirable spin properties. Finally, by simulating spin systems under external pertur-
bations such as mechanical strain or applied electromagnetic fields, one can obtain valuable
information and guidance for the experimental manipulation of electron spins [86, 396].

Therefore, in order to devise predictive computational strategies, the development of ro-
bust methods for the calculation of spin Hamiltonian parameters is an important task. In

spite of important progress in the fields of materials science [377, 35, 289, 290, 16, 298, 40, 31]
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and quantum chemistry [267, 208, 345, 255, 301, 193, 256], there is not yet a general and well
established computational protocol that can reliably predict various spin Hamiltonian pa-
rameters with high accuracy for broad classes of systems. At present, the method most often
adopted for spin Hamiltonian parameter calculations is Density Functional Theory (DFT).
While calculations using ab initio wavefunction-based methods have also appeared in the
literature [321, 359], they have so far been limited to relatively small molecular systems due
to their high computational cost. To solve the Kohn-Sham equations in DFT, single particle
electronic wavefunctions are usually represented using basis sets, with Gaussian-type orbitals
(GTO) and plane-waves (PW) being among the most popular choices for molecular and ex-
tended systems, respectively. In PW-based DF'T calculations, pseudopotentials are employed
and the electronic wavefunctions near the nuclei are not explicitly evaluated, and one gen-
erally needs to perform a so-called projected augmented wave (PAW) reconstruction [34] to
extract all-electron wavefunctions for the calculation of certain spin Hamiltonian parame-
ters. Besides PW, there are studies exploring other basis sets including numerical atomic
orbitals [171], linearized augmented plane-wave [330], linear muffin-tin orbitals [63, 274], and
GTO [78] for the calculation of A-tensors and V-tensors (electric field gradient tensor) for
solids.

In this work we present calculations of spin Hamiltonian parameters carried out, for the
first time, using a real-space finite-element (FE) formulation of DFT [251]. The FE basis
is a piece-wise continuous polynomial basis [46] that allows for systematic convergence of
calculations with increasing polynomial order and decreasing element size. An important
attribute of the FE basis is its spatial adaptivity that can provide increased resolution in
specific regions of interest in real space, while using coarser descriptions elsewhere. In the
present context, the FE basis can be chosen to have higher resolution in the core region
to accurately describe the highly oscillatory nature of the single particle wavefunctions,
and a coarser resolution far from the core where the orbitals are smoother. Further, FE-

based calculations can be performed with either open or periodic boundary conditions, and
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therefore molecular and extended systems can be treated on an equal footing. There are
several advantages in using FE-based DFT calculations for computing spin Hamiltonian
parameters. The cusp of the wavefunctions near the nuclei can be more efficiently represented
than with GTO basis sets, and this is an important requisite to compute quantities such as
the Fermi contact component of the A-tensor. In addition, FE-based calculations can be
systematically converged with respect to the basis set size in a more straightforward manner
than GTO-based calculations, and they do not mandate the use of pseudopotentials and
PAW reconstructions, as required when using PWs.

Here we specifically consider the isotropic (Fermi contact) and the spin dipolar contribu-
tion to the hyperfine A-tensor, the spin-spin component of the zero-field splitting D-tensor,

and the nuclear quadrupole P-tensor.

5.1.2 Formalism

Hyperfine tensor

The isotropic (Fermi contact) and the spin dipolar component of the A-tensor are given by:

- 1
B0 — — e yN PP ns(r ), (5.2)
35
2
dip _ 1 po o [T —7rN[T0ap = 3(r —TN)a(r —TN)p
ab T 29 47T767Nh / |'l“ _ TN|5 ns(’l“)d’r‘, (53)

where a,b = z,y,z, S is the effective electron spin (S = 0 for a singlet, % for a doublet,
etc.); ng is the electron spin density; 7y is the position of the nucleus; (r — ry), is the
a-direction component of » —rp; 7e and 7y are gyromagnetic ratios for electron and nuclei,
respectively.

As can be seen from Eq. 5.2, the isotropic (Fermi contact) component of the A-tensor
exhibits a strong dependence on the electron spin density at the nuclei. An all-electron

A-tensor calculation in real-space requires very refined finite elements near the nuclei to ac-
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curately compute the electron spin density. The spatial adaptivity of the finite element mesh
(h refinement) is hence extremely useful here. On the other hand, the dipolar component
of the A-tensor involves an integration with %5 and T% kernels. This requires high accuracy
in the electronic spin density within a certain region surrounding the nuclei, which can be

systematically improved through the p-refinement.

Zero-field splitting tensor

The spin-spin component of the D-tensor evaluated using the Kohn-Sham wavefunctions, is

given by [245, 298]

ocCc.

1 . 7" 264p — 3aty,
Dy, = S(ZS 'yeh ;X%J// a 5 CIDU(I‘ r)drdr , (5.4)

where the summation is over all pairs of occupied orbitals, and ®;;(r, r/) are 2 X 2 determi-

nants formed from orbitals ¢; and ¢;, ®;;(r, r/) = \/Li [qﬁi(r)qﬁj(r/) — ¢i(r,)¢j(r)}; Xij = Tl

for parallel and antiparallel spins respectively; 7 is a scalar representing |r — r/|; Tq Tepresents

it

the a-direction component of the vector r — r. The operator abr;f,g% is the ab element

of the Hessian of the Green’s function of Z—VQ ie. G(r,r ) Since the operator,

o'’
2y

%, is invariant under particle exchange, the real-space integrals in Eq. 5.4 can be split
Ta ’I"b

into direct (Mé‘Z’D) and exchange terms (Mé]b’E) given by

”D ,32 G(r,r) Ry /
/ / i) =57 S 5 (5.5)

and

le /82 ( ) ; / « /
= [ [awes o L v (5.6)
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Equation 5.5 and Eq. 5.6 can be rewritten as

D / / gm qs* o Ap;()ei ()

and

MiE // d)z (b* G(r r/)aw?(r)fb‘j(r))drdr/. (5.8)

While the equivalence of Egs. 5.5-5.6 with Eqgs. 5.7-5.8 is trivial to see for molecular systems
(using integration by parts), showing the equivalence for periodic systems requires a more
complex manipulation (see Sec. 5.1.4).

In order to evaluate the double integrals in Eq. 5.7 and Eq. 5.8, we note that the kernel of
extended interactions is the Green’s function of —fFVQ, and we take recourse to the solution

of the Poisson equation. Thus, we obtain,

and
M;%,E _ / (¢ (;if] (r))AZJ,EO_)dr’ (510)
where V2Agj’D(r) = —47%% and VQAéj’E(r) = —4%%012?&. Thus, finally, the

D-tensor can be expressed as

occ.

Dypy = 5(2; 5 ”Yeh 2N (M - MITE). (5.11)

1<j
The computationally expensive part of the D-tensor calculation involves the solution of
Poisson problems, which are solved on the same FE mesh that represents the KS wavefunc-
tions. However, this computation is embarrassingly parallel over the pairs of orbitals ¢; and
¢j. We note that, unlike the A-tensor, the dipole-dipole integral entering the D-tensor ex-

pression (Eq. 5.4) does not explicitly depend on the nuclear coordinates, and thus we expect
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the D-tensor to be less sensitive to the cusps in the spin density at the nuclei. Therefore, a

p-refinement is ideal to systematically improve the accuracy in the calculation of D.

Electric Field Gradient Tensor

The nuclear quadrupole interaction P-tensor is directly related to the electric field gradient
(EFG) V-tensor. We denote the nuclear quadrupole moment by @) and the quantum number
(a component) of the nuclear spin as I (I,); the nuclear quadrupole Hamiltonian is given

by [331]

Ho=1I1-P-I

(5.12)
2}_1§:ww[ (Iody + IyIy) — 61 (14 1),

where the EFG V-tensor is the second derivative of the electrostatic potential at the nucleus:
Vab = [Vava(’l")Hr:rN

/ (5.13)
v | [ Ly A ‘
r=rN
Here n is the electron density (defined as positive), and Zj and r are the charge and position
of the I*® nucleus in the system, respectively.

Calculation of the nuclear contribution to the V-tensor (second term in Eq. 5.13) is
trivial, and only requires the knowledge of the nuclear charges and the respective positions
of the nuclei. We note that the electronic contribution to the V-tensor is given by the Hessian
of the electrostatic potential. To this end, from a converged self-consistent DFT calculation,
we extract the Hartree potential and compute the Hessian at the FE quadrature points. By
construction, every nucleus is on an FE node in the FE mesh. Thus, the value of the Hessian
at each nucleus is obtained via a projection of the quadrature point values to nodal value.
As the V-tensor involves point-wise second-order derivatives, a careful convergence study of
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both h and p refinement is required.

5.1.3 Results

We carried out calculations of spin Hamiltonian parameters for a series of molecules/radicals
and the nitrogen-vacancy (NV) center in diamond. For the calculation of the NV center,
the -1 charge state was considered, which is the most relevant charge state for NV-based
quantum information processing. A 64-atom supercell of diamond and I'-point sampling of
the Brillouin zone were used. In the following discussion of A and V-tensors of the NV center,
we focus on the nitrogen atom and the three carbon atoms with dangling bonds (DB). All
calculations were performed with the PBE functional [279]. When treating charged systems
we included a neutralizing jellium background. All structures were optimized with plane-
wave DFT using the QUANTUM ESPRESSO code [106] and the same structures were used for
all-electron calculations.

All-electron FE calculations were performed with the DFT-FE code using adaptive real-
space meshes. The tensor elements were converged with respect to the FE basis through h
and p refinements, within 1-2 MHz for the A-tensor, 5 x 10~%cm ™! for the D-tensor and
0.05 a.u. for the V-tensor of molecules. Convergence of the spin Hamiltonian parameters
for the NV center with respect to the FE basis is presented later in the discussion.

In order to verify our FE results, we also performed PW-based calculations for all systems
and GTO-based calculations for molecules. PW calculations of the A and V' tensors were
carried out with the GIPAW code using the GIPAW pseudopotentials (PP). PW calculations of
the D-tensor were conducted with two different PP: GIPAW and ONCV [324]. We followed
the numerical method in Ref. 298 to evaluate Eq. 5.4 in reciprocal space, using normalized
pseudo-wavefunctions [162, 86, 335, 396 (without PAW reconstructions) from the QUANTUM
ESPRESSO code. A kinetic energy cutoff of 200 Ry was used for PW calculations of molecules;
for the NV center we used 100 Ry for computational efficiency. GTO calculations of A, D

and P tensors were carried out with the ORCA code [257]. Two Gaussian basis sets were
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considered: EPR-III [299] and IGLO-III [204], both of which are designed for an accurate
representation of core electrons. We also tested a series of general-purpose basis sets from
Dunning and co-workers (cc-pVDZ, cc-pVTZ, cc-pVQZ and ce-pV5Z) [82], but we found
that the values of A, D and P tensors converge poorly as a function of the basis set and the
poor convergence prevented any meaningful extrapolation to the complete basis set limit.
We present GTO results obtained with cc- basis sets in Sec. 5.1.4.

Table-I and Table-II show the isotropic (Fermi contact) and spin dipolar component of
the A-tensor for several molecules (CN, BO, AlO, NH) and the NV center. Due to the
symmetry of the systems considered here, the dipolar A-tensor has only one independent
component (except for DB carbons in the NV center). Denoting the principal values of the
dipolar A-tensor as A(filp, Ag;p, Ag;p (|Ailip| = |Ag§p| = %|A§§p ), we show Ag;p in Table-II. In
PW calculations we tested three different treatments of core relaxation (Slater exchange-only,
exchange-only and exchange-correlation) implemented in the GIPAW code [16]. Experimental
values are also shown in the Tables for reference. We note that all of the results presented
here, in addition to numerical errors which are quantified and discussed in detail below, suffer
from systematic errors introduced by the use of a specific, approximate exchange-correlation
functional, the PBE functional. A previous study has shown that more advanced functionals,
such as certain hybrid and meta-GGA functionals, may improve the agreement with exper-
iments, relative to GGA functionals, for the A-tensor of small radicals and transition metal
complexes [193]. However, there is yet no consensus on which functional is the most accurate

one, in general, for the calculation of the A-tensor or other spin Hamiltonian parameters.
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We found that in general, GTO results obtained with EPR-III and IGLO-III basis sets
are similar, with a mean absolute deviation (MAD) of 3.2 (0.6) MHz for A% (AdP) for
the systems considered here. FE and GTO results agree well: the MAD between FE and
GTOQEPR-III results is 2.5 (1.5) MHz for A'%° (A4iP). However, for the Al atom in AlO, FE
and GTOQIGLO-III yield different values of A by 56 MHz (9%). We expect the difference
to originate from inaccuracies of the IGLO-III basis set used in GTO calculation; for example,
we found that GTO calculations using different cc- basis sets yield large variations, between
580 to 520 MHz, for the A value of Al. Overall, the agreement between FE and GTO results
serves as a verification of our FE implementation for the calculation of the A-tensor. We note
that EPR-III and IGLO-III sets are specialized GTO basis designed for spin Hamiltonian
parameter calculations, and they are not available for all elements (for instance, an EPR-III
basis set for Al is not available). FE-based calculations, on the other hand, can be performed
for any element in the periodic table and the results can be systematically converged with
respect to the basis set.

We found that PW calculations agree well with all-electron FE and GTO calculations for
AP while they deviate slightly for A%°. For AYP| the MAD between FE and PW results is
2.7 MHz, while the MAD for A ranges from 13-17 MHz depending on the treatment of core
relaxation in PW calculations. Notably, in the case of the AIO molecule, PW calculations
predicted a different sign for the A of the O atom compared to all-electron FE and GTO
calculations.

PW and FE calculations for the NV center yielded qualitatively similar values for AS°
and AP for both nitrogen and DB carbons. The larger value of A° compared to AP for
the nitrogen atom reveals a strong s character of the spin density on the nitrogen. The spin
density on the DB carbons has instead a significant p-type contribution as revealed by the
comparable values of A0 and AYP. There is a sizable difference between DFT results and
experimental values for the A% of DB carbons (30%), which might be due to the use of a

small (64-atom) supercell for the NV center.
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In Table-IIT we present the computed zero field splitting D-tensor for several spin-triplet
molecules/radicals (Oy, CH,, NH, C5H5+) as well as for the NV center. We report the scalar
parameter D = %Dgg, where Dy, D92, D33 are principal values of the D-tensor such that
|D11] < |Dag| < |Ds3g|. For low symmetry systems such as the CH, carbene, we additionally

report the scalar parameter E = %(DH — D99).
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Overall, GTO results show a weak dependence on the basis set, with a MAD of 0.016
cm ™! between values obtained with EPR-IIT and IGLO-III basis sets. PW calculations show
a weak dependence on the chosen pseudopotential, with a MAD of 0.017 cm ™! between
ONCV and GIPAW results. Similar to the case of the A-tensor, GTO and FE results agree
well, with a MAD of 0.001 cm™! between FE and GTOQEPR-III values. Due to the use
of pseudo-wavefunctions for the evaluation of Eq. 5.4 and the lack of PAW reconstruction,
PW results deviate from all-electron ones, with a MAD of 0.064 cm ™1 between FE and
PW@GIPAW values. For the case of the NV center, results from FE, PW and experiments
appear to be in good agreement.

Table-IV summarizes the electric field gradient V-tensor for several closed-shell molecules
(HCN, NCCN, N,, H,0) and for the NV center. Following the convention of the NQR spec-
troscopy literature, we report the quadrupole coupling constants eQ?V33, where Vi1, Vag, V33

are principal values of the V-tensor such that |Vi1| < |Vao| < |V33]. For low symmetry
Var—Vn1

systems, we additionally report n = 75
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Unlike the A tensor, which depends on charge density differences, the V-tensor depends
on the absolute value of the charge density and thus it is more sensitive to the details of
the electronic structure. Differences are indeed observed for GTO calculations with different
basis sets (MAD = 0.09 MHz), as well as between GTO and FE calculations (MAD = 0.18
MHz between FE and GTOQEPR-IIT). PW results significantly deviate from all-electron
GTO and FE results, with a MAD of 0.76 MHz between FE and PW values. In the case
of the NV center, PW and FE yield similar nuclear quadrupole coupling for nitrogen, in
qualitative agreement with experiment, while for DB carbons the predicted V33 values using
PW and FE have opposite signs.

Finally, to demonstrate the convergence of the FE results with respect to the basis set,
in Table-V we show A-, D- and V-tensors for the NV center computed with different FE
polynomial degrees. We denote calculations with ntt-order polynomials as FEn. For the
A-tensor and V-tensor calculations a mesh size of 0.1 Bohr was used surrounding the nuclei,
while for the D-tensor calculation the mesh size was 0.5 Bohr. We see in Table-V that
our results for the A-tensor are well converged at the FE6 level, as indicated by the small
difference (less than 3%) between FE5 and FE6 results. Similarly, D-tensor values are well
converged at the FE5 level. The numerical value of the V' tensor is sensitive to the details of
the electronic wavefunctions around the nuclei, as mentioned previously, and its convergence
is indeed more challenging compared to that of the A- and D-tensors. We performed V-tensor
calculations with polynomial degrees up to 7. At the FE7 level, most of the computed V
tensor elements are converged within 10%, based on asymptotic estimates obtained by power

law extrapolations.
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Table 5.5: The principle values of A (top, in MHz), D (center, in ecm™1), and V' (bottom, in
a.u.) tensors for the NV center computed by FE-based DFT using different finite-element
polynomial degrees.

14 N DB 13 C
dip dip dip iso dip dip dip iso
All A22 A33 A All A22 A33 A

FE3 | 0.033 0.033 -0.066 -2.362 | -27.303 -27.592 54.896 100.492
FE4 | 0.034 0.034 -0.067 -2.307 | -27.199 -27.654 54.853 99.708
FE5 | 0.035 0.035 -0.070 -2.319 | -27.189 -27.664 54.854 99.016
FE6 | 0.035 0.035 -0.070 -2.316 | -27.171 -27.696 54.867 98.721

Dyy Dag D33

FE3 | -0.0327 -0.0327 0.0654
FE4 | -0.0321 -0.0321 0.0642
FE5 | -0.0329 -0.0329 0.0658

N DB C
Viin.  Vog Vi3 V11 Voo Vi3
FE5 | 0.865 0.865 -1.731 | -0.033 -0.127 0.160
FE6 | 0.804 0.804 -1.609 | -0.081 -0.136 0.217
FE7 | 0.761 0.761 -1.520 | -0.122 -0.129 0.251

5.1.4 Technical details

Real space computation of D-tensor for crystalline solids

Here, we describe the mathematical formulation behind translating Eq. 5.5 (Eq. 5.6) to Eq.
5.7 (Eq. 5.8) for crystalline solids. Eq. 5.5, in a periodic system, has the following the form

given by
2 / /
MP / / JasiGl )h(r )dr' dr (5.14)
R3 8ra8rb

with h(r/) = ¢; (r,)¢§(r/) and f(r) = ¢;(r)¢; (r). Q is the volume representing the unit cell.

Integrating by parts with respect to r, we arrive at

gD __ [0 [ 9Grx), s (] s,
My = /Q Ira /Rz or, b Jdr 4 +7{9(Q)ﬂ )</R3 or,, i )d >d( 8)-
(5.15)
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/
Now noting the fact that ﬁ = —%;;r), we can rewrite the second term on the right

7'b
hand side of Eq. 5.15 as

MY = _%S(Q) f(r)a%(/R3 G(r,r')h(r’)dr’)d(a.S). (5.16)

The term within the parenthesis (let us denote it as ®(r)) can be obtained from the solution

of the PDE, V2®(r) = —4xh(r), with periodic boundary conditions on the unit cell domain,

provided fQ r)dr = 0. However, this condition is not valid while computing the direct part
of the D-tensor, as fQ r)dr = 1. Thus, we rewrite Eq. 5.3 as the sum of two terms, given
by

MY =~ 72(9) f(r)a% (/RS G(r,r’)(h(r’) - %)dﬁ) d(a.S)

- 7{5 o 7o) ( /R 3 _ac:g:;r )dr’>d(a.8).

Considering the second term on the right hand side of Eq. 5.4, it is straightforward to
show that the integral within the parenthesis (over R3) vanishes. Further, noting that the
convolution integral within the parenthesis (over R3) of the first term of Eq. 5.17 is the
given by the solution of the Poisson equation, the resulting field is periodic on the unit cell.
Thus, the surface integral in the first term of Eq. 5.17 vanishes owing to the periodicity of

the functions. Thus, Eq. 5.15 can be rewritten as

D _ af(r)/ OG(r,r) 1.
MY /Q e i, (5.18)

which, again, through integration by parts can be written as

/
2‘7 p / / /)_8h(1/' )dr/dr, (5.19)
R3 0T’a ory
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which is same as Eq. 5.7 of. We note that the boundary term, resulting from integration by
parts, in the above equation vanishes as G(r, r/) S 0asr — oo

The treatment of the exchange term is similar. In this case, we define h(r/) = gbi(r/)gb;f (r/),
and f(r) = qbi(r)gb;f (r), Y i # j. Thus, the condition [, h(r)dr = 0 holds from the orthogo-
nality of the Kohn-Sham wavefunctions, and one need not split Eq. 5.16 into two parts as

above. The rest of the arguments are identical.

