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∣∣∣ (in %), for

the C60 molecule (see also in Table 3.6). The bisection orbitals were obtained
using 5 bisection layers in each direction. The function Ẽx(Nint) is shown in
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ABSTRACT

Numerical simulations based on the fundamental laws of quantum mechanics lead to in-

valuable insights into the microscopic behavior of molecules and materials. In the past

decades, quantum mechanical simulations are becoming an increasingly important compo-

nent for chemical and materials science and industry. In this dissertation, I will present

several advancements in the development and application of quantum mechanical methods

for first-principles simulations of molecular and condensed systems.

First, I will present a finite-field algorithm for evaluating density response functions

based on density functional theory calculations under finite electric fields. The finite-field

algorithm enables accurate many-body perturbation theory calculations beyond the random

phase approximation. Based on the finite-field approach, we demonstrated GW and Bethe-

Salpeter equation calculations of excitation energies of molecules and materials beyond the

random phase approximation.

Next, I will present a quantum embedding theory for the study of strongly-correlated

electronic states in condensed systems. The quantum embedding theory is capable of con-

structing a simple, effective model for a selected part of a physical system, where the rest

of the system acts as a dielectric screening media that renormalizes the electron-electron

interactions in the effective model. We demonstrated quantum simulations of effective mod-

els using both classical and quantum computers. This development helps bridge the gap

between the systems sizes required to study realistic materials science problems and those

that can be tackled with the resources of near-term quantum computers.

In addition to electronic properties, I will present a novel approach to predict certain spin

properties (e.g. the hyperfine coupling) for paramagnetic systems using density functional

theory calculations on finite-element basis sets. We demonstrated all-electron finite-element

DFT calculations of spin properties for both finite and periodic systems. We showed that the

results of such calculations can be systematically converged with respect to the basis set size.

This development enables robust all-electron calculations of spin properties for paramagnetic
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molecules and materials.

Finally, I will present several applications of first-principles methods for the study of

spin-defects in semiconductors. Spin-defects in semiconductors are promising physical re-

alizations of quantum bits for quantum information technologies. We present a number of

theoretical predictions on various properties of spin-defects that are important for their op-

eration as quantum bits. In particular, we applied density functional theory and many-body

perturbation theory to predict the stability and excitation energies of several novel spin-

defects in silicon carbide and aluminum nitride; we applied the quantum embedding theory

to predict the strongly-correlated excited states of group-4 vacancy centers in diamond; we

applied DFT and group theory to construct a microscopic theory for spin-phonon coupling of

divacancy defects in silicon carbide; we performed quantum dynamics simulations using the

cluster correlation expansion method to predict the coherence time of divacancy spins in the

environment of other electron spins and nuclear spins. These studies greatly expanded our

understanding of various physical properties of existing spin-defects as well as novel ones,

and provided important guidance for the experimental realization and manipulation of these

spin-defects as solid-state quantum bits.
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CHAPTER 1

INTRODUCTION

The law of quantum mechanics governs all the microscopic processes in nature. The quan-

tum mechanical description of electromagnetic interactions among electrons and nuclei lays

the foundation for the human understanding of the world on the molecular level. Thanks

to a century of exploration by numerous pioneers, great progress has been made in both

theoretical understanding and numerical simulation of molecules and materials using quan-

tum mechanics [146, 191, 133, 237]. Today, quantum mechanical theories and simulations are

playing an increasingly important role in the discovery and design of molecules and materials

for energy conversion, healthcare, catalysis and quantum technologies.

Many important chemical and materials science problems require an accurate description

of electronic states and electronic processes. The first theme of this dissertation is the

development of methods and algorithms for electronic structure simulations. The microscopic

description of electrons in the electric field of nuclei is given by the many-electron Schrodinger

equation. In principle, if the many-electron Schrodinger equation can be solved, one can

predict numerous important properties of molecules and materials. Unfortunately, the direct

solution of many-electron Schrodinger equation is computationally very demanding as the

electronic wavefunction becomes exponentially more complex as the system size increases

(the curse of dimensionality). A frequently quoted sentence from P. A. M. Dirac says that

the fundamental laws necessary for the mathematical treatment of a large part of physics and

the whole of chemistry are thus completely known, and the difficulty lies only in the fact that

application of these laws leads to equations that are too complex to be solved.

At first sight, the development of electronic structure theory is nothing but finding nu-

merical tricks to tackle the equations that are too complex to be solved. This is far from the

complete picture. For simulations of realistic systems, one almost always needs to introduce

a certain number of approximations to reduce the computational complexity, and many im-

portant approximations are based on physical insights of the physical and chemical process
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instead of bare numerical considerations. Furthermore, oftentimes one needs to first cast

the many-electron Schrodinger equation into a dramatically different form, based on which

one can devise smart approximations that greatly reduce the computational cost without a

significant sacrifice of accuracy. Such reformulation requires deep insight into the collective

motion of interacting electrons, and is far from obvious if one merely views the electronic

structure problem as finding numerical solutions to complex equations.

Two such reformulations are of particular relevance to this work, namely the density

functional theory (DFT) [146, 191] and the many-electron perturbation theory (MBPT)

[133], summarized in Chapter 2. In the Kohn-Sham formulation of DFT, the many-electron

Schrodinger equation is transformed into the Schrodinger equation of non-interacting elec-

trons (Kohn-Sham equations). The past decades witnessed an enormous success of DFT

in the prediction of various properties of molecules and materials, especially ground state

properties. Despite great effort, DFT is generally considered to be less accurate for predict-

ing excited state properties. MBPT is based on a refomulation of the Schrodinger equation

using the language of Green’s function, and has been successfully applied to predict excited

state properties of molecular and condensed systems, often achieving higher accuracy than

DFT. Unfortunately, MBPT is computationally more expensive than DFT, limiting its ap-

plicability to large systems. Furthermore, most MBPT calculations are performed with the

so-called random-phase approximation (RPA), which limits the accuracy of the description

of dielectric screening between electrons. In Chapter 3, we represent a novel approach to

compute dielectric screening by performing DFT calculations in finite electric fields, and we

apply the finite-field approach to perform efficient MBPT calculations beyond the RPA. In

addition to excitation energies, another outstanding challenge for DFT is the description of

strongly-correlated electronic states, which are states that cannot be represented by single

determinants of one-electron orbitals. In Chapter 4, we describe a quantum embedding the-

ory based on the development in Chapter 3, which is capable of constructing effective models

of the strongly-correlated part of a physical system. The effective model can be solved by a
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high level of theory such as exact diagonalization, with the rest of the system treated with

a lower level of theory such as DFT.

Most electronic structure calculations are performed within two fundamental approxima-

tions: nonrelativistic approximation and Born-Oppenheimer approximation. The prediction

of certain molecular or materials properties requires going beyond the two fundamental ap-

proximations. For instance, certain spin properties of magnetic molecules and materials

such as the hyperfine coupling involve magnetic interactions missing in the nonrelativistic

Hamiltonian. In Chapter 5, we describe a finite element DFT approach for computing such

spin properties of magnetic molecules and materials. Another example is charge transport

processes in molecules and materials. Charge transport in many systems involves transitions

(hopping) between electronic states that are not eigenstates of the Born-Oppenheimer elec-

tronic Hamiltonian. In Appendix B.2, we present an implementation of constrained density

functional theory (CDFT) for first-principles calculation of charge transport properties.

The second theme of this dissertation is the first-principles studies of materials for quan-

tum information science (QIS). QIS involves measuring, processing and communicating in-

formation by exploiting quantum mechanical phenomena such as superposition and entan-

glement. QIS represents one of the most ambitious human endeavors in the control and

manipulation of quantum mechanical objects on the molecular level, and has the poten-

tial to fundamentally revolutionize information technologies. The greatest impact of QIS is

likely to be seen first in sensing and metrology, then in communication and simulation, and

finally digital computing [332]. Currently, several different types of quantum systems are

being explored to act as quantum bits (qubits), the basic units that carry quantum infor-

mation. Popular realizations include superconducting circuits, trapped ions, semiconductor

spin-defects, quantum dots, etc. Each realization has its unique advantages and challenges,

and different types of qubits can be coupled to construct hybrid quantum devices with more

sophisticated functionalities. In this work, we focus on semiconductor spin-defects, which

feature long coherence time and allow for room temperature operation. In Chapter 6 we
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present first-principles simulations of spin-defects in diamond, silicon carbide and other host

materials. We investigated their ground and excited state electronic structure, as well as

their spin properties and quantum coherence dynamics.