Convergence tests for GTO calculations with cc- basis sets

In this section we present A Ag;)p, D and V33 computed with GTO DFT as a function
of basis sets: cc-pVDZ (¢ = 2), ce-pVTZ (¢ = 3), cc-pVQZ (¢ = 4), ce-pVSZ (¢ = 5).
According to the following plots, in many cases spin Hamiltonian parameters do not converge
with respect to basis in a reasonable manner. Therefore, it is challenging to extrapolate the
results to the complete basis set (CBS) limit, as is usually done for the calculation of DFT

total energies.
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Figure 5.4: V33 as a function of basis set.
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5.1.5 Conclusions

To summarize, we presented an approach to compute spin Hamiltonian parameters based
on DFT, which uses all-electron calculations and finite element basis sets to solve the Kohn-
Sham equations. The approach can be applied to both solids and molecules and offers the
important advantage of straightforward convergence of the calculations with respect to the
basis set, which can be systematically achieved by refinement of the finite element basis.
We reported calculations of the Fermi contact and dipolar component of the A-tensor,
the spin-spin component of the D-tensor and the nuclear quadrupole P-tensor for several
molecules and for the NV center in diamond. We presented detailed comparisons of results
obtained using FE, GTO and PW basis. For molecules, we showed that all-electron results
obtained with FE basis sets are in good agreement with those obtained with GTO basis sets.
The approach introduced in our work represents the first step towards building a robust
protocol for the first-principles prediction of various spin Hamiltonian parameters based on
finite element density functional theory. There are multiple prospects of future work in this
direction, both in terms of the level of physics and computational efficiency. It is impor-
tant to extend the current formalism to include relativistic effects since proper treatment of
scalar relativistic effects will be crucial for accurate calculations of spin Hamiltonian param-
eters of heavy elements. The ability to include spin-orbit coupling effects will also allow for
the computation of additional spin Hamiltonian parameters, including the g-tensor and the
spin-orbit component of the A and D-tensor. Further, it would be interesting to develop and
test more advanced density functionals, such as meta-GGAs and hybrid functionals, and to
establish which functional performs better, compared to experiments. With regards to the
computational efficiency, the FE basis functions can be enriched using compactly supported
precomputed enrichment functions [175], which will drastically reduce the computational
cost, while providing systematic convergence. Finally, we plan to utilize a combination of
all-electron and pseudopotential based calculation under the same framework, where certain
atoms of interest are treated at all-electron level and other atoms are treated using pseudopo-
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tential approximation, which will enable the computation of spin Hamiltonian parameters

in systems involving thousands of atoms.
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5.2 Mixed all-electron-pseudopotential calculation of spin

properties

Adapted from K. Ghosh, H. Ma, M. Onizhuk, V. Gavini, and G. Galli. To be submitted.

Spin-defects in semiconductors are promising quantum bits (qubits) for quantum infor-
mation technologies including quantum computation, quantum communication and quantum
sensing. The prime example of spin-defect is the nitrogen-vacancy (NV) center in diamond,
which can be optically initialized and read-out, and possesses millisecond coherence time
even at room temperature. In recent years, great efforts have been devoted to the search for
novel spin-defects in industrially friendly host materials with similar or superior properties
to diamond NV centers for quantum information applications. For instance, several promis-
ing spin-defects have been investigated in silicon carbide, including the divacancy (VV), Cr
impurity, V impurity, etc. There are also growing interests in discovering and designing spin
qubits in aluminum nitride, zinc oxide, and 2D materials.

First-principles simulations based on density functional theory (DFT) have played an
important role in the discovery and identification of novel spin-defects. In particular, DFT
simulations can predict various thermodynamic and spin properties of spin-defects, which
provide critical information for the interpretation of optical and magnetic measurements, and
the determination of atomistic configuration and electronic structure of unknown defects.
Among various properties DF'T can compute, spin properties are among the most important
predictors for promising defect spin qubits. The spin properties of a point defect in a certain
electronic state (such as the ground state) can be summarized by its spin Hamiltonian (SH),
which describes the interaction between electron spins, nuclei spins and external fields. A

typical SH for a spin-defect is
H=ugB-g-S+Y S-Ay-Iy+S-D-S (5.20)
N

where g-tensor characterizes the coupling strength between the electron and the external
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magnetic field, hyperfine A-tensors characterize the coupling between electron and nuclei
spins, and zero field splitting D-tensor characterizes the energy splitting between different
spin states at zero magnetic field. We have neglected other terms with smaller magnitudes.
The A-tensor and D-tensor are particularly important descriptors of novel defects: large
hyperfine couplings limit the coherence time of electron spin, but may benefit the use of
nuclear spins as quantum memories; the dependence of D-tensor on external environment
characterizes the coupling between electron spins and other degrees of freedom such as lattice
strain, electric field and temperature, and are important for quantum sensing applications.

The great majority of existing DF'T calculations of SH parameters are based on the
plane-wave pseudopotential formalism. Other formalism exists but is often limited to small
systems. In the plane-wave pseudopotential formalism, pseudopotentials are used to approx-
imate interactions between valence electrons and nuclei, and wavefunctions of core electrons
are not explicitly evaluated. Based on the results of plane-wave pseudopotential calculations,
one generally needs to perform a so-called projected augmented wave (PAW) reconstruction
to extract all-electron wavefunctions for the calculation of SH parameters. Such calculations
yield results dependent on the choice of pseudopotentials. In the previous section, we pro-
posed and benchmarked a real-space all-electron DFT framework based on finite-element
(FE) basis sets for accurate prediction of SH parameters in molecules and solids. This
framework enables all-electron calculations of SH parameters and leads to results that can
be systematically converged with respect to basis sets. In this work, we propose a novel
computational scheme that combines the all-electron and pseudopotential formalism, and
we demonstrate calculations of systems with ~1000 atoms. In particular, the new scheme
proposed here treats selected atoms in the system on the all-electron level, while treating
the rest of atoms using pseudopotentials (see Figure 5.5). We applied the mixed all-electron
pseudopotential scheme to compute the A-tensor and D-tensor of NV in diamond and VV
in 4H-SiC. Remarkably, we show that by only treating a few atoms around the defect on

the all-electron level, one can already obtain results almost identical to those obtained with
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pure all-electron calculations.

PP Si

Figure 5.5: Structure and spin density of nitrogen-vacancy (NV) center in diamond (left)
and divacancy in 4H-SiC (right). In both systems, the spin density is localized around three
carbon atoms with dangling bonds. By only treating a few atoms near the defect at the
all-electron (AE) level, one can obtain accurate predictions of spin Hamiltonian parameters,
while the remaining atoms can be treated using the pseudopotential (PP) approximation.
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CHAPTER 6
FIRST-PRINCIPLES SIMULATION OF SPIN-DEFECTS FOR
QUANTUM INFORMATION SCIENCE

In this chapter, we present several studies where we apply first-principles methods to inves-
tigate spin-defects for quantum information science (QIS). Spin-defects in semiconductors
are point defects that carry electron spins, whose spin sublevels can be harnessed to encode
quantum information. Compared to other physical realization of quantum bits (qubits),
spin-defects combines several desirable features such as long coherence time, room tempera-
ture operability and optical addressibility. Spin-defects have been widely used in QIS fields
including quantum sensing, quantum communication and hybrid quantum architectures.

The research summarized in this chapter can be partitioned into two topics. The first
topic is the computational design and characterization of novel spin-defects. Currently, the
most studied spin-defect is the nitrogen-vacancy (NV) center in diamond, and a lot of efforts
have been devoted to explore novel spin-defects in diamond and other materials, with the
hope of finding novel defects with distinct (hopefully improved) properties from NV centers
in diamond. In Section 6.1 we proposed several novel transition metal ion-vacancy complexes
in silicon carbide and aluminum nitride as promising spin qubits. In Section 6.2 we present
a computational study of strongly-correlated electronic states of group-4 vacancy centers in
diamond.

The second topic of this chapter is the computational study of existing spin-defects, where
first-principles calculations are used to interpret experimental measurements and to provide
guidance for the design of new experiments. In Section 6.3 we present a joint experimental-
computational study of divacancy (VV) defects in silicon carbide under mechanical waves,
where DF'T and group theory are used to derive a complete microscopic theory of spin-phonon
interaction of VV. In Section 6.4 we briefly introduce quantum dynamics simulations of spin-

defects using the cluster correlation expansion (CCE) method, which allowed us to predict
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the coherence time of spin-defects in the bath of nuclear spins and other spin-defects.
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6.1 Discovery of novel spin qubits in silicon carbide and

aluminum nitride

Reprinted with permission from H. Seo, H. Ma, M. Govoni, and G. Galli. Physical Re-
view Materials. 1, 075002 (2017). Copyright (2017) by the American Physical Society.
https://doi.org/10.1103/PhysRevMaterials.1.075002

The development of novel quantum bits is key to extend the scope of solid-state quan-
tum information science and technology. Using first-principles calculations, we propose that
large metal ion - vacancy pairs are promising qubit candidates in two binary crystals: 4H-SiC
and w-AIN. In particular, we found that the formation of neutral Hf- and Zr-vacancy pairs
is energetically favorable in both solids; these defects have spin-triplet ground states, with
electronic structures similar to those of the diamond NV center and the SiC di-vacancy. In-
terestingly, they exhibit different spin-strain coupling characteristics, and the nature of heavy
metal ions may allow for easy defect implantation in desired lattice locations and ensure sta-
bility against defect diffusion. In order to support future experimental identification of the
proposed defects, we report predictions of their optical zero-phonon line, zero-field splitting
and hyperfine parameters. The defect design concept identified here may be generalized to

other binary semiconductors to facilitate the exploration of new solid-state qubits.

6.1.1 Introduction

Optically active spin defects in wide-gap semiconductors are important resources for solid-
state quantum technologies [12, 57, 138, 99]. One well-known spin defect is the nitrogen-
vacancy (NV) center in diamond [76], which may be used for applications ranging from
quantum information processing [385] to quantum sensing [71, 406]. Recently, alternative
defect qubits in wide-gap binary semiconductors have been proposed [188, 397, 351, 18]. In
particular, di-vacancies in SiC were shown to have several desired properties similar to the

diamond NV center [188, 59, 60] and to exhibit a quantum coherence time much longer than
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that of the diamond NV [59, 333, 410]. In a previous study, we showed that the binary nature
of SiC is responsible for the improved coherence time [333]. Given the attractive properties of
SiC - i.e., much cheaper than diamond and with well-established synthesis procedures - and
the promising properties of its point defects, it is interesting to explore whether additional
defects may be engineered in SiC as qubit candidates [392, 190].

In recent years, first-principles calculations have played a key role in the search of de-
fect qubits in wide-gap semiconductors. For example, by using density functional theory
(DFT), Gali pointed out similarities between the divacancy spin in SiC and the diamond
NV center [96], originating from the same Cs, configuration of C 2sp® dangling bonds in
the two materials [163]. An experimental investigation of the divacancy by Koehl et al.
readily followed [188]. Weber et al. formulated criteria for the systematic identification of
qubits in wide-gap semiconductors and proposed to realize ‘NV centers’ in SiC [392]. Later,
Bardeleben et al. experimentally verified the existence of the NV center in SiC [382], which
were followed by further experimental and theoretical characterizations [416, 381]. First-
principles DET calculations have also been used to investigate Si vacancies (VSi) in SiC and
to identify the role of C 2sp® dangling bonds in determining the properties of the optically
addressable solid-state qubit [355].

The realization of ‘NV-like’ qubits in SiC, based on C 2sp3 dangling bonds, may lead
to several advantageous properties [138, 392, 190], nevertheless a number of drawbacks are
present. For example, the SiC divacancy, similar to the diamond NV center, may exhibit low
optical read-out fidelity [76, 356] and small ground-state spin-transverse strain coupling [209,
86], which is unfavorable for certain hybrid quantum applications [222, 30, 329, 114, 373]. In
addition, the implementation of spin qubits using C 28p° dangling bonds is not generalizable
to other binary materials, e.g. nitrides. In the case of nitrides, theoretical studies have
suggested that defects based on N 2sp3 dangling bonds, e.g. V A1ON may be potential qubit
candidates [373]. However, in a previous study on AIN [334], we showed that the occupied

spin-orbitals of V51O are in strong resonance with the valence band of the host, which
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make them unfavorable for spin qubit applications.

Therefore, it is desirable to explore the possibility of realizing qubits that are based on
novel defects rather than on C or N 2sp® dangling bonds. Recent theoretical studies have
proposed spin defects in SiC and AIN based on cationic dangling bonds, e.g. Al 3sp? states
and Si 3sp® states (334, 362, 379]. In a previous work, we showed that the negatively charged
N vacancy in w-AIN could have an optically addressable spin-triplet state under a uniaxial
or biaxial strain [334]. Varley et al. considered impurity-vacancy pairs in w-AIN based on
Group-1V elements including Ge, Sn, Ti, and Zr [379]. They suggested that Zr- and Ti-
vacancy pairs would be good candidates for spin qubits in w-AIN. In the case of 4H-SiC,
Szasz et al. proposed that the S = 1 state of the carbon-antisite vacancy defect may be
stable, and hence may be a valuable qubit [362].

Using a combination of first-principles calculations, here we propose that large metal ion
- vacancy (LMI-vacancy) pairs are promising qubit candidates in both 4H-SiC and w-AIN. In
particular, we selected Y, La, Zr, and Hf ions for two reasons: (i) They have ionic radii larger
than those of Si and Al [339], and hence they may favorably pair with anion vacancies, i.e.
N vacancies in w-AIN and C vacancies in 4H-SiC. Such pairing was previously investigated
for Nb in SiC [161] and Ce in AIN [212] are lower than those of Al (1.6), Si (1.9), possibly
leading to the stabilization of desired charge states for the defect complexes. We found that
neutral Hf- and Zr-vacancy pairs are promising candidates for spin qubits in both 4H-SiC
and w-AIN. Our calculations showed that these defect complexes are energetically stable and
exhibit a spin-triplet ground state localized in the band gap of SiC and AIN, which could be
optically addressable. In addition, we predicted the optical zero-phonon line, spin zero-field
splitting, and hyperfine coupling parameters of the defects, to assist future experimental
detection.

The rest of the paper is organized as follow. In Section 6.1.2, we describe the first-
principles computational methods used in this work. Our main results are presented in

Section 6.1.3. In Section 6.1.4, we discuss the unique features of the defects proposed here
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as potential qubits in 4H-SiC and w-AIN and we summarize our results.

6.1.2 Methods

Density functional theory and GyW, calculations

We performed DFT calculations with semi-local and hybrid functionals using plane-wave
basis sets (with an energy cutoff of 75 Ry), optimized norm-conserving Vanderbilt (ONCV)
pseudopotentials [129, 324] and the Quantum Espresso code [106]. We used the PBE semi-
local functional [279] and the dielectric-dependent hybrid (DDH) functional proposed in
Ref. 346 with the self-consistent Hartree-Fock mixing parameter («) determined in Ref.
346 for SiC (agic = 0.15 = 1/e sic, Where ey, gic = 6.5 was self-consistently computed
by including the full response of the electronic density to the perturbing external electric
field). For AIN, we used the PBEOQ hybrid functional [4], whose choice for AIN was extensively
verified in Ref. 334 (For PBEO, azjn = 0.25, close to the self-consistently determined mixing
parameter; 1/e,, Ay = 1/4.16 = 0.2446). Bulk properties of 4H-SiC (see Table 6.1) and
w-AIN (reported in our previous study [334]) computed with the DDH functionals were
found to be in excellent agreement with experimental data [212, 278|. In addition, we also
performed calculations with the Heyd-Scuseria-Ernzerhof (HSE06) range-separated hybrid
functional 141 and projector-augmented-wave (PAW) pseudopotentials [34] to cross-check
some of our results obtained with the DDH functional.

The calculation of the defect formation energy [90] of charged point defects in a crystal
was carried out with the charge correction scheme developed by Freysoldt, Neugebauer, and
Van de Walle [91]. We employed supercells with 480 atoms and 96 atoms for PBE and DDH
calculations, respectively, and we sampled the Brillouin zone with the Gamma point only for
the largest supercell and with a 2 x 2 x 2 k-point for the smallest one. Convergence studies
as a function of cell size and k-meshes were reported in a previous paper [334].

The zero-phonon line (ZPL) of the LMI-vacancy pairs was obtained by calculating total
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Table 6.1: Computed bulk properties of the 4H-SiC calculated at the PBE and the DDH-
DFT levels of theory along using ONCV pseudopotentials [129, 324]. Experimental values
are from Ref. 212, 278.

Lattice parameters Dielectric constants
a (A) c (A) Electronic Static (eg | /€0, 1)
(€0, /€c0,L)
PBE 3.096 10.136 6.938 / 7.251 10.306 / 10.938
DDH 3.087 10.089 6.396 / 6.623 9.663 / 9.926
Experiment 3.073 10.053 6.52 / 6.70 9.66 / 10.03

Table 6.2: Computed band-gaps (eV) of the crystals considered in this study calculated at
the GgWy@PBE, the DDH hybrid, and the HSE06 hybrid functional levels of theory.

Host crystals DD-hybrid HSE06 GoWo@QPBE Experiment
(eV) (eV) (eV)

Diamond 5.59 5.42 4.25 5.48 [180]

4H-SiC 3.28 3.19 3.29 3.23 [212]

w-AIN 6.39 5.67 6.12 6.03 - 6.28 [302]

energy differences (ASCF method) with 480-atom supercells with the PBE semi-local func-
tional and 240-atom supercells with the hybrid functionals (DDH and HSE06). We found
that energy differences computed with 480- and 240-atom supercells at the PBE level differed
by less than 50 meV.

We also calculated defect level diagrams of the LMI-vacancy pairs in 4H-SiC and w-AIN
within the GoWy@QPBE approximation [133, 156] using the WEST code [117] with 240-atom
supercells and the I" point only. Table 6.2 compares the band-gap of diamond, 4H-SiC, and
w-AIN obtained with the GogWy@QPBE as well as with hybrid DFT calculations, showing

excellent agreement with experiment.

Spin Hamiltonian: zero-field splitting and hyperfine parameters

The properties of a defect in a crystal with spin S > 1/2, interacting with a nuclear spin I

can be described by the following spin Hamiltonian [331]:

H=8 D-S+S-A-I (6.1)
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where D is the zero-field splitting (ZFS) tensor describing the splitting and the mixing of
levels with different values of magnetic spin quantum number (e.g. mg = 0, %1 for S = 1),
occuring even in the absence of an applied magnetic field and A is the hyperfine tensor
describing the coupling between the electron spin and the nuclear spin. The first term of
Eq. 6.1 can be written as:

S(S+1)

) +E(S2-S2)  (6.2)

where D = 3D, /2 and E = (Dgzz— Dyy)/2 are called the axial and rhombic ZFS parameters,
respectively, and the ZFS tensor D is traceless [331]. Hence, in the case of spin S = 1, the
D term describes the energy splitting between the mgy = £1 and ms = 0 spin sub-levels,
while the E term mixes the spin sub-levels. In the case of Cgy, symmetry, the E term is zero
and the Cg axis aligns with the spin quantization axis of the D tensor.

For a defect spin in a crystal composed of light elements (such as Si and C), the inter-
actions contributing to the ZFS tensor are known to be dominated by the magnetic dipole-
dipole interaction between the constituent electron spins (Hgg) [131]. For instance, for a
defect system with S = 1 composed of only two unpaired electrons (s; = 1/2, s9 = 1/2; and
S = $1 + s9), the general form of the magnetic dipole-dipole coupling is given by:

po  (veh)® o

Hqq = EW(T 8182 —3(s1 - (r1 —r2))(s2- (r1 — 12))) (6.3)

where g is the vacuum magnetic permeability, 7. is the electron gyromagnetic ratio, A is the

Planck constant divided by 27, s1 and s9 are the spin-1/2 operators for the two electrons, r;

and 7o are the positions of the electrons, and r is the distance between them. Using the total

spin (S = s1 + s2) and averaging over the spatial coordinates, one can derive an expression

for the ZF'S tensor’s components originating from the magnetic dipole-dipole interaction of
Eq. 6.3:

1 MO T25ab — 3TaTb

Dyp = QE(%ﬁ)Q (‘I’z‘j(T17T2)|r—5|‘I’ij(rlv7“2)) (6.4)
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where a and b label the Cartesian coordinates and \Ifl-j('rl,'rg) is the wavefunction of the
two-electron system.