The two themes mentioned above are deeply interwoven in several ways. First, the de-

velopment of novel electronic structure methods and algorithms facilitates the theoretical

interpretation of experimental measurements and the computational discovery of novel spin

qubits. Second, the simulation of spin-defects provides several challenges for current elec-

tronic structure methods and motivates interesting theoretical developments. For instance,

the development of the finite-element approach in Chapter 5 is motivated by the study of

spin-defects, although it is general and can be applied to other systems as well. Finally, the

development of materials for QIS can benefit the electronic structure theory in a more fun-

damental way. One of the most exciting and challenging areas in QIS is the development of

quantum computers, which promise to solve certain tasks exponentially faster than classical

computers. The simulation of interacting electrons in molecules and materials is expected

to be one of the first areas that will benefit from quantum computation. In Chapter 4, we

show proof-of-principle simulations of spin-defects using quantum computers, demonstrating

how quantum embedding theory helps quantum computers to tackle complex chemical and

materials science problems.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 The electronic structure problem

The microscopic behavior of molecules and materials are governed by interactions among

electrons and nuclei. The electronic structure theories focus on the motion of electrons under

the influence of nuclei, and are usually formulated within two fundamental approximations:

the nonreletivistic approximation and the Born-Oppenheimer approximation. Under the

nonreletivistic approximation, electrons and nuclei interacts through Coulomb interaction,

and is governed by the well-known Hamiltonian:

H = −
∑
I

1

2MI
∇2
I −

∑
i

1

2
∇2
i −

∑
i,I

ZI
|ri −RI |

+
∑
I<J

ZIZJ
|RI −RJ |

+
∑
i<j

1

|ri − rj |
(2.1)

where the five terms represent nuclear kinetic energy operator, electron kinetic energy oper-

ator, electron-nuclei attraction, nuclei-nuclei repulsion and electron-electron repulsion; I, J

and i, j index nuclei and electrons, respectively; R and r represent nuclear and electron co-

ordinate; M and Z represent nuclear mass and charge. The nonreletivistic approximation

is generally a good approximation for light elements, where the velocity of electrons are

much lower than the speed of light. However, the nonreletivistic approximation neglects

the magnetic interactions among electrons and nuclear spins, which are important for the

determination of certain spin properties of magnetic molecules and materials. In Chapter 5

we will present a formalism to compute spin properties in a perturbative manner starting

from nonrelativistic finite-element DFT calculations.

Based on Eq. 2.1, the Born-Oppenheimer approximation is usually applied to separate

the degrees of freedom of electrons and nuclei. Under the Born-Oppenheimer approximation,
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the electronic motion is governed by the time-independent Schrodinger equation

HelΨN = ENΨN (2.2)

where EN and ΨN represents the energy and wavefunction of the N th eigenstates of the

Born-Oppenheimer electronic Hamiltonian

Hel = −
∑
i

1

2
∇2
i −

∑
i,I

ZI
|ri −RI |

+
∑
i<j

1

|ri − rj |
+
∑
I<J

ZIZJ
|RI −RJ |

(2.3)

Solving Eq. 2.2 is the central task for nonrelativistic electronic structure theory.

The eigenstates ΨN are usually called adiabatic states. Hel depends parametrically on

nuclear coordinates, and the energy EN as a function of nuclear coordinates give rise to the

N th adiabatic potential energy surface. Within the Born-Oppenheimer approximation, nu-

clei move on adiabatic potential energy surfaces. However, for the study of certain processes

such as charge transfer, it is sometimes desirable to compute the so-called diabatic states,

which are states that retain the character as nuclei move. Diabatic states are generally not

eigenstates of the Born-Oppenheimer electronic Hamiltonian and are therefore not directly

accessible from common electronic structure calculations. In Section B.2, we describe an

implementation of the constrained density functional theory for first-principles calculations

of diabatic states and charge transfer rates.

In most electronic structure calculations, Eq. 2.2 is solved using a discrete one-electron

basis set. In the second quantized form, the Born-Oppenheimer electronic Hamiltonian reads

(neglecting the constant nuclear repulsion term)

Hel =
∑
ij

tija
†
iaj +

∑
ijkl

Vijkla
†
ia
†
jalak (2.4)

where a† and a are creation and annihilation operators on given single-particle basis state

labeled by i, j, k, l; tij represents the matrix elements of kinetic and electron-nuclei intera-
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tions; Vijkl (known as electron repulsion integrals) represents matrix elements of Coulomb

interaction between electrons.

As mentioned in Chapter 1, the exact solution of eigenvalues and eigenstates of Hel

grows exponentially as the system size increases, and it is often desirable to reformulate the

problem into a form where approximations can be made to facilitate practical calculations.

In the following two sections of this chapter, we describe two such reformulations, namely

the density functional theory (DFT) and many-body perturbation theory (MBPT). Both

DFT and MBPT have been applied to predict various ground and excited state properties of

molecules and materials, and is particularly successful for systems where the electron corre-

lations are weak. For systems exhibiting strongly-correlated electrons, accurate calculations

become very challenging for DFT and MBPT, In Chapter 4 we describe a quantum embed-

ding theory to construct effective Hamiltonians similar in form to Eq. 2.4, but acts only

on the strongly-correlated part of the system. The effective Hamiltonian can then be solved

with quantum chemistry methods such as full configuration interaction, or more ambitiously,

with quantum computation.

2.2 Density functional theory

DFT is one of the most successful electronic structure theories so far. The seminal work by

Hohenberg and Kohn demonstrates [146] that all the ground and excited state properties

of a system of interacting electrons are completely determined by its ground state electron

density, and that the ground state electron density can be obtained by minimizing the total

energy functional:

E[n] =

∫
Vext(r)n(r)dr + F [n] (2.5)

where F is a universal functional of electron density n. Most DFT calculations performed

today are based on the Kohn-Sham scheme [191], which casts the solution of Eq. into the
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solution of the Kohn-Sham equation

HKSψi = εiψi (2.6)

The Kohn-Sham equation is a Schrodinger equation of independent electrons governed

by the Kohn-Sham Hamiltonian HKS

HKS = T + Vion + VH + Vxc (2.7)

where T denote kinetic energy operator and Vion, VH and Vxc denote ionic, Hartree and

exchange-correlation potential, respectively. The exchange-correlation potential Vxc is de-

fined as the functional derivative of the so-called exchange-correlation functional Exc with

respect to electron density n

Vxc =
δExc[n]

δn
(2.8)

The exact form of exchange-correlation functional Exc is unknown, and approximate

forms are required to perform practical DFT calculations. The development of exchange-

correlation functional is one of the central topics for DFT research. In the past decades,

more than 200 approximate forms of Exc has been proposed, which can be roughly classified

using the Jacob’s ladder for DFT. The first rung of Jacob’s ladder denotes the local density

approximation (LDA), where Exc is a functional of electron density only. Higher rungs of

Jacob’s ladder corresponds to more sophisticated functionals where Exc depends also on

derivatives of electron density and contains nonlocal terms from wavefunction theory.

It is often stated that DFT is a mean-field theory, and this thesis also mentioned this

statement in several places. Here, I hope to emphasize that this statement needs to be inter-

preted with caution. The Kohn-Sham formulation of DFT solves the Kohn-Sham equation

that describes the Kohn-Sham reference system of noninteracting electrons, and yields the
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exact energy and electron density of the system if the exact exchange-correlation functional

is used. The Kohn-Sham reference system (hence the Kohn-Sham orbitals and Kohn-Sham

eigenvalues) does not have direct physical meaning. In practical calculations, one often as-

sociates Kohn-Sham eigenvalues and their differences to various excitation energies of the

physical system, which in many cases lead to reasonable predictions and provide valuable

insights to the physical system. However, such association is not theoretically rigorous, and

by using such association one is attaching physical meaning to the mean-field solutions of

the Kohn-Sham reference system. Therefore, in some sense it would be more accurate to

say that DFT is often used as a mean-field theory, as one assumes that the excitation ener-

gies and wavefunction of Kohn-Sham systems are reasonable approximations to those of real

systems.