For many-electron systems such as the LMI-vacancy spins considered here, we computed
the D-tensor’s components following Ref. 298:

occupied
1 o r28 3rqr
D, = ——(fyeh)2 25 Y Z XU ij r17r2)|%|¢1w(r1,r2)> (6.5)

247 i~
where \I/ij(rl,rg) is a Slater-determinant approximated by using the i-th and j-th Kohn-
Sham wavefunctions of a given spin defect. The sum in Eq. 6.5 is over all the possible pairs
of occupied Kohn-Sham wavefunctions. x;; is +1 (-1) for parallel (antiparallel) spins. As
suggested in Ref. 298, we computed Eq. 6.5 in Fourier space; we used PBE wavefunctions
obtained with a 480-atom supercell with the I'" point only.

Our results for diamond and SiC, obtained with the ONCV norm-conserving pseudopo-
tentials (see Table 6.5) systematically overestimate the experimental ZFS parameters by 200
~ 300 MHz [166, 85].

The hyperfine parameters were calculated by first obtaining the ground-state wavefunc-
tions of a LMI-vacancy spin at the PBE level of theory, with the PAW pseudopotentials,
and the 480-atom supercell (Gamma-only calculations). We then calculated the hyperfine
parameters by using the gauge-including projector-augmented wave method [289] (GIPAW)
as implemented in the GIPAW module of the Quantum Espresso code. The core polarization

effects [16] were included throughout all of our calculations.

6.1.3 Results

Electronic properties of metal ion-vacancy pairs

As a validation step of the computational strategy applied to LMI-vacancy pairs, we first

applied the DDH hybrid functionals to the diamond NV center and a divacancy defect
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(the (hh)-divacancy) in 4H-SiC, which have the same Cgy, symmetry as that of the defect
complexes studied here; we compared our results with those already present in the litera-
ture [86, 97, 116] and found good agreement.

We then computed the atomic and electronic structure of the Hf- and Zr-vacancy in
4H-SiC using the DDH functionals. For the LMI-vacancy pairs considered in this study,
we note that we only consider (hh) axial configuration and Cs, symmetry: for Hf-vacancy
pairs in SiC, Hf substitutes Si at an h-site and it pairs with a C vacancy at the nearest
neighboring h-site. Fig. 6.1a shows the structure of a Hf-vacancy defect complex in 4H-SiC
in a neutral charge state. Our hybrid functional calculation showed that substitutional Hf
does not occupy the original Si site, rather it is significantly off-centered (by 0.41 A), closer
to the C vacancy site, which provides extra space to accommodate the large substitutional
Hf. As noted earlier, the electronegativity of this Hf (1.341) is smaller than that of Si
(1.9), indicating that substitutional Hf would transfer four valence electrons to the nearest
neighboring C and Si dangling bonds, thus remaining in a 4+ oxidation state. Therefore, the
defect geometry includes three passivated C sp® dangling bonds around substitutional Hf,
and three Si 3sp? dangling bonds in the Cg, symmetry, with one e~ from each Si dangling
bond and one e transferred from Hf.

Fig. 6.1b and 1c show the defect level diagram of the neutral Hf-vacancy complex in 4H-
SiC and its spin density, respectively, with a fully occupied a state and two degenerate ex and
ey states with two unpaired electrons localized within the band gap of the crystal. Although
there are significant contributions from Hf and the nearby C atoms to the defect spin density,
the major contribution arises from the Si 3sp® dangling bonds. Hence, one may qualitatively
understand the level diagram of Fig. 6.1b, as originating from a Csy configuration of three
Si dangling bonds with four electrons, corresponding to a 3As spin-triplet state, analogous
to that of the diamond NV or the SiC (hh)-divacancy. A spin-conserving intra-defect optical
excitation would then be allowed, by promoting an a electron to the e manifold in the spin-

down channel, leading to a 3 E excited state [97]. We also found that the Zr-vacancy showed
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very similar properties in terms of geometrical and electronic structures (Zr belongs to the
same row of the periodic table as Hf).

The energy levels of the occupied and unoccupied doubly degenerate e states of these
defects were also computed with the GyWy@QPBE method and the HSE06 functionals (see
Table 6.3) for validation purposes. We found that all three methods yielded consistent results
for the position of the levels, which are calculated to be about 1 eV above the valence band
edge in SiC.

We note that the same type of defect may also be considered for optically addressable
spin qubits in w-AIN as the electronegativities41l of Hf (1.3) and Zr (1.3) are smaller than
those of Al (1.6) and N (3.0) and their ionic radii are larger than that of Al [339]. Fig. 6.2a
shows the defect level diagram of a Hf-vacancy complex in w-AIN, in which substitutional
Hf is paired with a N vacancy along the [0001] direction. The metal ion passivates the N
2sp? dangling bonds and transfers one electron to the nearest neighboring Al 3sp® dangling
bonds in the Csy configuration. The defect level diagram is qualitatively the same as that
of the Hf-vacancy in 4H-SiC. Using the GoWy@PBE method and hybrid functionals, we
calculated the energy levels of the occupied e states to be about 3 eV below the conduction
band edge (See Table 6.3). As shown in Fig. 6.2b, the dominant contribution to the ground-
state spin density originates from the Al 3sp? dangling bonds, but there are also significant
contributions from substitutional Hf and the nearby N atoms.

Similar defect complexes may be obtained with other LMIs, for example, La-vacancy and
Y-vacancy pairs. La and Y have large ionic radii [339] and small electronegativities [212],
but only three valence electrons. Hence, they may behave similar to the neutral Hf-vacancy
when negatively charged. The defect level diagrams of the negatively charged La-vacancy
and Y-vacancy pairs in 4H-SiC and w-AIN are reported in Fig. S3 and S4, respectively,
showing, as expected, the presence of localized e states similar to Fig. 6.1b and 2a. We now

turn to discuss the energetic stability of LMI-vacancy pairs in 4H-SiC and w-AIN.
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(a) by 4l Conduction Band | (c)

Valence Band . . ‘, [%01]

Hf-vacancy in 4H-SiC

Figure 6.1: Hf-vacancy complex in 4H-SiC. (a) Proposed defect structure of a Hf-vacancy
complex in 4H-SiC with (hh) axial configuration and Cg, symmetry: Hf substitutes Si at
an h-site and it pairs with a C vacancy at the nearest neighboring h-site. Only the nearest
neighboring Si and C atoms are shown for clarity. (b) The defect level diagram of the Hf-
vacancy complex calculated at the DFT- DDH hybrid level of theory. The totally symmetric
a state is located at -0.34 eV and -0.19 eV below the valence band edge in the spin-up and
the spin-down channel, respectively. (c¢) Side (up) and top (down) views of the ground-state
spin density of the Hf-vacancy defect calculated at the DDH level of theory.
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Hf-vacancy in w-AIN

Figure 6.2: Hf-vacancy complex in w-AIN. (a) The defect level diagram of an axial Hf-
vacancy in w-AlIN calculated at the DDH level of theory. The symmetry of the state is 3 As.
In this study, we only consider the axial defect configuration in Cs, symmetry. In principle,
however, a basal configuration in Clh symmetry is also possible. (b) Side (top) and top
(bottom) views of the ground-state spin density of the Hf-vacancy in w-AIN calculated at
the DDH level of theory.
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Table 6.3: Computed energy levels (eV) of the occupied spin-up (left number) and unoccu-
pied spin-down (right number) e-manifolds of the LMI-vacancy pairs in 4H-SiC and w-AIN
with respect to the valence band edge using the GyWy@QPBE, the DDH functional, and the
HSEO06 hybrid functional levels of theory. The experimental band gap (Eg) of the materials
are given. The computed band gaps are reported in Table 6.2.

Host crystals Defects GoWy DD-hybrid HSE06
(eV) (eV) (eV)
1H-SIiC (By = 3.3 eV) Hfvacancy 0.97 / 226 0.96 / 254 0.99 / 2.48
Zr-vacancy 1.05 /235 0.93 /254 0.97 / 2.50
w-AIN (Eg = 6.2 eV) Hf-vacancy 2.92 /4.96 2.92 /5.53 290 /4.78
Zr-vacancy 3.01 / 5.12 2.83 /556 2.82 / 4.82

Defect stability

We investigated the stability of the LMI-vacancy defects by (1) examining the stability of the
Csy S = 1 high-spin state against potential symmetry-lowering structural distortions; and
(2) investigating defect formation energies as a function of charge states. We then computed
the charge transition levels and the ionization energies of the defects, which we compared to
their optical zero-phonon lines (ZPLs).

In Table S1, we report the total energy differences between the S = 0 singlet state (Clh
structure) and the S = 1 state (Cs3y structure) of the LMI-vacancy defects in w-AIN and
4H-SiC calculated using the DDH-DFT. We found that in all cases, the S = 1 state is lower
in energy than the S = 0 state, e.g. by 205 (380) meV for the Hf-vacancy in 4H-SiC (w-
AIN). In addition, we tested the stability of the defect geometry against perturbation to
the metal ion position, to investigate whether other low-energy configurations of the defect
were accessible, with small or no energy barriers, close to the proposed S = 1 state. We
considered in- and out-of-plane displacements of the metal ion: the former would lower the
defect symmetry while the latter would lead to a different electronic structure due to a
different interaction between the metal ion and the Si or Al dangling bonds. We found that
the Csy structure shown in Fig. 6.1a is the lowest energy minimum structure of the defects
in 4H-SiC and w-AIN at 7" = 0 K, indicating the robustness of the S = 1 state against

structural distortions.
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Next, we examined additional charge states. Fig. 6.3a and 3b show the defect formation
energy of the LMI-vacancy pairs (Hf and Zr, and La, respectively) in 4H-SiC in the C-poor
limit. The results for the C-rich case and those of Y-related defects are reported in Fig. S5
and S6.

In all cases, we found that the formation energy of a LMI-vacancy complex is lower than
the sum of the formation energies of an isolated LMI impurity and an isolated C vacancy
across the entire Fermi level range, regardless of the charge state. As shown in Fig. 6.3a (Hf
and Zr in SiC), the energy gain by forming a LMI-vacancy complex is ~1 eV near the valence
band maximum (VBM), and larger than ~2 eV near the conduction band minimum (CBM).
For the La case, the energy gain is larger than for the Hf-vacancy: ~2 eV and ~ 3 eV near
the VBM and CBM, respectively. The energy differences are the same in the C-rich limit
as shown in Fig. S5. In addition, we found that the LMI-vacancy defect formation energies
are lower than that of the divacancy, which was shown to be a stable defect in SiC65. This
result strongly supports our hypothesis that the pairing of large metal ions with C vacancies
leads to the formation of stable defect complexes in SiC.

The results of Fig. 6.3 also show the relative stability of different charge states. We recall
that the slope of the defect formation energy as a function of the Fermi level represents the
charge state of a given defect: a neutral state and a negative state are stable in a Fermi
level range where the defect formation energy with slope of 0 and -1, respectively, has the
lowest energy. In particular, Fig. 6.3a shows that the neutral Hf- and Zr-vacancy pairs
with S = 1 are stable in the mid-gap region of 4H-SiC, with (4+1/0) charge transition levels
(CTLs) of 1.84 eV and 1.87 eV, respectively, with respect to the CBM. This indicates that the
neutral Hf-vacancy and Zr-vacancy pairs may exist in highly insulating 4H-SiC crystals. The
negatively charged state of the La- and Y-vacancy, with S = 1 is stable near the conduction
band edge with the (0/-1) CTLs of 0.86 eV and 0.99 eV, respectively.

Our results for the formation energies of the LMI-vacancy pairs in w-AIN are similar

to those for SiC, as shown in Fig. 6.4. The Hf- and the La-vacancy are stable in neutral
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and negatively charged states, and the formation energy of the Zr-vacancy is similar to that
of the Hf-vacancy. The (+1/0) CTL of the Hf- and the Zr-vacancy are 2.76 eV and 2.84
eV, respectively, with respect to the CBM. The stability region for the neutral Hf- and
Zr-vacancies is shown in Fig. 6.4a as a grey shaded area, and it overlaps with that of the
neutral N vacancy, which has been previously detected in experiment66. Furthermore, the
defect formation energy of the neutral Hf-vacancy is smaller than the sum of an isolated Hf
impurity and an isolated N vacancy formation energies, indicating that realizing the S =1
state of the Hf-vacancy complex is indeed possible. The same conclusion was obtained for
the Zr-vacancy. The negative charge state of the La-vacancy is stable near the CBM, with
the (0/-1) CTL position 1.43 eV below the CBM. We also found a significant energy gain
(1~2 eV) upon formation of the La-vacancy complex from an isolated La impurity and an

isolated N vacancy across the entire band gap.

Zero-phonon lines of the LMI-vacancy pairs

The optical initialization and readout of the diamond NV center and the SiC divacancy relies
on the spin-conserving excitation to a 3E spin-triplet excited state and its spin-selective
decay [406, 166]. We found that the same spin-conserving excitation scheme may occur
in the LMI-vacancy pairs in 4H-SiC and w-AIN, as shown in Table 6.4, where we report
calculated ZPLs using total energy differences (ASCF calculations) at the PBE, the DDH,
and the HSE(06 levels of theory. We note that the DDH and HSE06 calculations yielded
similar results.

The calculated ZPLs are 1.7 eV (PBE) and 2.2 ¢V (Hybrids) for the diamond NV center
and 1.0 eV (PBE) and 1.3 eV (Hybrids) for the SiC (hh)-divacancy; our PBE results under-
estimate the experimental ZPLs (1.945 ¢V and 1.094 eV) and our hybrid functional results
consistently overestimate them by 0.2~0.3 eV. We computed the ZPLs of the Hf-vacancy
and Zr-vacancy pairs in 4H-SiC to be ~2.0 eV using the DDH and HSEO06 functionals. These

calculations were not conducted at the PBE level of theory as the occupied a state is deep
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Figure 6.3: Defect formation energy of spin defects in 4H-SiC. (a,b) Defect formation energy
of Hf- and Zr-related defects in 4H-SiC (a), and that of La-related defects in 4H-SiC (b)
as a function of Fermi level referred to the valence band maximum (VBM). Calculations
were conducted at the DFT-DDH level of theory. The defect formation energy of the (hh)-
divacancy is included for comparison. For simplicity, the results of Y-related defects are
reported in Fig. S6. The dotted lines are the sum of the formation energies of substitu-
tional impurity (either Hfg;, Zrg;, or Lagj) and C vacancy to be compared to that of the
corresponding LMI-vacancy defect complex. The grey shaded area in each plot indicates a
Fermi-level range, in which the LMI-vacancy pairs exhibit a stable 3 Ag spin-triplet (S = 1)
ground state in 4H-SiC.

in the valence band due to the PBE band gap underestimation. We expect our hybrid func-
tional results to provide an upper bound to the measured ZPLs of the Hf- and Zr-vacancy
in 4H-SiC, similar to our diamond NV and SiC divacancy results; we would estimate the
measured ZPLs to be close to ~1.7 eV. Similarly, we suggest that the measured ZPLs of
the Hf- and Zr-vacancy in w-AIN are between ~2.3 eV (PBE, lower bound) and ~3.0 eV
(hybrid, upper bound).

For the negatively charged La-vacancy, the corresponding computed ZPLs are 1.20 (1.57)
eV and 2.24 (2.82) eV in 4H-SiC and w-AIN, at the PBE (DDH) level of theory. However,
the (0/-1) CTLs of the La-vacancy in 4H-SiC and w-AIN were found to be 0.86 eV and
1.43 eV, respectively, with respect to the CBM. This indicates that the 3E excited state of

the negatively charged La-vacancy is above the conduction band edge in both 4H-SiC and
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Figure 6.4: Defect formation energy of spin defects in w-AIN. (a,b) Defect formation energy
of Hf- and Zr-related defects in w-AIN (a), and that of La-related defects in w-AIN (b) The
DDH-DFT was used. The formation energy of N vacancy, which is a common defect in w-
AIN;, is included for comparison. The dotted lines are the sum of the formation energies of a
substitutional impurity (either Hfp; or Zrp;) and a N vacancy to be compared to that of the
corresponding LMI-vacancy defect complex. The grey shaded area in each plot indicates a
Fermi-level range where the LMI-vacancy pairs have stable 3 Ay spin-triplet (S =1) ground
state in w-AIN.

w-AIN, which may lead to the ionization of the defect center. This turned to be also the
case for the negatively charged Y-vacancy as its (0/-1) CTL is very shallow. Therefore, in
what follows we do not further consider the negatively charged La-vacancy and Y-vacancy

pairs, and focus on the Hf-vacancy and the Zr-vacancy pairs for use as potential qubits in

4H-SiC and w-AIN.

Spin Hamiltonian parameters: Zero-field splitting and hyperfine interaction

Electron paramagnetic resonance (EPR) is a powerful technique to detect and characterize
paramagnetic defects in solids [331]. The zero-field splitting D tensor and the hyperfine A
tensor are key components of the spin Hamiltonian that determines the EPR spectrum (see
Eq. 6.5). For the Hf-vacancy and Zr-vacancy in SiC (AIN), we found D = 1.40 (2.96) GHz

and 1.10 (3.05) GHz, respectively, using the ONCV pseudopotentials, as reported in Table
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Table 6.4: Computed zero-phonon lines (eV) of the (hh)-divacancy and the LMI-vacancy
pairs (Hf and Zr only) in 4H-SiC and w-AIN using various levels of theory; the semi-local
PBE functional, the DDH functional, and the HSE06 hybrid functional. Spin-conserving
intra-defect excitation between the 3As ground state and the 3E excited state was considered.

Host Defects PBE DD-hybrid HSEO06 Experiment (eV)
crystals (eV) (eV) (eV)

Diamond NV center 1.72 2.22 2.23 1.945 [76]

1H-SiC (hh)- 1.03 1.30 1.33 1.094 [188§]
divacancy
Hf-vacancy n/a 2.04 2.13 n/a
Zr-vacancy n/a 1.96 2.05 n/a

w-AIN Hf-vacancy 2.46 3.07 2.88 n/a
Zr-vacancy 2.33 2.98 2.79 n/a

6.5. These values are comparable to those of the diamond NV and the SiC divacancy, which
were measured to be 2.9 GHz [166] and 1.3 GHz [85], respectively.

In order to study the coupling between defect spin qubits and lattice strain, we computed
D as a function of hydrostatic pressure, D(P) [77]. In particular, we investigated the role
of different dangling bonds (e.g. C 2sp? vs. Si 3sp3) and different type of host crystals (e.g.
diamond vs. SiC or AIN) in determining the coupling characteristic of spin to strain. We
considered hydrostatic pressure, which may yield an isotropic compressive strain around the
defect centers, thus preserving the Cs3, symmetry. Defect qubits under hydrostatic pressure
could also be easily accessible in diamond anvil cell experiments [77]. We first compare D(P)
of the diamond NV and the SiC divacancy, and then discuss D(P) of the LMI-vacancy pairs.
Fig. 6.5a shows that in diamond, D(P) is linear up to 100 GPa, while in SiC, D(P) deviates
from a linear behavior already at 50 GPa (SiC is known to be stable under pressure up to
100 GPa [414]). The linear behavior found for the diamond NV is in good agreement with
previous experimental [77] and theoretical [162] results. We found a slope of 10.91 MHz/GPa,
compared to an experimental value of 14.58 MHz/GPa [77] and a previous theoretical value
of 9.52 MHz/GPa [162]. One may distinguish two contributions to the variation of D as a
function of P: purely geometrical changes around the defect center and the variation of the

defect’s spin density. The former may be described using the ‘compressed-orbital’ model,
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introduced by Ivady et al. [162], according to which D is scaled by a geometrical factor
(d/dy) determined by atomic relaxations under pressure, in proximity of the defect; d and dy
are neighbor distances under P and at equilibrium, respectively. As shown in Fig. 6.5a, the
compressed-orbital model describes well D(P) in the case of diamond, showing a negligible
contribution of spin density changes.

In contrast, D(P) of the SiC divacancy is not well described by the compressed orbital
model. As expected from the bulk modulus of SiC, which is substantially smaller than
that of diamond, the divacancy defect structure relaxes significantly under pressure: d/d
(P) is 0.70 for P=100 GPa, compared to the value of 0.88 found for diamond NV under
the same conditions. This relaxation allows for significant hybridization between the diva-
cancy dangling bonds leading to large deviations of D(P) from the values obtained with the
compressed-orbital model. The slope of D(P) close to ambient pressure is 16.34 MHz/GPa
for the SiC divacancy.

Fig. 6.5b shows that the D(P) of the Hf- and Zr-vacancy spins in 4H-SiC exhibits
a behavior different from that reported in Fig.4: D(P) deviates significantly from that
predicted by a compressed orbital model, with a parabolic behavior and maxima around 70
GPa and 30 GPa for the Hf-vacancy and Zr-vacancy, respectively. In addition, close to P
= 0 GPa, the slope of D(P) is about a factor of two smaller than that observed for the
divacancy: 7.637 (2.835) MHz/GPa for the Hf-(Zr)vacancy. We note that the structural
relaxation of the Hf- and the Zr-vacancy under pressure are relatively limited due to the
presence of the LMIs, compared to the divacancy relaxation. At 100 GPa, d/dg is 0.84 for
both Hf- and Zr-vacancy, to be compared to 0.7 of the SiC divacancy.