2.3 Many-body perturbation theory

MBPT is a mathematical reformulation of the Schrodinger equation of interacting electrons

using Green’s functions. The seminal paper by Hedin [133] presents a set of equations

that connects five important fundamental quantities of a physical system including the one-

electron Green’s function G, self-energy Σ, screened Coulomb interaction W , irreducible

polarizability P and vertex function Γ

Σ(1, 2) = iG(1, 4̄)W (1+, 3̄)Γ(4̄, 2; 3̄), (2.9)

W (1, 2) = vc(1, 2) + vc(1, 3̄)P (3̄, 4̄)W (4̄, 2), (2.10)

P (1, 2) = −iG(1, 3̄)G(4̄, 1)Γ(3̄, 4̄, 2), (2.11)

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +
δΣ(1, 2)

δG(4̄, 5̄)
G(4̄, 6̄)G(7̄, 5̄)Γ(6̄, 7̄, 3), (2.12)

G(1, 2) = G0(1, 2) +G0(1, 3̄)Σ(3̄, 4̄)G(4̄, 2). (2.13)
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where G0 denotes the one-electron Green’s function of independent electrons; vc denotes the

(bare) Coulomb interaction; indices 1, 2, ... are shorthand notations for space-time points

(r1, t1), (r2, t2), ...; indices with bars are integrated over.

Exact solution of Hedin’s equation yield the exact one-electron Green’s function, which

encodes the excitation energies of charge excitations (electron addition or removal) of the

physical system. Unfortunately, in practical calculations it is difficult to solve the entire set

of Hedin’s equations in a self-consistent manner. In the famous GW approximation, the

vertex function Γ is assumed to be a delta function (random phase approximation, RPA),

and the self-energy is approximated as

Σ(1, 2) = iG(1, 2)W (1+, 2) (2.14)

GW calculations have been successfully applied to predict bandgaps of semiconductors.

Most practical GW calculations are performed in a perturbative manner (G0W0) on top of

a mean-field description of the system. If Kohn-Sham eigenvalues and orbitals from DFT

calculations are used as the starting point for a G0W0 calculation, the charged excitation

energies (quasiparticle energies εQP) of a system can be computed by adding perturbative

corrections to the Kohn-Sham eigenvalues ε

ε
QP
i = εi + 〈Σ(ε

QP
i )− Vxc〉 (2.15)

The RPA assumed in most GW calculations equates the irreducible polarizability P to

that of independent electrons, which is the density response function of the Kohn-Sham sys-

tem (commonly denoted as χ0) if a DFT starting point is used. This neglects the exchange-

correlation effects in the description of dielectric screening. Section 3.1 presents a finite-field

algorithm for evaluating density response functions and dielectric screening effects beyond

the RPA.

In addition to charged excitations, MBPT can also predict neutral excitation energies
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through the solution of the Bethe-Salpeter equation (BSE) for two-electron Green’s functions.

Section 3.2 presents the application of the finite-field algorithm to the solution of BSE.
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CHAPTER 3

FINITE FIELD ALGORITHM FOR MANY-BODY

PERTURBATION THEORY

As briefly summarized in the previous chapter, many-body perturbation theory (MBPT) is a

Green’s function theory for electronic excitations of condensed and molecular systems. The

two most common types of MBPT calculations are the GW calculation and Bethe-Salpeter

equation (BSE) calculation, which are capable of predicting charged excitation energies and

neutral excitation energies of the physical system, respectively. MBPT calculations require

a microscopic description of the dielectric screening effect, which is characterized by density

response functions. As mentioned earlier, most MBPT calculations assume the random

phase approximation (RPA) when evaluating density response functions, which neglects

exchange-correlation effects in the dielectric screening. In Section 3.1 we describe a finite-

field algorithm for evaluating density response functions and performing GW calculations

beyond the RPA. In Section 3.2 we present the application of the finite-field algorithm in

BSE calculations.
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3.1 Finite field calculation of response functions

Adapted with permission from H. Ma, M. Govoni, F. Gygi, and G. Galli. Journal of Chemical

Theory and Computations. 15 (1), 154 (2019). Copyright (2019) by the American Chemical

Society. https://doi.org/10.1021/acs.jctc.8b00864.

We describe a finite-field approach to compute density response functions, which allows

for efficient G0W0 and G0W0Γ0 calculations beyond the random phase approximation. The

method is easily applicable to density functional calculations performed with hybrid func-

tionals. We present results for the electronic properties of molecules and solids and we

discuss a general scheme to overcome slow convergence of quasiparticle energies obtained

from G0W0Γ0 calculations, as a function of the basis set used to represent the dielectric

matrix.