Fig. 6.5¢ shows D(P) for Hf- and Zr-vacancies in w-AIN up to 30 GPa (w-AIN is known
to undergo a structural phase transition above 20 GPa70). The figure indicates a greater
sensitivity of D(P) with respect to the corresponding defects in SiC, with slopes of 19.24
MHz/GPa and 15.03 MHz/GPa for the Hf- and the Zr-vacancy, respectively, in w-AIN. Our

results show that the coupling characteristics of a defect spin qubit to lattice strain can vary
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over a wide range depending on its constituent electronic states (i.e. dangling bonds) and
its host crystal as well.

Finally, as a guide for future EPR-based defect detections and to support development of
the LMI-vacancy-based defects, we report computed hyperfine parameters (A) (see Eq. 6.1).
The Hf- and Zr-vacancy defects may have intrinsic nuclear spins by implanting different
isotopes: TTHf (I = 7/2, 18.6%), YHf (I = 9/2, 13.62%), and 91Zr (I = 5/2, 11.2%).
The values of A are given in Table 6.6, for the 4N nuclear spin in diamond NV71 and
the LMI-vacancy defects. In 4H-SiC and w-AIN, there are also other intrinsic nuclear spins
associated with 298i (I = 1/2, 4.7%), 13C (I = 1/2, 1.1%), 2TAl (I = 5/2, 100%), and 4N
(I =1, 99.63%). We report the hyperfine parameters for these intrinsic lattice nuclear spins

coupled with the Hf-vacancy and the Zr-vacancy in 4H-SiC and w-AIN in Table S2 and S3,

respectively.

(a) (b) ()

5000 5000 4000

’ ®—=e (hh)-Divacancy // e—e Hf-vacancy
- Compressed orbitals e 3800 | - - compressed orbitals
e—e Hf-vacancy / ®—® Zr-vacancy
4000 .
4000 - Compressed orbitals L 3600 Compressed orbitals

— — e—e Zr-vacancy
N N Compressed orbitals ’
é 3000 é 3000 -
=3 2 | 4HSIC -
@] @)

2000 2000

®—e Diamond NV -
- = Compressed orbitals o o
1000 e—e 4H-SiC (hh)-Divacancy 1000f eo*® - -
- Compressed orbitals °
-20 0 20 40 60 80 100 -20 0 20 40 60 80 100 -20 -10 0 10 20 30
Pressure (GPa) Pressure (GPa) Pressure (GPa)

Figure 6.5: Zero-field splitting (ZFS) of the spin defects in 4H-SiC and w-AIN. (a) ZFS
parameters (D) of the diamond NV and the SiC divacancy as a function of hydrostatic
pressure. (b, ¢) ZFS parameters (D) of the Hf-vacancy and the Zr-vacancy as a function
of hydrostatic pressure in 4H-SiC (b) and in w-AIN (c). For the defects in 4H-SiC, we also
show D of the divacancy for comparison. We considered a pressure range from -20 GPa
to 100 GPa, in which 4H-SiC is known to be stable. For defects in w-AIN under pressure,
we considered a pressure range from -20 to to 30 GPa as w-AIN is known to undergoes a
structural phase transition above 20 ~ 30 GPa.
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Table 6.5: Computed Zero-field splitting parameters (D) of the diamond NV center, the
divacancy spins in 4H-SiC, and the Hf- and Zr-vacancy pairs in 4H-SiC and w-AIN. The
LMI-vacancy pairs considered in this study are the (hh) axial defects in Cg, symmetry. The

single-particle wavefunctions for the defects were calculated using the Quantum Espresso
code with the ONCV [129, 324] and the PAW [34] pseudopotentials.

Host Defects Theory Theory Theory (GHz)  Exp. [166,
crys- (GHz) (GHz) (Previous 85]
tals (This work) (This work) work [86]) (GHz)
(QE + (QE + PAW) (VASP + PAW)
ONCV)
Diamond NV center 3.03 2.90 2.854 2.88
4H-SiC  (hh)-divacancy 1.682 1.387 1.358 1.336
(hk)-divacancy 1.580 1.306 1.320 1.222
(kh)-divacancy 1.641 1.356 1.376 1.334
(kk)-divacancy 1.635 1.349 1.321 1.305
Hf-vacancy 1.403 1.291 n/a n/a
Zr-vacancy 1.096 1.035 n/a n/a
w-AIN Hf-vacancy 2.962 2.896 n/a n/a
Zr-vacancy 3.053 2.925 n/a n/a

Table 6.6: Computed hyperfine parameters (MHz) for the Hf-vacancy and Zr-vacancy pairs
in 4H-SiC and w-AIN. For comparison, the computed hyperfine parameters of the diamond
NV center are also reported along with the experimental data [87] in parenthesis. Other
hyperfine parameters are reported in Table S2 and S3.

Host Defects Nuclear spin Axx (MHz) Ayy (MHz) Ay
crystals (MHz)
Diamond NV center N (I=1, 99.6%) -2.02 (-2.14) -2.02 -2.15

(-2.14) (-2.70)

4H-SiC Hf-vacancy T7THE (1=7/2, 7.58 7.91 -8.60
18.6%)

IR (1=9/2, -4.76 -4.97 5.40
13.62%)

Zr-vacancy Nzr (1=5/2, 1.92 1.70 17.57
11.2%)

w-AIN Hf-vacancy TTHE (1=7/2, 26.05 26.20 10.53
18.6%)

R (1=9/2, -16.36 -16.46 -6.62
13.62%)

Zr-vacancy N7r (1=5/2, 6.21 6.12 15.59
11.2%)
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6.1.4 Conclusions

In this work, we proposed that large metal ion-vacancy pairs may be promising defect qubits
in 4H-SiC and w-AIN. In particular, we considered Hf, Zr, La, and Y as they have larger ionic
radii and smaller electronegativities than those of Si and Al. By using density functional
theory, we showed that, similar to the diamond NV center and the SiC divacancy, the
neutral Hf- and Zr-vacancy pairs are stable defects, with a 3 Ay spin-triplet ground state and
an 3E excited state, both with energies in the band gap of 4H-SiC and w-AIN. In addition,
we found that the negatively charged La-vacancy and Y-vacancy pairs have a spin-triplet
ground state, similar to the diamond NV center. However, in either 4H-SiC or w-AIN, the
negative charge state of La- and Y-vacancy pairs is much shallower with respect to the CBM
than the corresponding ones for the Hf- and Zr-vacancies. As a result, the 3Ay - 3E zero-
phonon line excitation may ionize the La-vacancy defect center, making it unfavorable for
use as optically addressable spin qubit. In order to guide future experiments, we calculated
experimental observable of the Hf- and the Zr-vacancy in 4H-SiC and w-AlN, including
optical zero-phonon lines, hyperfine parameters, and the zero-field splitting parameters.
Recently, Varley, Janotti, and Van de Walle also investigated impurity-vacancy pairs in
w-AIN, including Ge, Sn, Ti, and Zr [379]. Using computational methods similar to those
employed here, they suggested that Zr- and Ti-vacancy pairs would be good candidates for
spin qubits in w-AIN. Their prediction on the Zr-vacancy is consistent with ours. In addition,
Varley et al. have shown that the Ge-vacancy and the Sn-vacancy do not favor the S =1
state in w-AIN. We confirm this finding for 4H-SiC as well; our results show that in both
crystals the S = 1 state of the Ge-vacancy and the Sn-vacancy is much higher in energy than
their S = 0 state, which is stabilized by charge transfer from neighboring dangling bonds.
The proposed LMI-vacancy defects may provide new opportunities to defect-based quan-
tum technologies due to several unique features. For example, these defects may couple with
various types of lattice strain [209, 273, 86, 222, 77]: we showed that the Hf-vacancy in w-AIN
shows a large spin-pressure coupling which is about twice as large as that of the diamond

154



NV, making it a good candidate for nano-scale pressure sensors [77]. Instead, the D param-
eter of the Zr-vacancy in 4H-SiC showed the smallest sensitivity to pressure, which may be
useful in applications requiring spin sub-level structure insensitive to pressure. Work is in
progress to explore spin responses to uniaxial strains, which may be useful in applications
ranging from nano-scale sensing [182] to creation of hybrid quantum systems [30, 329, 114].

Nuclear spins associated with different isotopes of Hf and Zr (1"7Hf (I = 7/2, 18.60%),
VOHE (I =9/2,13.62%), 91Zr (I = 5/2, 11.22%)) may also be used as quantum resources73.
For example, Klimov et al., demonstrated a coherent coupling between a divacancy-related
(PL5) spin and native nuclear spins associated with 13C' and 29Si isotopes at room tem-
perature [183]. This study was a milestone towards developing SiC-based hybrid quantum
systems. However, it is still challenging to find 29Si and 3C nuclear spins strongly coupled
to a divacancy spin due to their natural abundances: 4.7% for 29Si and 1.1% for 13C. The
nuclear spins of Hf and Zr may resolve this issue and provide intrinsic nuclear spins at a
well-defined position of the LMI-vacancy pairs. Finally, the use of LMIs may be beneficial
for defect localization. For example, in the case of divacancy or Si vacancy in SiC, it is hard
to control the position of the defects as both C vacancies and Si vacancies are highly mobile.
The mobility of Hf and Zr in SiC would be much lower than that of the C vacancy and the
Si vacancy due to their large mass.

In summary, optically addressable spins bound to point defects in solids have a great po-
tential for quantum information processing, quantum communications, and hybrid quantum
systems. The defect complexes proposed here would provide alternative quantum systems in
heterogeneous materials such as 4H-SiC and w-AIN that could broaden the scope of defect-

based quantum technologies.
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6.2 First-principles study of strongly-correlated states for

spin-defects in diamond

Reprinted with permission from H. Ma, N. Sheng, M. Govoni, and G. Galli. Physical
Chemistry Chemical Physics. (2020). Copyright (2020) by the Royal Society of Chemistry.
https://doi.org/10.1039/DOCP04585C

Using a recently developed quantum embedding theory, we present first principles calcu-
lations of strongly correlated states of spin defects in diamond. Within this theory, effective
Hamiltonians are constructed, which can be solved by classical and quantum computers; the
latter promise a much more favorable scaling as a function of system size than the former.
In particular, we report a study of the neutral group-IV vacancy complexes in diamond, and
we discuss their strongly-correlated spin-singlet and spin-triplet excited states. Our results
provide valuable predictions for experiments aimed at optical manipulation of these defects

for quantum information technology applications.

6.2.1 Introduction

Electron spins in molecular and condensed systems are important resources for the storage
and process of quantum information [392]. In the past decades, several spin-defects in wide
band gap semiconductors and insulators have been widely studied, in particular in diamond
[76], silicon carbide [391, 59|, and aluminum nitride [334, 335]. The prototype example
of spin-defects is the negatively-charged nitrogen-vacancy center (NV) center in diamond
(67, 308, 75, 242, 58, 112]. The NV center exhibits spin-triplet ground state with long spin
coherence time even at room temperature [17]. Different spin states of the electron spin can
be used to encode quantum information, and transitions between spin states can be driven by
microwave fields. To date, spin-defects have found many applications both in fundamental
science and cutting-edge quantum technologies. For instance, spin-defects have been used to

demonstrate fundamental principles of quantum mechanics such as the Berry phase [407] and
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Bell inequality [137]. Spin-defects are also extensively used as quantum sensors due to their
sensitivity to external electric, magnetic and temperature fields [151, 92]. Furthermore, the
spin states of defects can be coupled with various optical [250] and mechanical [396] degrees of
freedom, making them important components in hybrid quantum architectures for quantum
communication and quantum computation.

First-principles simulations based on density functional theory (DFT) have been playing
an important role in the identification and characterization of spin-defects [334, 335]. For
instance, ground state DFT calculations can predict the formation energies of defects, thus
enabling, e.g. the identification of the atomistic structure and charge states of unknown
defects [160]. Using ground state DFT wavefunctions, several spin properties can be com-
puted that are critical for the prediction of qubit state splitting and coherence time, such as
the zero-field splitting and the hyperfine coupling [105, 218]. However accurate predictions
of excited states are challenging, when using DFT, especially in the case of strongly corre-
lated states which may not be approximated by a single Slater determinant of spin-electron
orbitals. Multi-reference electronic states have been an important subject of research in
quantum chemistry for decades [135]. Unfortunately, most ab initio multireference meth-
ods are computationally very demanding, preventing their straightforward application to
spin-defects in solids, whose description requires periodic supercells containing hundreds of
atoms.

In the past decades, quantum embedding theories emerged as promising approaches to
apply a high-level theory (such as multireference methods) to the description of strongly
correlated active regions of a solid or molecule, where the environment is treated with a
lower level of theory. Different quantum embedding schemes have been proposed[361], using,
e.g. the electron density [153, 152, 115, 164, 102, 395|, density matrices [185, 401, 284]
or based on Green’s function approaches[205, 83, 420, 9, 10, 247, 159, 142, 143]. Spin-
defects in semiconductors can be viewed as atom-like systems embedded in bulk crystals,

and the states used to encode quantum information are usually localized around the defects.
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Therefore, spin-defects are promising systems for the application of quantum embedding
theories. For instance, Bochstedte and coworkers investigated strongly correlated excited
states of NV in diamond and divacancies in silicon carbide using the constrained random
phase approximation (cRPA) [39]. In the cRPA approach [9, 247, 143], the low-energy
excited states of the active site are obtained by solving an effective Hamiltonian that is
constructed from effective electron-electron interactions. The cRPA approach is based on
the random phase approximation (RPA), which neglects exchange-correlation effects in the
calculation of dielectric screening. Recently, we developed a quantum embedding theory
[219] similar to ¢cRPA, albeit going beyond the RPA description of dielectric screening by
including exchange-correlation effects evaluated using a finite-field algorithm [220, 261]. In
addition, the quantum embedding theory of Ref.[219] has the important advantage that no
explicit summation over empty electronic orbitals is necessary [399, 260, 286, 117], making it
scalable to systems with hundreds of atoms. We demonstrated the efficiency and accuracy of
such a computational approach for spin-defects in diamond and silicon carbide, and carried
out calculations on both classical and quantum computers.

In this work, we apply the quantum embedding theory of Ref.[219] to several defects in
diamond (Fig. 6.6). In particular, we consider the group-IV vacancy complexes in diamond,
i.,e. XV where X=Si, Ge, Sn, Pb, in addition to the NV center. These vacancy complexes
have attracted substantial interests recently due to their excellent optical properties [79, 98,
369, 119, 370, 419]. We performed quantum embedding calculations based on DFT results
obtained with different exchange-correlation functionals [279, 346] and demonstrated the
importance of using hybrid functionals to obtain accurate results. While the NV and SiV
centers were discussed in part in ref. [219], here we report the first to-date simulation of
the strongly-correlated excited states of the neutral GeV, SnV and PbV defects in both the
spin singlet and spin triplet manifold, which are both required to predict their operation as

optically-addressable qubits.
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Figure 6.6: Structures and spin polarization densities of spin-defects in diamond, including

the negatively-charged nitrogen-vacancy (NV) center, and the neutral group-IV vacancy
complexes XV (with X=Si, Ge, Sn, and Pb).

6.2.2 Methods

Quantum embedding theory

For a system of interacting electrons, the non-relativisitic Hamiltonian is given by

H= Ztija;raj + % Z vz-jkla;ra;[alak (6.6)
ij ijkl
where af and a are creation and annihilation operators acting on single-electron orbitals
1,7, k,[; the one-electron term ¢ includes the kinetic energy and the electron-nuclei interac-
tion; the two-electron term v represents the bare Coulomb interaction between electrons.
The exact solution of H is generally limited to small systems due to the high computational
cost.

For systems where important electronic excitations are restricted to an active space (A)

such as frontier orbitals of molecules or energy levels near the Fermi level of solids, it is
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desirable to construct an effective Hamiltonian that operates only on the active space

A A
N el t, o LS et
eft E ti; a;a; +3 E vfjklaiajalak. (6.7)
i ijkl

and the physical processes outside the active space are included through a renormalization
of t and v. The renormalized effective Hamiltonian parameters tff and v should properly
incorporate dielectric screening and exchange-correlation effects outside the active space. In

ff

the cRPA approach, the two-body term in the effective Hamiltonian v*" is computed as a

partially screened Coulomb interaction

v =4 verpav (6.8)
where XFpa = XOE + XOEUXIEpa is the reducible polarizability of the environment within the
RPA; XQE = X0 — XOA is the irreducible density response function for the environment (E),
with XOA being the projection of x( inside the active space.

The cRPA approach neglects the exchange-correlation effect in the calculation of the
dielectric screening. In Ref. [219], we proposed an expression for v that properly accounts

for exchange and correlation interactions in the environment
o = v 1By (6.9)

where the reducible density response function x¥ of the environment is evaluated beyond the
RPA as XE = )(OE + X()E f XE , with f = v+ fxc being the Hartree-exchange-correlation kernel.
The exchange-correlation kernel fyc, defined as the derivative of the exchange-correlation
potential with respect to the electron density, is evaluated with a finite-field algorithm de-
scribed in Ref. [220, 261]. By representing ¥ and f on a compact basis obtained from a
low-rank decomposition of the dielectric matrix [399, 117], one can avoid the evaluation and

teff

summation over virtual electronic orbitals. Finally, the one-body term can be computed
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by properly subtracting from the Kohn-Sham Hamiltonian a term that accounts for Hartree

and exchange-correlation effects in the active space [219].

Computational setup

We first carried out spin-unrestricted DFT calculations to obtain the ground state geome-
tries of defects in their host materials. Using ground state geometries, we then performed
spin-restricted DFT calculations [346] to obtain their electronic structure (Fig. 6.7) at the
mean-field level, which serves as the starting point for the construction of the effective Hamil-
tonian described in the previous section. The spin restriction ensures that both spin channels
are treated on equal footing and the eigenstates of the resulting effective Hamiltonian are
cigenstates of S2. Once mean-field DFT single particle eigenvalues and wavefunction are
obtained, an effective Hamiltonian was constructed using the quantum embedding theory
described in Section 6.2.2. The active space is defined by a set of selected Kohn-Sham or-
bitals, that are chosen to include relevant defect levels in the band gap of the host material, as
well as resonance orbitals and orbitals close in energy to band edges. The choice of the active
space was tested to yield converged excitation energies (see Section 6.2.4). Full configuration-
interaction (FCI) calculations [186] were performed for the effective Hamiltonian to compute
low-energy eigenstates and vertical excitation energies.

We performed DFT calculations using the Quantum Espresso code [106]. We used a
plane-wave basis set with a kinetic energy cutoff of 50 Ry. Norm-conserving pseudopo-
tentials from the SG15 library [324] are used to represent electron-ion interactions; these
pseudopotentials include scalar relativistic effects. In the calculations of PbV including
spin-orbit coupling, we used the fully relativistic version of SG15 pseudopotentials [322].
Defects are modeled with 215-atom supercells of diamond with the I'-point sampling of the
Brilliouin zone. Quantum embedding theory calculations are performed from two different
DFT starting points, obtained respectively with PBE [279] and a dielectric-dependent hybrid

functional (DDH) [346], using geometries optimized with the PBE functional. For selected
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cases we also tested the HSE06 functional [141, 197], which was found to yield results similar
to those of the DDH functional (see Section 6.2.4). Quantum embedding calculations were
carried out with the WEST code [117]. Density response functions were evaluated using a
basis set including the first 512 eigenvectors of yg. In calculations beyond the RPA, the
exchange-correlation kernel fx. was computed with a finite-field algorithm using the WEST
code coupled to the Qbox code [124]. FCI calculations were carried out using the PySCF
code [360].
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Figure 6.7: Mean-field electronic structure of spin-defects in diamond obtained with spin-
restricted DFT calculations using the dielectric-dependent hybrid functional (DDH)[346].
VB (CB) denotes the valence (conduction) band. The symmetry of important defect orbitals
is indicated following group theory notation.

6.2.3 Results

In Table 6.7 we summarize several vertical excitation energies of spin-defects obtained from
FCI calculations with the Hamiltonian defined in Section 6.2.2. Overall, the excitation ener-
gies obtained using the DFT@QDDH energies and wavefunctions are significantly larger than

those obtained at the DFTQPBE level of theory, and DDH results are in better agreement
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with available reference values. Our findings highlight the importance of using DFT@QDDH
as a starting point for embedding calculations.

The NV in diamond has a spin-triplet ground state of Cg, symmetry. Fig. 6.8 shows its
vertical excitation energies computed within and beyond the RPA, using the PBE and DDH
functionals. In all cases, quantum embedding calculations predict the correct energy level
structure of 34y, 1E, 1A} and 3E, with 1E and 14, being strongly-correlated states that
cannot be directly computed by DFT. Results obtained beyond the RPA using the DDH

functional yield the best agreement with experimental values (Table 6.7).
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Figure 6.8: Many-electron energy levels of negatively charged nitrogen-vacancy (NV) center
in diamond. Calculations are performed starting from PBE and dielectric-dependent hybrid
(DDH) functionals, with dielectric screening evaluated within (dashed lines) and beyond
(solid lines) the random phase approximation (RPA).

Group-1V vacancy centers (SiV, GeV, SnV and PbV) in diamond have spin-triplet ground
states with D3y symmetry. The spin-flip excitations within ey single-particle defect levels
in the band gap and the excitations from e, to e4 orbitals yield a rich set of many-electron
excited states, many of which are strongly-correlated. Experimentally, it has been shown

that the lowest spin-triplet excitations of SiV lead to a 3Ag,-3F,, manifold [119]. Much less

is known about spin singlet excited states. Here we provide the first predictions of the singlet
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states of GeV, SnV and PbV obtained with first-principles simulations.

Fig. 6.9 presents the vertical excitation energies of many-electron states of group-IV
vacancy centers. First, we note that the excitation energies from 31429 state to 3E,, state
increase from SiV to PbV (1.594/2.105/2.091/2.493 eV for SiV/GeV/SnV/PbV), which is
consistent with the trend of increasing ey-e4 energy level splitting in their mean-field de-
scriptions (Fig. 6.7). In the spin singlet manifold, the positions of 1Eg7 1A19 and 14,
are also increasing in energy from SiV to PbV. These singlet states originate from spin-flip
transitions of ey defect orbitals located in the band gap of diamond, and thus their excitation
energies strongly depend on the Coulomb repulsion of electrons in eg4 orbitals. The increasing
excitation energies indicate an increase in strength of the effective Coulomb interactions, as
the element becomes heavier (the bond length between impurity atom and nearest neighbor
carbon atom is 1.99/2.03/2.10/2.13 A for SiV/GeV/SnV/PbV, respectively).

In the case of PbV, we investigated the influence of spin-orbit coupling by performing
fully relativistic DF'T calculations with noncollinear spin. We found that the effect of spin-
orbit coupling (SOC) on the position and splitting of defect levels (see Section 6.2.4) is
negligible. For instance, the e4 orbitals of PbV in the band gap of diamond are split by
less than 0.02 eV due to the SOC effect. We further carried out projected density of states
calculations (see Section 6.2.4), which indicate that defect orbitals are hybrid orbitals with
a major component coming from the host carbon atoms instead of the impurity atom. This
prominent carbon character of the orbitals is responsible for the small SOC splitting observed
in the PbV case. Therefore, we concluded that spin-orbit coupling could be neglected in our
quantum embedding calculations.

Comparing results obtained with PBE and DDH functionals, we again found that the
DDH functional yields larger excitation energies and is in closer agreement with experiments
than those obtained with PBE. Beyond-RPA calculations yield larger singlet excitation ener-
gies than those obtained with RPA, similar to our findings for NV. Unlike singlet excitation

energies, triplet excitation energies of group-IV vacancy centers are found to be insensitive
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to the description of dielectric screening and mainly depend on the mean-field starting point.

Experimentally, it has been challenging to realize optical spin polarization for the neutral
SiV; however important progress in that direction has been recently reported by Zhang et
al. [419], who performed optically detected magnetic resonance measurements enabled by
optical spin polarization via higher-lying excited states. Our results for SiV indicate that the
experimental difficulties may arise from the position of the 1Ay, state being slightly higher
in energy than that of the 3Ay,-3F, manifold, thus making the intersystem crossing (ISC)
from triplet to singlet manifolds energetically unfavorable [219]. However, when moving
from SiV to PbV in group IV, the the 1 Ay, state becomes slightly lower in energy than the
3 A9,,-3 E,, manifold, suggesting that the ISC may become energetically more favorable for

heavier defects, such as the PbV.
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Figure 6.9: Many-electron energy levels of the neutral silicon-vacancy (SiV), germanium-
vacancy (GeV), tin-vacancy (SnV) and lead-vacancy (PbV) center in diamond. Calculations
are performed starting from PBE (top) and dielectric-dependent hybrid (DDH) (bottom)
functionals, with dielectric screening evaluated within (dashed lines) and beyond (solid lines)
the random phase approximation (RPA).
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Table 6.7: Vertical excitation energies (eV) of spin-defects including the negatively charged
nitrogen-vacancy (NV) and neutral silicon-vacancy (SiV), germanium-vacancy (GeV), tin-
vacancy (SnV), and lead-vacancy (PbV) center in diamond. Calculations are performed
using PBE and DDH functionals to obtain mean-field energy levels, and dielectric screening
is evaluated within and beyond the random phase approximation (RPA). Reference vertical
excitation energies are computed from experimental zero-phonon lines (ZPL) when Stokes
energies are available. Reference experimental values for ZPLs are shown in brackets in the
Ref column.

PBE DDH Ref
RPA Beyond-RPA RPA Beyond-RPA
System FExcitation
NV 3FE < 34, 1.395 1.458 1.921 2.001 2.180 [67] (1.945 [67])
lg, 345 1211 1.437 1.376 1.759
I &34y 0.396 0.444 0.476 0.561
Ay 1B 0815 0.993 0.900 1.198 (1.190 [308)])
SE 1A 0184 0.020 0.545 0.243 (0.344-0.430 [112])
SiV. SE, <34y, 1.247 1.258 1.590 1.594 1.568 [370] (1.31 [119])
3Ay <> 3Ag, 1.386 1.416 1.741 1.792
1By« 349, 0.232 0.281 0.261 0.336
141533495 0404 0478  0.466 0.583
LAy, ¢ 349, 1.262 1.277 1.608 1.623
3By < 34y, -0.000 0.002 0.003 0.011 (0.007 [119])
GeV  JE, ¢34y, 1595 1.619 2.076 2.105
3Ay < 3Ag, 1.689 1.726 2.173 2.231
1By +»349, 0288 0355  0.329 0.434
141,349 0529 0639 0617  0.797
LAy, « 349, 1.595 1.621 2.076 2.110
3F, <> 34y, -0.012 -0.011 -0.012 -0.009
SnV  JE, ¢ %Ay, 1579 1.599 2.069 2.091
3Ayy < 3Ag, 1.667 1.696 2.160 2.207
LBy <349, 0.302 0.368  0.341 0.444
141, 349, 0.565 0.678  0.649 0.830
LAy, 349, 1.570 1.591 2.060 2.086
3Fy, <34y, -0.017  -0.017  -0.017  -0.014
PbV  JE, ¢34y, 1910 1.934 2.464 2.493
SAy, ¢34y, 1980  2.008 2.533 2.574
1By + 349, 0.321 0.396  0.360 0.476
1415 349, 0.615 0.750  0.697  0.910
LAy, 349, 1.804 1.916 2.446 2.476
3Fy <349, -0.023  -0.024  -0.025 -0.025
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6.2.4 Technical details

Convergence tests of active space

A minimum model of 9 defect orbitals and 16 electrons can be constructed for group-IV
vacancy centers. The 9 defect orbitals for SiV are visualized in Fig. 6.10; the corresponding

orbitals for GeV, SnV, and PbV are similar in shape.
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Figure 6.10: Shape of orbitals in the minimum model of SiV. ag,, e, and eg4 are defect
orbitals localized around the Si atom, e}, and efq are resonance orbitals.

Active spaces that are larger than the minimum model are obtained by including in
the active space valence and conduction orbitals. In the following figures, active spaces

are denoted by a tuple of electron number and orbital number, and the minimum model
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is marked with dashed lines. Following each figure a precise definition of active spaces
with band indices is given. All results shown in this section are obtained with the dielectric
dependent hybrid (DDH) functional. In all cases, FCI eigenvalues are found to be insensitive

to the choice of active spaces.
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Figure 6.11: Convergence of vertical excitation energies of SiV in diamond as a function of
active space size.

16€,90): minimal model including band indices 412, 415-416, 425-428, 430-431

16€e,100): minimal model + index 450

(

(

(20e,110): minimal model + indices 413-414
(30e,160): minimal model + indices 378-382, 413-414
(

106e,540): indices 378-431
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Figure 6.12: Convergence of vertical excitation energies of GeV in diamond as a function of
active space size.

16€,90): minimal model including band indices 417, 420-421, 430-433, 435-436
16e,110): minimal model + indices 443, 455
16€,100): minimal model + index 443
20e,110): minimal model + indices 418-419
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Figure 6.13: Convergence of vertical excitation energies of SnV in diamond as a function of
active space size.

16€,90): minimal model including band indices 419-421, 430-433, 435-436

16€,100): minimal model + index 458

(

(

(20e,110): minimal model + indices 417-418
(30e,160): minimal model + indices 383-387, 417-418
(

106e,540): indices 383-436
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Figure 6.14: Convergence of vertical excitation energies of PbV in diamond as a function of
active space size.

16€,90): minimal model including band indices 419-420, 422, 430-433, 435-436
16e,110): minimal model + indices 443, 455
16€,100): minimal model + index 443
20e,110): minimal model + indices 417-418
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Results using HSE functional

Table 6.8: Vertical excitation energies (eV) of the negatively charged nitrogen vacancy (NV)
in diamond (64-atom supercell), obtained using different DFT starting points.

PBE HSE DDH

RPA  Beyond-RPA RPA Beyond-RPA RPA  Beyond-RPA

Excitation

3E 349 1512 1.655 1.941 2.162 2.057 2.281
4] 345 1.222 1.590 1.371 1.933 1.367 1.941
lE 349 0452 0.552 0.520 0.677 0.530  0.695
L4, < 'E 0770 1.038 0.850 1.256 0.837 1.247
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Projected density of states

The following figures show the projected density of states (PDOS) of SiV, GeV, SnV and
PbV obtained with spin-unrestricted DFT calculations using the PBE functional. The ey

defect orbitals in the band gap of diamond are dominated by C character.
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Figure 6.15: Projected density of states of SiV in diamond.
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Figure 6.16: Projected density of states of GeV in diamond.
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Figure 6.17: Projected density of states of SnV in diamond.
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Figure 6.18: Projected density of states of PbV in diamond.
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Fully relativistic calculations of PbV
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Figure 6.19: Kohn-Sham eigenvalues for important defect levels of PbV obtained by (un-
restricted) collinear-spin DFT calculation (left) and fully relativistic noncollinear-spin DFT
calculations (right). The split of degenerate ey orbitals in the band gap induced by spin-orbit
coupling is less than 0.02 eV.

6.2.5 Conclusion

In summary, we presented a study of strongly-correlated electronic states of several spin-
defects in diamond using the quantum embedding theory described in Ref [219]. We reported
the first prediction of strongly-correlated electronic states of neutral GeV, SnV and PbV
defects based on first-principles calculations. In addition, we compared results obtained
starting from different functionals and with different approximations in the treatment of the
dielectric screening, and we showed the importance of using hybrid functional starting points
and beyond-RPA dielectric screening for the construction of effective models of spin-defects.
Our results indicate that optical spin polarization may be easier to realize in neutral vacancy
complexes with elements heavier than Si, e.g. Pb, due to a more energetically favorable ISC.
Finally we note that the quantum embedding results obtained in this work are based on the
exact diagonalization of effective Hamiltonians, which can be effectively performed on near-

term quantum computers with a relatively small number of qubits, as shown in Ref [219].
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6.3 Microscopic theory for spin-phonon interactions in silicon

carbide

Adapted with permission from S. J. Whiteley, G. Wolfowicz, C. P. Anderson, A. Bourassa,
H. Ma, M. Ye, G. Koolstra, K. J. Satzinger, M. V. Holt, F. J. Heremans, A. N. Cleland, D.
I. Schuster, G. Galli, and D. D. Awschalom. Nature Physics. (2019). Copyright (2019) by
Springer Nature. https://doi.org/10.1038/s41567-019-0420-0

Hybrid spin-mechanical systems provide a platform for integrating quantum registers
and transducers. Efficient creation and control of such systems require a comprehensive
understanding of the individual spin and mechanical components as well as their mutual
interactions. Point defects in silicon carbide (SiC) offer long-lived, optically addressable spin
registers in a wafer-scale material with low acoustic losses, making them natural candidates
for integration with high quality factor mechanical resonators. Here, we show Gaussian focus-
ing of a surface acoustic wave in SiC, characterized by a novel stroboscopic X-ray diffraction
imaging technique, which delivers direct, strain amplitude information at nanoscale spatial
resolution. Using ab initio calculations, we provide a more complete picture of spin-strain
coupling for various defects in SiC with Cgy symmetry. This reveals the importance of shear
for future device engineering and enhanced spin-mechanical coupling. We demonstrate all-
optical detection of acoustic paramagnetic resonance without microwave magnetic fields,
relevant to sensing applications. Finally, we show mechanically driven Autler-Townes split-
tings and magnetically forbidden Rabi oscillations. These results offer a basis for full strain

control of three-level spin systems.

6.5.1 Introduction

Hybrid quantum systems [201] leverage the strengths of various modalities of represent-
ing quantum information, including optical photons for sending quantum states across long

distances, spins for information storage, and microwave superconducting circuits for com-
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putation, with the potential of using nanomechanics as an intermediary quantum bus. For
instance, coherently exchanging quantum information between optically active defect spins
and mechanical resonators [209] provides a route to couple optical photons to microwave
frequency phonons in a hybrid quantum system. Optically active defect spins in SiC, such
as the neutral divacancy [188], have recently been shown to support long-lived spin states
[59, 398, 334] a variety of quantum controls [138], and spin-photon interfaces [60] compatible
with quantum entanglement protocols. Importantly, SiC is a piezoelectric material and sup-
ports mature fabrication processes for production of high quality micro-electromechanical
systems (MEMS). Although progress has been made coupling spins to mechanics in similar
defect systems, including the NV center in diamond with coherent sensing using single spins
[192, 148], strain tuning[368, 273], and mechanical driving [224, 20, 223, 19| defects in SiC
are well positioned to solve the materials challenges of coherently manipulating spins with
strain and strong coupling of spins with phonons.

While static strain will generate shifts in ground state (s = 1) energy sublevels, resonant
a.c. strain can coherently drive electron spin transitions. Large in-plane dynamic strains can
be generated by surface acoustic wave (SAW) devices, which are well developed for radio
frequency filters and offer simple engineering approaches for fabricating low loss resonators.
SAW devices have also been proposed as hybrid quantum transducers [328] and used to
demonstrate coupling to superconducting qubits [228, 248, 319] along with optomechanical
interactions involving defect excited states [114, 113].

Here, we demonstrate acoustically driven Amg = 41 spin transitions, where mg = 0, +1
is the spin projection, on divacancy spin ensembles in 4H-SiC. We further demonstrate
Amg = £2 spin transitions through the Autler-Townes effect, mechanical Rabi oscillations,
and comparing the relative coupling strengths of inequivalent divacancy defects. These
results are well described by our theoretical model developed from a combination of direct
experimental observations and Density Functional Theory (DFT) calculations of anisotropic

spin-strain coupling coefficients. We find that uniaxial strain and shear drive divacancy spins
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with coupling strengths of similar magnitude, but with generally different relative phase and
selection rules. These experiments utilize a patterned Gaussian SAW phonon resonator that
focuses strain and reduces resonator mode volumes in analogy to Gaussian optics. To image
the mechanical modes of our Gaussian SAW devices, we use a unique nanoscale scanning X-
ray diffraction technique that directly measures acoustic lattice perturbations. In addition,
spatial responses of Autler-Townes splittings are well explained by ensemble averaging shear
and uniaxial strain from the SAW mode. Shear provides an important way of controlling

three-level spins (qutrits) with phonons and opens avenues for coupling spins with MEMS.

6.3.2 FExperimental control of divacancy spins using surface accoustic

waves

Gaussian SAW Devices for Spin Manipulation

We first describe device design and characterization with a nanoscale X-ray diffraction imag-
ing method, followed by spin manipulation. To amplify the piezoelectric response of the SiC
substrate, we use a thin, sputtered aluminum nitride (AIN) layer on the SiC surface before
fabricating a SAW resonator to create radio frequency mechanical strain. Standard planar
SAW resonator designs span wide apertures, often greater than 100 acoustic wavelengths
(M), distributing the strain across large crystal areas. Since AIN and 4H-SiC have isotropic
in-plane Rayleigh wave velocities [363] (5790 and 6830 m/s, respectively), we fabricate sim-
ple Gaussian geometries, inspired by Gaussian optics, to focus strain while also suppressing
acoustic diffraction losses (Fig. 6.20a,b). A patterned aluminum interdigitated transducer
transmits SAWs (A = 12 pm), while grooves in AIN form Bragg gratings that act as SAW
cavity mirrors to support a resonator frequency wy, /27w ~ 560 MHz and loaded quality fac-
tor of ~ 16,000 (Fig. 6.20c) at 30 K. The Gaussian SAW resonator internal quality factor
(Q; =~ 22,400 at 30 K) is likely limited by the polycrystalline AIN layer at low temperatures.

In our experiments the Gaussian geometries for enhanced strain focusing and reduced res-
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onator mode volumes facilitate larger strains for fast coherent manipulation of electron spin

states.

m:
N
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Figure 6.20: Strain focusing with a Gaussian SAW resonator. a. Schematic of the
SAW device geometry fabricated on sputtered AIN on a 4H-SiC substrate. Microwaves
drive spin transitions mechanically through the SAW resonator (cyan) and magnetically
from the backside coplanar waveguide (orange). b. Optical micrograph of the Gaussian
SAW resonator’s acoustic focus (A = 12 um, wg = 2\) with red lines illustrating the wave’s
out-of-plane displacement (u;). c¢. Magnitude (blue) and phase (red) measurements of the
1-port reflection of the Gaussian SAW resonator used in spin experiments.

To directly visualize the Gaussian mechanical mode, we use stroboscopic scanning X-
ray diffraction microscopy (s-SXDM) to image the phonons with nanoscale resolution. This
technique utilizes coherent X-rays from a synchrotron radiation light source, generated at
8.00 keV and focused to a 25 nm spot size (30), and Bragg diffraction contrast to enable local
measurements of lattice curvature and strain along a particular crystal orientation [147, 150].
We frequency match the radio frequency excitation to a Gaussian interdigitated transducer
with the timing structure of the synchrotron storage ring in order to measure the peak-to-
peak amplitude of the acoustic standing wave. Due to the frequency matching requirements

for s-SXDM, we use a SAW transducer without a cavity, which is designed to produce a
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spatial strain mode similar to resonators used in spin experiments. Scanning the nano-
focused X-ray beam in real space clearly shows the SAW profile (Fig. 6.21a) is consistent
with the fabricated geometry and approximately nanometer Rayleigh wave displacements.
The dynamic transverse lattice slope (Fig. 6.21b), caused by a local lattice plane tilt towards
the £y direction, is expected from a Gaussian focus and SAW confinement. These X-ray
measurements confirm that the SAW out-of-plane displacement (in phase with the in-plane
uniaxial strain required for spin driving) is maximized at the resonator’s precise center and
demonstrate the value of using X-ray diffraction microscopy for studying quantum devices

[276] and materials.

a 0 200 400 b 0 40 80
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Figure 6.21: Nanoscale X-ray imaging of the Gaussian acoustic mode. Mechanical
mode from a similar Gaussian SAW device (A = 19 um, wg = 1.25)), directly measured
with s-SXDM using the 4H-SiC [0004] Bragg peak. This quantifies the SAW peak-to-peak
longitudinal (a) and transverse (b) lattice slopes at the acoustic beam waist. The image is
skewed vertically due to sample drift during measurements.

Optically Detected Acoustic Paramagnetic Resonance

Electron spin ground state sublevels of divacancy defects are typically measured using opti-
cally detected magnetic resonance (ODMR) with Amg = +1 transitions magnetically driven

by microwave fields. Due to the defect’s intersystem crossing, ODMR probes the spin pro-
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jections of |+1) versus |0) through changes in photoluminescence. The ground state spin

Hamiltonian neglecting hyperfine interactions takes the form, z z

H/h=+B-S+S-D-8 (6.10)

where h is the Planck constant, v is the electron gyromagnetic ratio (ug ~ 2.8 MHz/G), B
is the external magnetic field vector, and D is the zero-field splitting tensor (also referred
to as D;;). In the absence of lattice strain, the divacancy spin-spin interaction simplifies
to DOS? where Dy ~ 1.336 and 1.305 GHz, depicted in Fig. 6.22a, for c-axis oriented
defect configurations [85] hh and kk, respectively. The zero-field splitting Hamiltonian is
sensitive to local lattice perturbations [86] such as thermal disorder, an applied electric field,
or strain. When the lattice is perturbed by a small strain, characterized by a tensor €,
the zero-field splitting tensor is generally modified by AD;; = G jpi€g, where Gyjp is the
spin-strain coupling tensor. The symmetry of the spin-strain coupling tensor is determined
by the local Cgy symmetry of the hh and kk configurations for divacancy and also applies
to the NV center in diamond [375]. We utilize off-diagonal Hamiltonian elements containing
AD;; to drive resonant spin transitions with phonons, and consider both Amgs = +1 and
+2 transitions for full ground state s = 1 spin control.