3.1.1 Introduction

Accurate, first principles predictions of the electronic structure of molecules and materials

are important goals in chemistry, condensed matter physics and materials science [271]. In

the past three decades, density functional theory (DFT) [146, 191] has been successfully

adopted to predict numerous properties of molecules and materials [28]. In principle, any

ground or excited state properties can be formulated as functionals of the ground state

charge density. In practical calculations, the ground state charge density is determined by

solving the Kohn-Sham (KS) equations with approximate exchange-correlation functionals,

and many important excited state properties are not directly accessible from the solution of

the KS equations. The time-dependent formulation of DFT (TDDFT) [314] in the frequency

domain [49] provides a computationally tractable method to compute excitation energies and

absorption spectra. However, using the common adiabatic approximation to the exchange-

correlation functional, TDDFT is often not sufficiently accurate to describe certain types

of excited states such as Rydberg and charge transfer states [51], especially when semilocal
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functionals are used.

A promising approach to predict excited state properties of molecules and materials is

many-body perturbation theory (MBPT) [133, 157, 237]. Within MBPT, the GW approx-

imation can be used to compute quasiparticle energies that correspond to photoemission

and inverse photoemission measurements; furthermore, by solving the Bethe-Salpeter equa-

tion (BSE), one can obtain neutral excitation energies corresponding to optical spectra. For

many years since the first applications of MBPT [157], its use has been hindered by its high

computational cost. In the last decade, several advances have been proposed to improve

the efficiency of MBPT calculations [376, 258, 214], which are now applicable to simulations

of relatively large and complex systems, including nanostructures and heterogeneous inter-

faces [291, 285, 211]. In particular, GW and BSE calculations can be performed using a

low rank representation of density response functions [260, 286, 117, 118], whose spectral

decomposition is obtained through iterative diagonalization using density functional pertur-

bation theory (DFPT) [22, 21]. This method does not require the explicit calculation of

empty electronic states and avoids the inversion or storage of large dielectric matrices. The

resulting implementation in the WEST code has been successfully applied to investigate nu-

merous systems including defects in semiconductors [334, 335], nanoparticles[322], aqueous

solutions[93, 285, 95], and solid/liquid interfaces[117, 104] .

In this work, we developed a finite-field (FF) approach to evaluate density response func-

tions entering the definition of the screened Coulomb interaction W . The FF approach can

be used as an alternative to DFPT, and presents the additional advantage of being applica-

ble, in a straightforward manner, to both semilocal and hybrid functionals. In addition, FF

calculations allow for the direct evaluation of density response functions beyond the random

phase approximation (RPA).

Here we first benchmark the accuracy of the FF approach for the calculation of several

density response functions, from which one can obtain the exchange correlation kernel (fxc),

defined as the functional derivative of the exchange-correlation potential with respect to the
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charge density. Then we discuss G0W0 calculations for various molecules and solids, carried

out with either semilocal or hybrid functionals, and by adopting different approximations to

include vertex corrections in the self-energy. In the last two decades a variety of methods

[350, 89, 323, 233, 48, 371, 249, 340, 338, 311, 121, 56, 202, 203, 226] has been proposed

to carry out vertex-corrected GW calculations, with different approximations to the vertex

function Γ and including various levels of self-consistency between G, W and Γ. Here we

focus on two formulations that are computationally tractable also for relatively large systems,

denoted as G0W
fxc
0 and G0W0Γ0. In G0W

fxc
0 , fxc is included in the evaluation of the

screened Coulomb interaction W ; in G0W0Γ0, fxc is included in the calculation of both W

and the self-energy Σ through the definition of a local vertex function. Most previousG0W
fxc
0

and G0W0Γ0 calculations were restricted to the use of the LDA functional [350, 89, 371, 249],

for which an analytical expression of fxc is available. Paier et al. [275] reportedGW
fxc
0 results

for solids obtained with the HSE03 range-separated hybrid functional [141], and the exact

exchange part of fxc is defined using the nanoquanta kernel [300, 234, 353, 48]. In this work

semilocal and hybrid functionals are treated on equal footing, and we present calculations

using LDA [281], PBE [279] and PBE0 [280] functionals, as well as a dielectric-dependent

hybrid (DDH) functional for solids [346].