We first demonstrate mechanical driving of Amg = +1 spin transitions with the Gaussian
SAW resonator. The point group symmetries of the divacancy in SiC allow for non-zero spin-
strain coupling coefficients for zero-field splitting terms that contain the anticommutators
{Sz,S.} and {Sy, SZ}. In order to probe acoustic paramagnetic resonance, we tune the axial
magnetic field (By) such that the spin |[0) to |—1) transition frequency is matched with the
SAW resonator (Fig. 6.22a). It is critical to design an experimental measurement sequence
insensitive to stray magnetic fields from electrical currents in the interdigitated transducer.
To disentangle these effects, we use an interlaced pump/laser probe sequence as well as lock-in
amplification to measure the difference in luminescence when the spin resonance frequency is

shifted away from the cavity resonance via modulation of By with a small coil. Spin rotations
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are primarily driven and detected during the SAW cavity ring down period without radio
frequency driving, although the spin ensemble will also encounter some residual magnetic
resonance when the drive is turned back on due to lingering optical-spin polarization. We
detect higher photoluminescence contrast when the radio frequency drive is matched to our
SAW cavity resonance (Fig. 6.22b), whereas smaller, residual contrast is detected when the
drive is far off the SAW resonance. When the photoluminescence contrast is normalized
by ODMR experiments from magnetic driving, the kk/hh mechanical drive rate ratio is
0.89 + 0.10, which agrees with our theoretical model and DFT calculations (ratio ~ 1.0)
where shear couples more strongly to Amg = +1 transitions than does uniaxial strain. The
transverse spatial dependence (Fig. 6.22¢) confirms that the photoluminescence contrast we
measure on resonance matches our Gaussian resonator’s mechanical mode shape. Magnetic
field driving from the transducer, on the other hand, results in a flat profile. The long
cavity ring up time prevents us from performing pulsed Rabi oscillations, though this could
be solved using fast By pulses to tune the spin resonance frequency. Our demonstration
of Amg = =41 transitions by phonons enables direct photoluminescence contrast (optical
detection) of resonant spin-strain coupling for sensing applications without electromagnetic

microwaves.

Coherent Magnetically Forbidden Spin Transitions

To complement Amg = +1 spin driving, we further use the strain coupling terms S% — Sg
and {Sx, Sy} in the zero-field splitting Hamiltonian to show Amg = +2 spin transitions. For
these transitions, photoluminescence contrast from ODMR cannot directly measure resonant
strain without extra electromagnetically driven spin resonance because photoluminescence
contrast is insensitive to differences between |4+1) and |—1) states. The mechanical transition
rate (Qm) is instead measured using Autler-Townes (AC Stark) splittings, where in the
dressed basis, the new eigenstates are split in energy by §2,,. This splitting can be observed

in the ODMR spectrum. We use a continuous magnetic microwave pump (Rabi frequency
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Figure 6.22: Optically detected acoustic paramagnetic resonance in silicon car-
bide. a. Energy level diagram showing the SAW frequency on resonance with the spin
transition between the |0) and |—1) states. b. (Top) Interlaced pump-probe sequence dur-
ing magnetic field-modulation. (Bottom) Photoluminescence (PL) contrast at 30 K when
electrical excitation is on and off cavity resonance (wp, /27 = 559.6 MHz). Radio frequency
power is 32 mW at sample, and ABy is in reference to the drive frequency. c. Integrated
photoluminescence contrast from kk resonance (evaluated at ABy = 0) as a function of
the SAW resonator transverse position. Driving on-resonance (“€2,”) uses the interlaced
sequence from (b), whereas off-resonance data (“Qg”) uses a continuous, non-interlaced se-
quence. The radio frequency power is 200 mW at the sample, and the beam waist model is
exp[—y2/ (w%)], using fabrication parameters and a scaled amplitude. All error bars are 95%
confidence intervals.
Qg : £1 ~ MHz) for |0) to |£1) transitions while the SAW is driven at a constant frequency
wm/2m (Fig. 6.23a). Dressed state level anti-crossings are most clearly seen when the |+1)
spin sublevels are tuned to the SAW resonance frequency. The dressed spin eigenstate
energies observed for a 400 mW drive power on the Gaussian SAW resonator closely match
predictions for Qy, /27 ~ 4 MHz (Fig. 6.23b). Additionally, the Autler-Townes splitting
scales linearly with square-root of radio frequency drive power delivered to the SAW, which
is expected as {yy is linearly proportional to strain (Fig. 6.23c). The resolved Autler-Townes
splitting shows that the mechanical drive rate is faster than the ensemble spin inhomogeneous
linewidth (decoherence rate), allowing for measurement of coherent Rabi oscillations.

We mechanically drive coherent Rabi oscillations of kk electron spins using the pulse

sequence in Fig. 6.23d to differentiate between populations transferred to |+1) versus |—1)

spin states. The spin ensemble inhomogeneous linewidth (~ 1 MHz) and relatively long
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cavity ring up time (2Q;/wy, &~ 16us) prevent fast mechanical pulsing, so we keep the
mechanical drive on continuously. A pair of magnetic microwave 7 pulses defines the effective
mechanical pulse time 7 seen by the spin ensemble (Fig. 6.23d). Using this pulse sequence
and positive ODMR contrast of kk defects, normalized photoluminescence values of +1
can be interpreted as |F1) spin populations, respectively, before the second magnetic 7
pulse. We find that three-level system dynamics are necessary to explain the observed
mechanical Rabi oscillations shown in Fig. 6.23e, in particular the ensemble population at
7 = 0. Specifically, during each magnetic 7 pulse, the simultaneous mechanics {2y, drives
some unintended population transfer between the |+1) and |—1) spin states, which leads to
a modified initial projection of the population at 7 = 0.

The observed Rabi oscillations qualitatively agree with spin simulations predicted using
a physical model consisting of spin-strain coupling parameters from DFT calculations and
experimental knowledge, including (i) the ensemble spin resonance spectrum from ODMR,
(ii) spin-mechanical drive amplitudes from fitted Autler-Townes splittings, (iii) spatial distri-
bution of spins in the SiC bulk and implanted layer, (iv) finite element analysis of strain and
shear distributions from Rayleigh waves, and (v) optical point spread function. Our physical
model reproduces the mechanically driven Rabi oscillation rates, asymmetric decay shape,
higher frequency features from hyperfine detuned spins, and initial spin population at 7 = 0.
This demonstrates we can mechanically drive Amg = £2 transitions with a Rabi frequency
about four times greater than the ensemble ODMR linewidth. During Rabi oscillations with
400 mW radio frequency power, we estimate from input-output theory applied on a SAW
model that the mechanical field strength is approximately 1073 strain order of magnitude,
in agreement with DF'T simulation results. Short Rabi decay times are primarily explained
by SAW strain inhomogeneity across the ensemble, though another source of damping may
be present in the experiments. Manipulation of single divacancies [59, 60] will offer the op-
portunity to extend coherent Rabi oscillations up to or beyond the spin T3. Coherent Rabi

oscillations in ensembles for quantum phononics applications could be improved by using
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Figure 6.23: Coherent mechanical driving of kL spin ensembles. a. Divacancy
ground state illustration with magnetic (2g.4+1) and electromechanical () drives shown.
b. Autler-Townes measurement on a kk ensemble at 30 K; dressed for N phonons (black) and
undressed (white) spin transitions. The mechanically dressed eigenstates and corresponding
transitions are split by 2. c¢. Mechanical transition rates obtained from Autler-Townes
splittings agree with a linear fit to the square-root of drive power. Error bars are 95%
confidence intervals from fits. Inset shows an Autler-Townes splitting measurement (black)
at By ~ 100 G, with Gaussian fits (red) to the divacancy electron spin and weakly cou-
pled nearby nuclear spins. d. Pulse sequence for mechanically driven Rabi oscillations. e.
Mechanically driven Rabi oscillations at ~400, 100, and 25 mW, respectively, and typical
error bars are 95% confidence intervals. The photoluminescence signal for each Rabi oscilla-
tion is normalized by a global factor, and simulations are ensemble average predictions with
inhomogeneous strain distributions from finite element modeling.

higher quality material and controlled aperture implantations [372] for more homogeneous

strain distributions.

Quantum Sensing of Gaussian Acoustics

We spatially map the Gaussian SAW mode in order to show that Amg = £2 transitions
occur due to the mechanical driving and not due to any stray electromagnetic fields [182].

We map changes in the Autler-Townes splitting, shown in Fig. 6.24a, at a constant mag-
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netic field while sweeping the laser position across the SAW beam waist. In the resonator’s
transverse direction, a clear Autler-Townes splitting maximum, and therefore resonant strain
amplitude, is observed at the Gaussian acoustic focus. , as a function of transverse po-
sition is well described by a model Gaussian beam waist of the fundamental mode in the
device geometry (FWHM = 3.3\) and not due to predicted stray electric fields. Scanning
the laser spot longitudinally (Fig. 6.24b), along the SAW propagation, reveals oscillations in
the Autler-Townes splitting at the resonator’s acoustic half wavelength. Surprisingly, in con-
flict with assumptions of a simple sinusoidal standing wave containing uniaxial strain nodes
(Fig. 6.21a,b), we observe the mechanical drive rate oscillations are less than 5% peak-to-
peak. This is contrary to expectations from previous theoretical work [74] neglecting the
full strain tensor, so we interpret our experimental results using a spin Hamiltonian under

anisotropic strains also including shear.
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Figure 6.24: Spatially mapping mechanical spin drive rates. a. Autler-Townes split-
ting of kk |—1) sublevel as a function of transverse position (left) at = 0 and the analyzed
mechanical transition rates (right). The beam waist model only uses fabrication parameters
with a scaled amplitude. b. Mechanical transition rate (left) as a function of longitudinal
position at y = 0, plotted with a line through the experimental data. FFT (right) shows a
peak and Gaussian fit in red at the expected acoustic periodicity A\/2 (6um). c. Strain €z,
and €,, of the SAW modeled with COMSOL Multiphysics.

The spatial mapping results can be understood by employing a combination of finite-
element simulations in conjunction with DFT calculations of spin-strain interactions. The
{1120} mirror plane symmetry in 4H-SiC is broken by shears €, and €z, which drive the
spin out-of-phase with €5 — €yy, €y» (mirror symmetry preserving). In our experiments, the
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Gaussian SAW beamwaist is oriented to propagate in the {1100} plane (defined as the z2-
plane). The mechanical transition rate is Qy, = %(GH —G12)€gy —2iG4€5, corresponding to
Amg = +2 transitions, where the spin-strain coupling tensor G is written in Voigt notation.
In Fig. 6.24c¢ we show finite element simulation results for uniaxial strain €, and shear €,,
for a Rayleigh wave propagating along the x direction. We model the experimental results
by converting the strain maps to (), using G calculated from DF'T, which is then convolved
with both an optical point-spread function and estimated spatial distribution of the spins.
In our model, spatial averaging causes the spin ensemble to experience similar transition rate
magnitude |Qn| from (G171 — G12)ézy and Ggéex, contributions at their respective spatial
maxima. These uniaxial strain and shear components, which are spatially offset, do not
interfere destructively since )y, is proportional to a linear combination of e;m(Sg — Sg ) and
€x2(SzSy + SySz). Consequently, in qualitative agreement with our calculations, we always
experimentally measure a non-zero Autler-Townes splitting in Fig. 6.24b. Furthermore,
our model explains the relative Qp, amplitudes between kk and hh (4.0 : 1.1) observed
in Fig. 6.25, and the results for Amg = 42 transitions are well described by the zero-
field splitting tensor when the full strain tensor is taken into account. Lastly, we measure
mechanical-spin driving on the PL6 defect species in SiC, previously used to demonstrate
electron-nuclear spin entanglement in ambient conditions [183]. We find that PL6 experiences
similar mechanical transition rates compared to hh and kk (Fig. 6.25); therefore, mechanical

control of SiC spin ensembles should be possible at room temperature.

6.3.3 First-principles theory of spin-strain coupling

In this section we discuss symmetry properties of the spin-strain coupling tensor and present
its values predicted by density functional theory (DFT). We mainly focus on the experimen-
tally relevant divacancies (hh, kk)-VV in 4H-SiC. To validate the computational protocol of
our DFT calculations, we also report the spin-strain coupling tensor for the NV center in

diamond and compare with existing literature values.

188



kgPL2|[ =" hhpLI| [ PL6

APL (a.u.)

1020 1030 1050 1060 1080 1090
Microwave frequency (MHz)

Figure 6.25: Divacancy defect comparisons of mechanical drive rates. Autler-Townes
splitting measurements (black points) for kk, hh, and PL6 with Qp, ~4.0, 1.1, 3.4 MHz,
respectively, under the same conditions. The fits (red lines) are from simultaneously fitting
the data with ODMR spectra to common Gaussian distributions. All error bars are 95%
confidence intervals from fitting and measurements are performed at 30 K.

In the following discussion we define the Cartesian frame for 4H-SiC to be z: [1120],
y: [1100], z: [0001], in consistence with the SAW experiment. The Cartesian frame for
diamond is defined as x: [110], y: [112], z: [111]. Under this convention, there is a mirror

plane perpendicular to the z axis for both 4H-SiC and diamond. The structures of (hh,

kk)-VV and NV in their respective frames are shown in Fig 6.26.
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Figure 6.26: The structures of (hh, kk)-VV in 4H-SiC (left) and NV in diamond (right).
Lattices are slightly rotated around z axis to show more details.

In the basis of {|mg =1),|mg =0),|mg = —1)}, the zero-field splitting (ZFS) Hamil-
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tonian as a 3 X 3 matrix is

Hyzps =S -D-S (6.11a)
3(Doz + Dyy) + D2z 5(Daz —iDyz)  5(Diw — Dyy) — Dy
= %(sz =+ ZDyz) Dy + Dyy \/Lﬁ(_DiEZ + ZDyz) (6.11b)
%(Dxx - Dyy) + 1D gy \%(—Dm - iDyz) %(Dm” + Dyy) t D2z
1
5D
- ~2p . (6.11c)
1
5D

The last expression applies to defects with Cs, symmetry where the D tensor has only one
independent component, and we used the conventional notation D = %Dzz. Off-diagonal
elements of Hypg are zero by symmetry. If a strain is applied to the system, the Csy
symmetry may be broken, leading to non-zero off-diagonal elements and transitions between
states with different mg.

The relation between strain and D is characterized by the spin-strain coupling tensor of
the defect, which we denote as G. G is defined as the derivative of D with respect to the

strain tensor €
oD,
(%Cd

Gabcd = (6'12)

where a, b, c,d represent the Cartesian coordinates x,y,z. The strain is defined as ¢, =
1 ua ’u,b . . . . .
7(55_17 + x_a) In this convention, compressive strains are negative.

In Voigt notation, both D and e are written as 6-dimensional vectors in the order of

(xzx,yy, zz,yz, xz,zy), and G is represented by a 6 x 6 matrix. Within the linear response
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regime, the change of D induced by strains are given by

ADgy G Gi2 Gz Gu Gis Gig Exa
ADy, Go1 Gag Gaz Gag Gas Gag Eyy
ADzz | | Ga1 Gz Gsg Gag Gy Gy | | €22 | (6.13)
AD,y, Gy Gy Guz Guy Gy5 Gyg 2ey,
ADy. Gs1 Gs2 Gsz Gsa Gss Gsg | | 2e22
ADyy Ge1 Ge2 Ge3 Gea Ges Gee ) \2eay

Under Csy, symmetry, G only has 6 independent components. In the reference frame

defined in Fig 6.26, G has the following form

G111 G192 G13 G4
G12 G11 Gz —Guy
-G -G —-G11 -G —2G
G- 11 12 11 12 13 (6.14)
Ga -Gy Gaa
G4 Ga1

Gy (G11 —Gr2)/2

where independent components are chosen to be G11, G192, G13, G14, G41 and G44. Combin-
ing the above equation with Eq. 6.11b, one can see that strains can induce both Amg = +1
and Amg = £2 transitions.

To compute the numerical values of G components, we assume that the zero-field splitting
effects for VV and NV are dominated by the magnetic dipole-dipole interaction, and we
neglect the spin-orbit coupling effect. The magnetic dipole-dipole interaction between the
two unpaired electrons in the defect ground state is given by

2
) r=81 -89 381-7' S2-T

Ttdd = A rd

(6.15)
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where i is the vacuum magnetic permeability, e is the electron gyromagnetic ratio, A is the
reduced Planck constant, s1 and so are spin-1/2 operators for the two unpaired electrons,
r and r are the relative coordinate between two electrons and its norm. The D tensor is
computed as the expectation value of the dipole-dipole interaction on the ground state from

Kohn-Sham DFT calculations

1 ! ~ ) b — 3Talp
Dy, = 55(25 ’Yeh ;XU ’LJ’ 5 ’\Ifzﬂ (6.16)

where S is the effective electron spin (S = 1 for triplet defects like VV or NV). The sum-
mation runs over all pairs of occupied Kohn-Sham orbitals, and x;; = %1 for parallel and
anti-parallel electrons respectively. W;;’s are 2 x 2 Slater determinants of occupied Kohn-
Sham orbitals, and expectation values of dipole-dipole interaction are evaluated following
the recipe in Ref [298].

We performed DFT calculations for (hh, kk)-VV in 4H-SiC and NV in diamond with
the PBE exchange-correlation functional[279]. The Projector Augmented Wave (PAW)
method[34] with datasets compiled in the PSL1.0 library[64] are used to represent electron-
ion interactions. When evaluating the expectation values in Eq. 6.16, we used normalized
pseudo-wavefunctions[162][86][335]. We used 55 Ry kinetic energy cutoff and I'-point sam-
pling of the Brillioun zone. Structures are relaxed until forces on atoms are smaller than
5x 104 eV- AL All DFT calculations are performed with the Quantum ESPRESSO
code[106].

To simulate isolated defects, we create defects in large supercells built by periodic replica-
tion of hexagonal unit cells of 4H-SiC or diamond. The following figure shows the convergence
of D value with respect to supercell size: For all results reported in the following, 7 x 2 x 2
supercells are adopted, which contain 782 and 588 atoms for pristine 4H-SiC and diamond,
respectively.

With the computational formalism described above, the D values obtained for (hh, kk)-
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Figure 6.27: D value (%(Dm+Dyy)—Dzz) for VV in 4H-SiC (left) and NV in diamond (right)
as functions of supercell sizes. Calculations are done without strain and thus all defects have
Csy symmetry. E values (%(Dm — Dyy)) are smaller than 2 MHz for all calculations.

VV in 4H-SiC and NV in diamond agree very well with experimental results[166][85].

Table 6.9: D values for (hh, kk)-VV in 4H-SiC and NV in diamond (GHz).
This work (DFT) Ref (Exp.)[166][85]

hh-VV 1.41 1.34
kk-VV 1.36 1.31
NV 2.92 2.88

To compute spin-strain coupling tensor G, D tensor is computed for defects in strained
lattices with 0.0%, + 0.25%, + 0.5%, £+ 0.75%, £+ 1.0% amount of strain in each direction
(xx,yy, zz,yz,xz,xy). Then a linear fitting for each D component and strain component is
performed to extract the corresponding G component. Due to numerical noises, G tensors
predicted by DFT do not exactly obey the symmetric form in Eq. 6.14. We symmetrized
G tensors by projecting them onto the A; irreducible representation of the Csy group.
Table 6.10 presents the 6 independent components of symmetrized G tensors. For all values
reported, the standard deviation of linear fitting are smaller than 0.1 GHz/strain.

To validate the computational protocol, we compared the results for the NV center in

diamond with the work by Udvarhelyi et al. [375] and Barson et al. [23]. Udvarhelyi et al.
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Table 6.10: Independent components of spin-strain coupling tensors for hh(kk)-VV in 4H-SiC
and NV in diamond (GHz/strain).
hh-VV  kk-VV NV
Gii —399 —-3.35 —4.63
Gia —042 —-0.93 -—-1.67
G13 1.74 1.26 1.23
G4 0.34 1.93 —4.68
G 0.30 —0.10 0.48
Gyq 0.46 0.47  0.80

computed the spin-strain and spin-stress coupling coefficients of NV centers by DFT. Barson
et al. measured the coupling strength between spin and stress for NV centers in a diamond
nanomechanical structure. To make direct comparison, we converted the 6 spin-strain cou-
pling coefficients for NV centers in Table 6.10 into the 6 spin-stress coupling coefficients a,
az, b, ¢, d, e as defined in their work [375][23]. In the conversion we used the compliance
tensor of diamond in Ref [177]. Table 6.11 shows the comparison of spin-stress coupling co-
efficients from different works. Note that Ref [23] used a different sign convention for strain,

and therefore their results are multiplied by a negative sign in the table.

Table 6.11: Spin-stress coupling coefficients for NV in diamond (MHz/GPa).
This work (DFT) Ref (DFT)[375] Ref (Exp.)[23]

a 73.82 2.65 4.4
as 3.80 2.52 3.7
b 1.80 1.94 2.3
c 2.77 2.84 3.5
d 0.23 0.12
e 0.60 0.67

From Table 6.11 we find that our results match well with both references. The agreement
is a validation for the computational setup we used for the calculations of G.
Finally, we remark that the response of D to strain (2nd rank tensor) is different from

its response to applied electric field (1st rank tensor). Similar to spin-strain coupling tensor,
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we can define tensor F' as the coupling between D and the electric field

oD,

Fi.= . 6.17
abc OF, ( )
In Voigt notation, the response of D to an applied electric field E is given by
ADgy Fu1 Fi2 Fi3 Fi9 Fi3
ADy, Fo1 Iy Fag —F19 Fi3
Ex EI’
AD., F31 F3o F33 —2F3
= E, | = E, (6.18)
ADy, Fy Fgo Fys Fy
EZ EZ
ADg, Fs1 Fsp Fs3 Fyo
ADgy Fe1 Fe2 Fé3 Fio

where Cgy symmetry was considered in the last equality. Combining the above equation
with Eq. 6.11b, one can see that an applied electric field can drive Amg = £1 and Amg =
+2 transitions, similar to the case of applying a strain. However, an electric field and a
strain enters the Hamiltonian by different response tensors with different dimensions. F
is 6 x 3 matrix while G is 6 x 6 matrix in Voigt notation. For Cs, defects, F' has only
3 independent components while G has 6 independent components; F' also has completely
different symmetric form as G even if only the first 3 columns of G (corresponding to normal

strains €z, Eyy, £.z) are considered.

6.5.4 Conclusions

In summary, we established a Gaussian surface acoustic wave platform for ground state spin
control and imaged the phononic modes using a novel nanoscale X-ray imaging technique.
Local defect symmetries are critical to understanding spin-phonon interactions in a general
model of anisotropic lattice perturbations that we developed based on ab initio calcula-

tions. Surprisingly, shear and uniaxial strain couple to the ground state spin with equivalent
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magnitudes and different relative phases depending on the strain tensor component. This
property could be used to engineer material and device designs that capitalize on mechanical
interactions. Since a complete model of spin-strain coupling with Cs,, symmetry requires six
independent coupling parameters, strain cannot necessarily be treated as an equivalent elec-
tric field vector. Even so, the zero-field splitting tensor is also affected by electric fields with
three independent coupling parameters and can be used for both Amg = +1 and Amg = +2
spin transitions. In order to further enhance defect-phonon interaction strengths for hybrid
quantum systems, defect excited state electronic orbitals [210, 54] and spins [225] could be
utilized as opposed to ground state spins [23], and strain effects on defect hyperfine couplings
have not been well explored. In addition, new defects [13] with greater spin-spin or spin-
orbit coupling, with minimal cost to their spin coherence, may greatly improve spin-phonon
coupling strengths and be advantageous for quantum control of phonons with optically ad-
dressable spins. Our combined theoretical understanding and demonstrations of spin-strain
coupling with SiC divacancies provide a basis for quantum sensing with MEMS [374] as well
as engineering strong interactions with single phonons for quantum transduction [201], spin

squeezing [30], and phonon cooling [178] applications.
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6.4 Quantum dynamics simulation of spin-defects

Coherence time is one of the most important properties for spin-defects. Theoretical pre-
diction of coherence times for spin-defects involves the solution of the central spin problem,
where a central electron spin is embedded in an environment consisting of external fields
and other spins (e.g. nuclear spins or electron spins from other paramagnetic defects). This
section discusses the simulation of the central spin problem using the cluster correlation
expansion (CCE) method [411, 334, 413].

For a system consisting of a central electron spin with spin-1 and bath nuclear spins in

external magnetic field, the Hamiltonian is given by

H = He + Hb + Heb (619)

where He, Hy, and H}, denotes the electron Hamiltonian, bath Hamiltonian and the coupling

between electron and bath

He=-vB-S+8-D-8S (6.20)
Hb:_ZViB'Ii‘i‘ZIi'IDij'Ij (6.21)
i oy
Hpy=>» S-A-I, (6.22)
i

where B is the external magnetic field; v, and 7; are gyromagnetic ratios of the electron
spin and the i-th nuclear spin, respectively; S and I; denote electron and the i-th nuclear
spin operators, respectively; D is the zero-field splitting tensor; P;; is the magnetic dipole-
dipole coupling tensor between bath spins ¢ and j; A; is the hyperfine coupling tensor that
couples the electron spin with the i-th nuclear spin. The zero-field splitting and hyperfine
coupling can be predicted through first-principles electronic structure calculations, as shown
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in Chapter 5.

The quantum coherence of the central electron spin is characterized by the time evolution
of the reduced density matrix of the electron spin governed by the Hamiltonian in Eq.
6.19. For pure dephasing processes, the diagonal elements of the reduced density matrix
are unchanged during the time evolution, and the entire Hamiltonian in Eq. 6.19 can be

decomposed into different components corresponding to different qubit states

H=">"|ms) (ms| ® Hp, (6.23)

ms
where |mg) denotes mg spin state of the electron spin, Hy,, denotes the Hamiltonian acting
on the bath spins when the electron spin is in |mg) state. For instance, Hy and H; governs
the time evolution of bath spins when the electron spin is in mg = 0 and mg = 1 state,
respectively.
The dephasing of electron spin is characterized by the decay of the coherence function

L(t), which is defined as

Tr{p(t)S™
L(t) = ; {p(t)S™} (6.24)
Tr{p(0)5*}
where p(t) denotes the reduced density matrix of the central electron spin.

If the qubit is prepared in initial state \/Lﬁ(m) + |1)), the coherence function can be

expressed in terms of time evolution of bath spins under under Hy and Hy

L(t) = Tr{ pUoU] } (6.25)

where pj, is the density matrix for bath spins; Uy and U; are propogators for bath spins under
electron spin states mg = 0 and mg = 1, respectively. The exact form of Uy and Uy depends
on the experimental setup for the measurement of coherence time. For free induction decay

(T measurement),
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Uy = exp{—iHyt} (6.26)
Uy = exp{—iHt} (6.27)

For Hahn-Echo experiment (75 measurement),

Uy = exp{—iHot/2} exp{—iH1t/2} (6.28)
Uy = exp{—iHt/2} exp{—iHyt/2} (6.29)

Higher-order dynamical decoupling schemes correspond to more sophisticated forms of Uy
and Uj.

The exact calculation of L(t) is computationally very demanding the number of bath spins
is large. In the CCE method, the coherence function L(t) is approximated as a product of

cluster contributions

L(t)~ [[Le(®) (6.30)
C

where Lo (t) is the irreducible contribution from cluster C. CCE calculations are normally
performed up to a certain order, which defines the size of clusters considered for the evalu-
ation of L(t). For instance, a first-order CCE calculation considers only contributions from
isolated nuclear spins; a second-order CCE calculation considers contributions from all clus-
ters with up to 2 nuclear spins. The irreducible contribution L (t) is defined recursively
as

Lolt) = _Lo®) (6.31)

[Ter Lo (D)
where L (t) denotes the coherence function computed with only contributions from cluster

C included; C’ denotes clusters with sizes smaller than or equal to that of C.
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Using the CCE method and its generalizations, we investigated the quantum coherence
of divacancy electron spins in silicon carbide and predicted the coherence time of divacancy

spins in the environment of nuclear spins and other paramagnetic defects [42, 272].
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CHAPTER 7
CONCLUSION

In this dissertation, we presented research projects that fall within two interwoven themes:
(1) the development of method and algorithms for quantum mechanical simulation of molecules
and materials; (2) first-principles studies of the electronic structure and quantum dynamics
of spin-defects in semiconductors for quantum information science.

In terms of method development, we first presented a finite-field approach to compute
density response functions for molecules and materials. The approach is non-perturbative
and can be used in a straightforward manner with both semilocal and orbital-dependent func-
tionals. The finite-field approach allows us to explicitly compute the exchange-correlation
kernel of a physical system and to perform GW and Bethe-Salpeter equation calculations
beyond the random phase approximation. These developments enabled accurate and effi-
cient many-body perturbation theory (MBPT) calculations of charged and neutral excitation
energies of molecules and materials.

Based on the finite-field approach, we developed a quantum embedding theory for the
study of strongly-correlated electronic states in condensed systems. The quantum embedding
theory is capable of constructing effective models for a selected part of the physical system,
with the environment acting as a dielectric screening media described at the density func-
tional theory (DFT) level. The effective models can be solved by classical algorithms such
as exact diagonalization, or by quantum algorithms such as variational quantum eigensolver.
The quantum embedding theory presented here is a powerful tool to reduce a complex ma-
terials science problem into a simpler one, and is highly valuable for first-principles studies
of strongly-correlated electronic states in condensed and molecular systems.

In addition to electronic properties, we presented a novel approach to compute certain
spin properties (e.g. the hyperfine coupling) for paramagnetic systems. Calculations of spin
properties such as hyperfine coupling require an accurate description of electronic wavefunc-

tion near nuclei, which is a challenging task for common basis sets such as plane waves
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or Gaussian orbitals. We presented a novel approach to predict such spin properties from
all-electron DFT calculations using finite element basis sets, and we demonstrated that the
results can be systematically converged as a function of the basis set size. This development
enabled robust all-electron calculations of spin properties for paramagnetic molecules and
materials.

In terms of application, we presented a number of first-principles predictions for spin-
defects in semiconductors, encompassing properties such as thermodynamics, excited states,
spin-phonon coupling and quantum coherence. In particular, we applied DFT and MBPT
to study the stability and excitation energies of several novel spin-defects in silicon carbide
and aluminum nitride; we applied the quantum embedding theory to study the strongly-
correlated excited states of group-4 vacancy centers in diamond; we applied DFT and group
theory to construct a complete microscopic theory of spin-phonon coupling for divacancy
spins in silicon carbide; we applied cluster correlation expansion method to simulate the
quantum coherence dynamics of spin-defects in the environment of other electron spins and
nuclear spins. These studies greatly expand our understanding of various physical proper-
ties of existing spin-defects as well as novel ones, and provided important guidance for the
experimental realization and manipulation of these spin-defects as solid-state qubits.

The research presented in this dissertation heavily focused on solving real-world chemical
and materials problems, which usually involve large, heterogeneous systems. For instance,
an accurate description of spin-defects often requires a periodic cell including hundreds or
even thousands of atoms. First-principles calculations of such systems require not only
sophisticated theories but also robust and scalable software implementations that can harness
the computational power of modern high-performance computing architectures. Theories
and methods presented in this dissertation are implemented with a strong emphasis on
efficiency and scalability, and are made available to the community through several open-
source software (summarized in Appendix B).

Overall, this dissertation highlighted several advancements in quantum mechanical sim-
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ulations of molecules and materials. It is my hope that the theories, algorithms and applica-
tions presented in this dissertation will benefit the greater chemistry and materials science

community in large-scale, first-principles simulations of molecular and condensed systems.
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APPENDIX B
SOFTWARE

List of software and contribution:

1. WEST code (west-code.org, contributor)

e Finite-field algorithm

e Quantum embedding theory
2. Qbox code (gboxcode.org, contributor)

e DFT calculations under arbitrary finite electric field
3. PyZFS code (github.com/hema-ted/pyzfs, main developer)

4. PyCDFT code (github.com/hema-ted/pycdft, main developer)

Details of the PyZFS code and the PyCDFT code are discussed in Appendix B.1 and B.2,

respectively.
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B.1 PyZFS: A Python package for first-principles calculations of

zero-field splitting tensors

This subsection presents PyZFS, a Python package for first-principles calculations of zero-field
splitting tensors in plane-wave basis.

Reprinted from H. Ma, M. Govoni, and G. Galli. Journal of Open Source Software.
5(47), 2160 (2020). https://doi.org/10.21105/j0ss.02160

Electron spins in molecules and materials may be manipulated and used to store in-
formation, and hence they are interesting resources for quantum technologies. A way to
understand the physical properties of electron spins is to probe their interactions with elec-
tromagnetic fields. Such interactions can be described by using a so-called spin Hamiltonian,
with parameters derived from either experiments or calculations. For a single electron spin
(e.g. associated to a point-defect in a semiconductor or insulator), the leading terms in the

spin Hamiltonian are

H=upB-g-S+8-D-S (B.1)

where pp is the Bohr magneton, S is the electron spin operator, B is an external magnetic
field, g and D are rank-2 tensors that characterize the strength of the Zeeman interaction, and
the zero-field splitting (ZFS), respectively. Experimentally, the spin Hamiltonian parameters
g and D may be obtained by electron paramagnetic resonance (EPR). The ZFS tensor
describes the lifting of degeneracy of spin sublevels in the absence of external magnetic fields,
and is an important property of open-shell molecules and spin defects in semiconductors
with spin quantum number S > 1. The ZFS tensor can be predicted from first-principles
calculations, thus complementing experiments and providing valuable insight into the design
of novel molecules and materials with desired spin properties. Furthermore, the comparison
of computed and measured ZF'S tensors may provide important information on the atomistic
structure and charge state of defects in solids, thus helping to identify the defect configuration

present in experimental samples. Therefore, the development of robust methods for the
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calculation of the ZFS tensor is an interesting topic in molecular chemistry and materials
science.

In this work we describe the code PyZFS for the calculation of the ZFS tensor D of
molecules and solids, based on wave-functions obtained from density functional theory (DFT)
calculations. For systems without heavy elements, i.e. where spin-orbit coupling is negligible,
magnetic spin-spin interactions are the dominant ones in the determination of the ZF'S tensor.
For molecules and materials with magnetic permeability close to the vacuum permeability

110, the spin-spin ZFS tensor evaluated using the DF'T Kohn-Sham wavefunctions, is given

by:
_ 1 Ho 5 = 7208, — 3raTy
Dep = m@(%ﬁ) ;Xij(‘bij’ — D7) (B.2)

where a,b = x,y,z are Cartesian indices; v, is the gyromagnetic ratio of electrons; the
summation runs over all pairs of occupied Kohn-Sham orbitals; x;; = +1 for parallel and
antiparallel spins, respectively; CIDij(r,r’ ) are 2 x 2 determinants formed from Kohn-Sham
orbitals ¢; and 6, ij(r,v') = T 6i(0)6; (1) — 6s(x);(x)]

Several quantum chemistry codes (for example ORCA [257]) include the implementation
of ZFS tensor calculations for molecules, where electronic wavefunctions are represented
using Gaussian basis sets. However, few open-source codes are available to compute ZFS
tensors using plane-wave basis sets, which are usually the basis sets of choice to study
condensed systems. In PyZFS we implement the evaluation of spin-spin ZFS tensors using
plane-wave basis sets. The double integration in real space is reduced to a single summation
over reciprocal lattice vectors through the use of Fast Fourier Transforms [298].

We note that a large-scale DFT calculations can yield wavefunction files occupying tens
of GB. Therefore, proper distribution and management of data is critical. In PyZFS, the
summation over pairs of Kohn-Sham orbitals is distributed into a square grid of processors
through the use of the Message Passing Interface (MPI), which significantly reduces the CPU
time and memory cost per processor.

PyZFS can use wavefunctions generated by various plane-wave DF'T codes as input. For
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instance, it can directly read wavefunctions from Quantum Espresso [106] in the HDF5
format and from Qbox [124] in the XML format. The standard cube file format is also
supported. PyZFS features a modular design and utilizes abstract classes for extensibility.
Support for new wavefunction format may be easily implemented by defining subclasses of
the relevant abstract class and overriding corresponding abstract methods.

Since its development, PyZFS has been adopted to predict ZFS tensors for spin defects in
semiconductors, and facilitated the discovery of novel spin defects [335] and the study of spin-
phonon interactions in solids [396]. PyZFS has also been adopted to generate benchmark data
for the development of methods to compute the ZFS tensor using all electron calculations
on finite element basis sets [105]. Thanks to the parallel design of the code, PyZFS can
perform calculations for defects embedded in large supercells. For example, the calculations
performed in [396] used supercells that contain more than 3000 valence electrons, and are

among the largest first-principles calculations of ZFS tensors reported so far.
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B.2 PyCDFT: A Python package for constrained density

functional theory

Reprinted with permission from H. Ma, W. Wang, S. Kim, M. Cheng, M. Govoni, and G.
Galli. Journal of Computational Chemistry. 41, 1859-1867 (2020). Copyright (2020) by
Wiley. https://doi.org/10.1002/jcc.26354

This subsection presents PyCDFT, a Python package to compute diabatic states using
constrained density functional theory (CDFET). PyCDFT provides an object-oriented, cus-
tomizable implementation of CDFT, and allows for both single-point self-consistent-field
calculations and geometry optimizations. PyCDFT is designed to interface with existing den-
sity functional theory (DFT) codes to perform CDFT calculations where constraint poten-
tials are added to the Kohn-Sham Hamiltonian. Here we demonstrate the use of PyCDFT by
performing calculations with a massively parallel first-principles molecular dynamics code,
Qbox, and we benchmark its accuracy by computing the electronic coupling between dia-
batic states for a set of organic molecules. We show that PyCDFT yields results in agreement
with existing implementations and is a robust and flexible package for performing CDFT

calculations.

B.2.1 Introduction

The transfer of electronic charges plays a central role in many physical and chemical processes
[241], such as those for cellular activity in biological processes [36] and catalytic activity in
condensed phases [259]. In addition, the rate of charge transfer in a material directly impacts
its carrier mobility and hence its use in e.g., electronic devices [167, 168].

Theoretical and computational modeling provides invaluable insights into the micro-
scopic mechanism of charge transfer, and is playing an important role in the develop-
ment of novel drugs, catalysts, and electronic materials. In the past few decades, many

research efforts have been dedicated to the development of robust theoretical methods
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and simulation strategies to describe charge transfer processes in molecules and materials
(149, 169, 418, 107, 408, 326, 265]. Charge transfer can take place through a wide spectrum
of mechanisms, with two important regimes being the band-like regime (where transport
occurs through delocalized electronic states) and the hopping regime (where transport oc-
curs through localized electronic states) [341, 24]. Here we focus on the hopping transfer,
which is the dominant charge transfer mechanism in many organic crystals and conducting
polymers, and in several metal oxides in the solid state, as well as in many nanoparticle
solids [206, 364, 123, 415].

The classic theory of charge transfer in the hopping regime is Marcus theory [229, 230],
which has seen many generalizations through the years [207, 417, 213, 254]. For a charge
transfer between two sites A and B (e.g., a donor-acceptor pair consisting of two molecules

or two fragments of the same molecular unit), Marcus theory predicts the charge transfer

2T 1 (AG + ))?
b= Ha \| 2k TrA eXp[ INkgT |’ (B-3)

where the diabatic electronic coupling H,; between A and B is one of the central quantities

rate to be

that determines transfer rates; kg and T are the Boltzmann constant and temperature; AG
is the free energy difference between states A and B, and A\ is the reorganization energy.
As shown in Fig. B.1, within Marcus theory the charge transfer process can be described
using the free energy surfaces of two diabatic states as functions of a chosen reaction coordi-
nate. Diabatic states are defined as a set of states among which the nonadiabatic derivative
couplings vanish. Diabatic states have the property that their physical characters (such as
charge localization) do not change along the reaction coordinate. For instance, the two dia-
batic states (U, /W) involved in the charge transfer depicted in Fig. B.1 are constructed to
have the charge localized on site A/B, and this charge localization character does not change
as the reaction occurs.

In contrast to adiabatic states, which are the eigenstates of the electronic Hamiltonian

within the Born-Oppenheimer approximation, diabatic states are not eigenstates of the elec-
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Reaction coordinates

Figure B.1: Free energy curves for two diabatic states ¥, and ¥y with free energy G, and
G}, associated to a reaction where a charge (electron or hole) is transferred from site A to
site B. The charge is localized on site A for ¥, and site B for ¥y, and the charge localization
characters of ¥, and ¥y do not change as the reaction occurs. The charge transfer rate
can be written as a function of the free energy difference AG, reorganization energy A, and
electronic coupling H .

tronic Hamiltonian of the whole system, and therefore are not directly accessible from stan-
dard electronic structure calculations. Constrained density functional theory (CDFT) pro-
vides a powerful and robust framework for constructing diabatic states from first principles
and predicting their electronic coupling [172, 110], including instances where hybrid func-
tionals may fail to produce a localized state [246] and where time-dependent DFT may fail
to produce the correct spatial decay of the electronic coupling [80]. In CDFT, additional
constraint potentials are added to the Kohn-Sham Hamiltonian, and their strengths are op-
timized so as to obtain a desired localized charge on a given site. To obtain the electronic
coupling H ,;, one first performs two separate CDFT calculations in which one localizes the
charge on the initial and final sites. Then, one constructs the electronic Hamiltonian ma-
trix on the basis composed of the two diabatic states, and finally the H,, is given by the

off-diagonal elements of the Hamiltonian matrix.

A CDFT formulation was originally proposed by Dederichs in 1984 [70] to study excita-
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tions of Ce impurities in metals. Wu, van Voorhis and co-workers established the modern
formulation of CDFT in the mid-2000s [405, 404]. Since then it has been implemented in
several DF'T codes using localized basis sets, such as SIESTA [354], NWChem [404], Q-CHEM
[402] and ADF [367].

Implementations of CDFT using plane-wave basis sets appeared more recently, for in-
stance in CPMD [262, 263], VASP [221] and CP2K (dual basis) [155]. These plane-wave im-
plementations enabled CDFT calculations for condensed systems, and facilitated the study
of important problems such as redox couples in aqueous solution [38, 262, 262], charge trans-
fer in biological molecules and proteins [264], in quantum dots [44] and doped nanoparticles
[383], electron tunneling between defects [37] and polaron transport [336, 388] in oxides,
molecular solids [264], and organic photovoltaic polymers [111] (see Ref. 172 and Ref. 36
for extensive reviews). In existing implementations, DFT and CDFT are developed and
maintained in the same code, thus requiring direct modifications of core DFT routines to
support CDFT functionalities.

In recent years, an emerging trend in scientific simulation software is the development of
light-weight code, with focus on specific tasks, which can be interfaced with other codes to
perform complex tasks. This strategy is well aligned with the modular programming coding
practice, which enables maintainability, re-usability, and simplicity of codes. Compared to
conventional strategies integrating a wide range of functionalities into one single code, this
design strategy decouples the development cycle of different functionalities and leads to inter-
operable codes that are easier to modify and maintain, facilitating rapid developments and
release of new features. Some notable codes for chemical and materials simulations that have
adopted this strategy include Qbox [124], WEST [117, 220], and SSAGES [342, 337].

In this work we present PyCDFT, a Python package that performs single-point self-consistent-
field (SCF) and geometry optimization calculations using CDFT. PyCDFT can be interfaced
with existing DFT codes to perform DFT calculations with constraint potentials. Compared

to existing implementations of CDF'T, the novelty of the PyCDFT code is twofold:
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e PyCDFT is a light-weight, interoperable code. The operations specific to CDFT calcu-
lations are decoupled from those carried out by existing DFT codes (DFT engines).
Communications between PyCDFT and the DFT engine are handled by client-server
interfaces (see Sec. B.2.3). Hence, the development of PyCDFT and of the DFT engine
may occur independently. This is advantageous for maintainability and reusability,

and PyCDFT may be interfaced with multiple DFT engines.

e PyCDFT features an object-oriented design that is user-friendly and extensible. Extra
functionalities can be easily added to PyCDFT thanks to the extensive use of abstract
classes. Furthermore, PyCDFT supports being used within Jupyter notebooks or Python
terminals, thus allowing users to perform and analyze CDFT calculations in a flexible

and interactive manner.

We note that Python has become increasingly popular as a high-level programming language
for scientific computing due to its ease of use and wide applicability. The development
of PyCDFT echos this trend and contributes to the rapidly expanding open-source Python
ecosystem for the molecular and materials science fields, where some widely-used packages
include Atomic Simulation Environment (ASE) [145], pymatgen [270], and PySCF [360].

To demonstrate the use of PyCDFT, we coupled it with the massively parallel first-
principles molecular dynamics code Qbox [124], which features efficient DFT calculations
using plane-wave basis sets and pseudopotentials. We computed diabatic electronic coupling
for a set of organic molecules in the HAB18 data set [199, 198] and compared our results
with those of existing implementations. The results obtained with PyCDFT(Qbox) are in
good agreement with those of other plane-wave implementations of CDFT, thus verifying

the correctness and robustness of PyCDFT.
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Figure B.2: Workflow for self-consistent-field (SCF) and geometry optimization calculations
performed by PyCDFT. In SCF calculations, the free energy functional W is minimized with
respect to the electron density n (equivalent to a standard DFT calculation under constraint
potentials) and maximized with respect to Lagrange multipliers V}.. For geometry optimiza-
tion calculations, W is further minimized with respect to nuclear coordinates R. PyCDFT is
designed to implement CDFT-specific algorithms and to be interfaced with external DFT
codes (drivers).

B.2.2  Computational methodology

Constrained Density Functional Theory

We briefly outline the CDFT methodology adopted here and we refer the reader to Refs.
172, 263, 403, 404, 246 for further details. The core of the CDFT method is the iterative

calculation of the stationary point of a free energy functional W defined as

Win, V] = +ka </ Jn(r )dr—Nk) (B.4)

where n is the electron density; E[n| is the DFT total energy functional; the second term
on the right-hand side of Eq. B.4 represents the sum of constraint potentials applied to the

system to ensure that the desired number of electrons N 2 is localized on given parts of the
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system (e.g., chosen atomic site, molecule, or structural fragment). More than one constraint
can be applied to the system, if needed. The strength of the k™ constraint potential is
controlled by the scalar Lagrange multiplier V}., and its shape is determined by a weight
function wy(r). CDFT calculations are performed by self-consistently minimizing W with
respect to n and maximizing W with respect to Vi.. The minimization of W with respect
to n is equivalent to performing a DFT calculation with additional constraint potentials
>k Viwg(r) added to the Kohn-Sham Hamiltonian. Upon convergence of the SCF cycle,
the number of electrons localized on a given site N, = [ drwy(r)n(r) is equal to the desired
value N ]8 . In geometry optimization calculations, the free energy W is further minimized

with respect to nuclear coordinates, as shown in the outermost cycle in Fig. B.2.

Calculation of weight functions

The weight function allows one to partition the total electron density into contributions from
different fragments of the whole system. Several different partitioning schemes have been
proposed, such as Mulliken [253], Becke [27], and Hirshfeld partitioning [144]. In PyCDFT we
implemented the Hirshfeld partitioning, which is widely used in plane-wave implementations
of CDFT [199, 198, 110]. The Hirshfeld weight function w is defined as the ratio between

the pseudoatomic densities belonging to a given site and the total pseudoatomic density

w(r) = 2rer Pr(r —Ryp)
2rpr(r —Ryp)

(B.5)

where [ denotes atoms and I € F' denotes atoms belonging to a fragment F' to which the
constraint is applied; Ry is the coordinate of atom I; py denotes the electron density of
the isolated I-th atom and should not be confused with the electron density n of the whole
system.

Alternatively, to enforce constraints on the electron number difference between a donor
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site D and an acceptor site A, one can define the weight function as:

_ 2reprit —Rp) =3 reapr(r —Ry)
>orpr(r—Ryp)

w(r) . (B.6)

Both definitions of Hirshfeld weights are implemented in PyCDFT. For charge transfer
processes where the whole system consists of only two fragments (donor and acceptor), the
above two definitions of Hirshfeld weights are equivalent. For more complex processes where
multiple parts of the system are involved, one can use a combination of the two definitions
to enforce complex charge constraints.

In Egs. B.5 and Eq. B.6, the real-space electron density of an atom located at Ry is
computed as:

. m 1
pr(r — Ry) = 4rF ! [e—’G'Rf /0 pr(n) 2 g (B.7)

where F~1 denotes an inverse Fourier transform; G is a reciprocal lattice vector with norm G;
pr(r) is the radial electron density of atom /. For a given atomic species, pr(r) can be easily
obtained by performing DFT calculations for isolated atoms. PyCDFT is distributed with pre-
computed spherically-averaged electron densities obtained with the SG15 pseudopotentials

[129, 324] for all species in the periodic table before bismuth (excluding the lanthanides).

Calculation of Forces

In order to perform geometry optimizations or molecular dynamics simulations on a diabatic
potential energy surface, the force on each nucleus due to the applied constraints must be
evaluated. Forces on the diabatic potential energy surface are the sum of the DFT forces
FPFT and the constraint force F© arising from the derivative of the constraint potential with
respect to nuclear coordinates.

For a system subject to constraints, the av component (a € {z,y,2}) of the constraint

force F on the I atom is given by:
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3wk(r)
Fr, = ZVk/drp IR,

o . 0 —wg(r)  Ipr(r—Ry)
B ka/dp >ypsr—=Ry)  ORp,

(B.8)

where § = d7¢ p for constraints on absolute electron numbers (Eq. B.5) and 6 = drep—07c4

for constraints on electron number differences (Eq. B.6). The term Op1 (E;RI ) is evaluated
as:
0 -R ;
O0t “Ra) _ o1 {iGrae OB F (o)} (B.9)
OR[q

where F and F~! denote forward and backward Fourier transforms, respectively.

Diabatic electronic coupling

To compute the electronic coupling H,,[405], we consider the Hamiltonian matrix on the
diabatic basis composed of two diabatic states ¥, and Wy, each obtained from a converged
CDFT calculation with PyCDFT. Here we consider the case of a single constraint. Denoting
the value of the Lagrange multiplier for the two CDF'T calculations as V,, and V}, respectively,
the Hamiltonian on the diabatic basis is:

Hoa H
H= | TP (B.10)

Hy, Hyy

where the diagonal elements Hy, and Hyy, correspond to the DFT total energies of diabatic
states W, and Wy, respectively. Then, denoting the overlap matrix S between the two diabatic

states as

S = , (B.11)
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where Sy, = (Uq|¥}) and Sy, = Sy, the off-diagonal Hamiltonian elements can be written
as [263]:
Hap = FySap = ViWap (B.12)

Hyy = FaSpy — VaWpa (B.13)

where F, and Fp are the CDF'T total energies including the contribution of constraint po-
tentials; the weight function matrix elements W, = Wy are given by Wy, = (Vg |w(r)|¥y).

After H is evaluated in the diabatic basis, we follow Ref. 263 and average the off-diagonal
elements of H to ensure its Hermiticity. Finally, we perform a Lowdin orthogonalization [217]

for H using the overlap matrix S
H =S 1/2Hs1/2 (B.14)
and the off-diagonal matrix element of H corresponds to the electronic coupling H,y,.

B.2.3  Software

Implementation

PyCDFT features an object-oriented design and extensive use of abstract classes and abstract
methods to facilitate future extensions of functionalities. Here we list the major classes

defined in the PyCDFT package.

e Sample: a container class to organize relevant information about the physical system.
A Sample instance is constructed by specifying the positions of the atoms within the
periodic cell. The Sample class utilizes the ASE [145] package to parse atomic structures

from geometry files (e.g., cif files).

e Fragment: a container class to represent a part of the whole system to which constraints
are applied. A Fragment instance is constructed by specifying a list of atoms belonging
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to the fragment.

Constraint: an abstract class representing a constraint applied to the system. A
Constraint instance keeps track of physical quantities relevant to the constraint,
such as N,g, Np, Vi, and wy(r) (see Eq. B.4). Except for the parameter NY. which
is defined upon the construction of the instance, other quantities are updated self-
consistently as the CDFT calculation proceeds. Currently, two types of constraints
based on Hirshfeld partitioning are implemented: ChargeConstraint (Eq. B.5) and

ChargeTransferConstraint (Eq. B.6).

DFTDriver: an abstract class that controls how PyCDFT interacts with an external DF'T
code. It specifies how PyCDFT communicates the constraint potentials and constraint
forces to the DFT code and how to fetch the charge densities and other relevant quan-
tities from the DFT code. Currently, a subclass QboxDriver is implemented, which
allows PyCDFT to interact with the Qbox code. The implementation of the QboxDriver
class leverages the client-server interface of Qbox, which allows Qbox to interactively
respond to commands provided by a user or an external code [220, 261] (PyCDFT in

this case).

CDFTSolver: the core class of PyCDFT that executes a CDFT calculations. CDFTSolver
provides a solve method, which is used to perform a CDFT self-consistent or geometry
optimization calculation. Optimization of the Lagrange multipliers is performed within

the solve method, which utilizes the scipy package.

In addition to the above classes, PyCDFT contains a compute_elcoupling function, which

takes two CDFTSolver instances as input and computes the electronic coupling H,;, between

two diabatic states (see Sec. B.2.2). To enable the calculation of electronic coupling, PyCDFT

implements an auxiliary Wavefunction class that stores and manipulates the Kohn-Sham

orbitals from CDFT calculations.
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Extensibility

Thanks to the use of abstract classes, PyCDFT can be easily extended to provide new func-
tionalities. For instance, support for additional weight functions (such as spin-dependent
weight functions) can be easily implemented by defining subclasses of Constraint and over-
riding its abstract methods. Similarly, one can extend PyCDFT to support other DFT codes
by overriding the abstract methods in the DFTDriver class. In addition to the C++ code
Qbox used here, several Python implementations of DFT (e.g., PySCF) may be called as a
DFT driver in an interactive manner; therefore they may be used as DF'T drivers of PyCDFT
once the corresponding DFTDriver subclass is implemented. Currently, the calculation of
electronic coupling in PyCDFT is compatible with DFT drivers that use a plane-wave basis
set. PyCDFT may be extended to be compatible with other types of basis sets.

PyCDFT may also be readily integrated with existing Python-based interfaces for gener-
ating, executing, and analyzing electronic structure calculations using software such as ASE

[145] and Atomate [240].

Installation and usage

Installation of PyCDFT follows the standard procedure using the setup.py file included in
the distribution. Currently, it depends on a few readily available Python packages including
ASE, scipy, pyFFTW, and 1xml.

In Fig. B.3 we present an example script that utilizes PyCDFT to compute the diabatic
electronic coupling for the helium dimer He;. This and other examples are included in the

distribution of PyCDFT.

B.2.4  Verification

We now turn to the verification of our implementation of CDFT in PyCDFT, focusing on

the calculation of electronic couplings. We compare results obtained with PyCDFT(Qbox),
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# An example Input for computing electronic coupling of HeZ2+ dimer

pycdft *
ase.io read

# Read atomic structure
cell = read(". /He2.cif")

# Construct sample class, set FFT grid
sample = Sample(ase_cell=cell, nl=112, n2=112, n3=112)

# Set up the DFT driver, provide necessary commands to Initialize
# the external DFT code (Qbox in this case)
gboxdriver = QboxDriver(
sample=sample,
init_cmd="1load gs.xml\nset xc PBE\n"
scf_cmd="run © 50 5",
)

# Set up two CDFT solvers for two diabatic states

solverl = CDFTSolver(
job="scf", # Indicate the calculation 1Is an SCF calculation
optimizer="brenth", # Specify the optimizer used for the Lagrangian multiplier
sample=sample,
dft driver=gboxdriver

)

solver2 = solverl.copy()

# Initialize two constraints that localize the extra +1 charge on each site
# Here we use ChargeTransferConstraint, which constrains the relative electron number
# between two Fragments that represent donor and acceptor
ChargeTransferConstraint(
sample=solverl.sample,
donor=Fragment(solverl.sample, solverl.sample.atoms[0©:1]), # Donor fragment
acceptor=Fragment(solverl.sample, solverl.sample.atoms[1:2]), # Acceptor fragment
V brak=(-1, 1), # Search region for the brenth optimizer
NB=1, # Desired charge to be localized
)
ChargeTransferConstraint(
sample=solver2.sample,
donor=Fragment(solver2.sample, solver2.sample.atoms[0:1]),
acceptor=Fragment(solver2.sample, solver2.sample.atoms[1:2]},
V brak=(-1, 1),
Ne=-1,
)

# Perform CDFT calculations
solverl.solve()
solver2.solve()

# Compute the electronic coupling between the two diabatic states obtained
compute elcoupling(solverl, solver2)

Figure B.3: An example Python script to perform CDFT calculations for He; .
CDFTSolver instances are created for the calculation of two diabatic states with different
charge localization, then the compute_elcoupling function is called to compute the elec-
tronic coupling H,; between the two diabatic states.
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CPMD [199, 198, 263]), CP2K, and the implementation of CDFT in QUANTUM ESPRESSO
[106] originally contributed by Goldey et al. [110]. We note that all codes utilized for this

comparison use plane-wave basis sets, with the exception of CP2K, which uses a mixed



Gaussian and plane-wave basis set. As the values obtained for the electronic coupling have
been shown to be sensitive to the choice of weight partitioning schemes [263], we compare
with only results obtained with the Hirshfeld partitioning scheme.

Our results, PyCDFT(Qbox), are obtained by performing DFT calculations with the Qbox
[124] code. We used optimized norm-conserving Vanderbilt pseudopotentials (ONCV) [129,
324], and an energy cutoff of 40 Ry for all molecules; we tested up to a 90 Ry energy cutoff
and found changes of 1-2% in the electronic coupling compared to calculations using a 40 Ry
cutoff. We used a convergence threshold of 5 x 1079 for [N — Ny|. The electronic couplings
were converged to within less than 0.5% with respect to cell size, in order to minimize
interactions with periodic images. When using CP2K, we adopted the TZV2P basis set with
GTH pseudopotentials [109]. Results obtained with QUANTUM ESPRESsO (QE) and CPMD
have been previously reported in Ref. 110 and Refs. 199, 198, respectively. In all cases the
DF'T electronic structure problem was solved using the generalized gradient approximation
of Perdew, Burke, and Ernzerhof (PBE) [279].

We first discuss results for the electronic coupling of the Heér dimer. Fig. B.4 com-
pares the decay in H,, with distance for hole transfer in the He-He™ dimer obtained with
PyCDFT(Qbox) and other codes. We find excellent agreement between our computed elec-
tronic couplings and those from Oberhofer and Blumberger [263] obtained using CPMD
and the results of Goldey et al. [110] obtained using QE. As wavefunctions decay ex-
ponentially, the variation of the electronic coupling with separation may be expressed as
H x exp(—pR/2), and we can compare the decay behaviors obtained here and in the litera-
ture by using the decay rate (3, which is found to be 4.64, 4.98, 4.13 1/A with PyCDFT(Qbox),
CPMD, and QuANTUM ESPRESSO (QE), respectively.

We now turn to bench-marking results for molecular dimers in the HAB18 dataset, which
combines the HAB11 [199] and HABT [198] data sets, and consists of m-stacked organic homo-
dimers. The molecules in the HAB11 data set contain members with different number of

m-bonds and atomic species; the HAB7 dataset contains larger molecules. The combined
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Figure B.4: Comparison of diabatic electronic coupling H,, of the He-He+ dimer as a
function of distance R, calculated with constrained density functional theory, and using
PyCDFT interfaced with the Qbox code (PyCDFT(Qbox)), the implementation of CDFT
in CPMD from Oberhofer and Blumberger [263], and the implementation in QUANTUM
EsPrESSO (QE) from Goldey et al [110]. In all implementations, the Hirshfeld partitioning
[144] scheme is used. The calculated 3 decay rates are 4.64, 4.98, and 4.13 1/A respectively.
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Figure B.5: Diabatic electronic coupling H, of the stacked thiophene dimer at a separation
of 5 A as a function of the relative rotation of the two units, calculated with constrained
density functional theory as implemented in this work (PyCDFT(Qbox)) and in Kubas et al
in CPMD [199]. Carbon atoms are shown in brown, sulfur in yellow, and hydrogen in beige.

HABI18 data set has been previously used for other implementations of CDFT [110]. The

first molecule we consider here is one where imperfect w-stacking is present, due to one of

the monomers being rotated relative to the other. Fig. B.5 compares our calculated electron
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coupling for this configuration of the thiophene dimer with that of Kubas et al as implemented
in CPMD [199]. We find excellent agreement between the two results, thus demonstrating

the accuracy and robustness of PyCDFT(Qbox) for off-symmetry configurations.
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Figure B.6: Log-log plot of computed diabatic electronic couplings for molecular dimers
in the HAB18 data set [199, 198] at various inter-molecular distances using PyCDFT(Qbox)
(blue circles), CP2K (purple stars), CPMD (green squares), and Quantum Espresso (QE,
yellow triangles). Reference values (black line) are based on multi-reference configuration
interaction (MRCI4+Q)[199] and single-determinant spin-component-scaled coupled cluster
(SCS-CC2)[198] level of theory.

We compare our computed electronic couplings of molecular dimers in the HAB18 data
set at varying intermolecular distances using PyCDFT(Qbox) with those obtained with CP2K,
CPMD, and QE. These are plotted in Fig. B.6 on a log-log scale. In general, there is good
agreement among the various codes. There is a systematic deviation of all DFT results
from those based on multi-reference configuration interaction (MRCI+Q)[199] and single-
determinant spin-component-scaled coupled cluster (SCS-CC2)[198] calculations. This sys-
tematic deviation arises from the well-known delocalization error of the semi-local func-
tional used here (PBE) and from its shortcoming to properly describe long-range dispersion
interactions. Using more accurate functionals would improve the accuracy of CDFT, as
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previously reported in the literature [198]. Nevertheless, inspection of Fig. B.6 shows that
PyCDFT(Qbox) generally yields electronic couplings and decay constants within the range of
values obtained from previous implementations. Finally, we emphasize that PyCDFT(Qbox)
captures the physically relevant exponential decay of the electronic coupling with intermolec-

ular distance.

B.2.5 (Conclusions

In this work we presented PyCDFT, a Python module for performing calculations based on con-
strained density function theory (CDFT). PyCDFT allows for SCF and geometry optimization
calculations of diabatic states, as well as calculations of diabatic electronic couplings. The
implementation of CDF'T in PyCDFT is flexible and modular, and enables ease of use, main-
tenance, and effective dissemination of the code. Using molecules from the HAB18 data
set [199, 198] as benchmarks, we demonstrated that PyCDFT(Qbox) yields results in good
agreement with those of existing CDFT implementations using plane-wave basis sets and
pseudopotentials. As a robust implementation for CDFT calculations, PyCDFT is well-suited

for first-principles studies of charge transfer processes.
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