A recent study of Thygesen and co-workers [325] reported basis set convergence issues

when performing G0W0Γ0@LDA calculations, which could be overcome by applying a proper

renormalization to the short-range component of fxc [268, 269, 277]. In our work we gener-

alized the renormalization scheme of Thygesen et al. to functionals other than LDA, and we

show that the convergence of G0W0Γ0 quasiparticle energies is significantly improved using

the renormalized fxc.

The rest of the paper is organized as follows. In Section 2 we describe the finite-field

approach and benchmark its accuracy. In Section 3 we describe the formalism used to

perform GW calculations beyond the RPA, including a renormalization scheme for fxc, and

we compare the quasiparticle energies obtained from different GW approximations (RPA or
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vertex-corrected) for molecules in the GW100 test set [378] and for several solids. Finally,

we summarize our results in Section 4.

3.1.2 The finite-field approach

We first describe the FF approach for iterative diagonalization of density response functions

and we then discuss its robustness and accuracy.

Formalism

Our G0W0 calculations are based on DFT single-particle energies and wavefunctions, ob-

tained by solving the Kohn-Sham (KS) equations:

HKSψm(r) = εmψm(r), (3.1)

where the KS Hamiltonian HKS = T + VSCF = T + Vion + VH + Vxc. T is the kinetic energy

operator; VSCF is the KS potential that includes the ionic Vion, the Hartree VH and the

exchange-correlation potential Vxc. The charge density is given by n(r) =
∑occ.
m |ψm(r)|2.

For simplicity we omitted the spin index.

We consider the density response function (polarizability) of the KS system χ0(r, r′) and

that of the physical system χ(r, r′); the latter is denoted as χRPA(r, r′) when the random

phase approximation (RPA) is used. The variation of the charge density due to either a

variation of the KS potential δVSCF or the external potential δVext is given by:

δn(r) =

∫
K(r, r′)δV (r′)dr′, (3.2)

where K = χ0(r, r′) if δV (r′) = δVSCF(r′) and K = χ(r, r′) if δV (r′) = δVext(r
′). The

density response functions of the KS and physical system are related by a Dyson-like equa-
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tion:

χ(r, r′) = χ0(r, r′) +

∫
dr′′

∫
dr′′′χ0(r, r′′)

[
vc(r′′, r′′′) + fxc(r′′, r′′′)

]
χ(r′′′, r′) (3.3)

where vc(r, r′) = 1
|r−r′| is the Coulomb kernel and fxc(r, r′) =

δVxc(r)
δn(r′) is the exchange-

correlation kernel.

Within the RPA, fxc is neglected and χ(r, r′) is approximated by:

χRPA(r, r′) = χ0(r, r′) +

∫
dr′′

∫
dr′′′χ0(r, r′′)vc(r′′, r′′′)χ(r′′′, r′). (3.4)

In the plane-wave representation (for simplicity we only focus on the Γ point of the

Brillouin zone), vc(G,G′) =
4πδ(G,G′)
|G|2 (abbreviated as vc(G) = 4π

|G|2 ). We use K(G,G′)

to denote a general response function (K ∈ {χ0, χRPA, χ}), and define the dimensionless

response function K̃(G,G′) (K̃ ∈ {χ̃0, χ̃RPA, χ̃}) by symmetrizing K(G,G′) with respect

to vc:

K̃(G,G′) = v
1
2
c (G)K(G,G′)v

1
2
c (G′). (3.5)

The dimensionless response functions χ̃RPA and χ̃0 (see Eq. 3.4) have the same eigen-

vectors, and their eigenvalues are related by:

λRPA
i =

λ0
i

1− λ0
i

(3.6)

where λRPA
i and λ0

i are eigenvalues of χ̃RPA and χ̃0, respectively. In general the eiegenvalues

and eigenvectors of χ̃RPA are different from those of χ̃ due to the presence of fxc in Eq. 3.3.

In our GW calculations we use a low rank decomposition of K̃:

K̃ =

NPDEP∑
i

λi |ξi〉 〈ξi| (3.7)

where λ and |ξ〉 denote eigenvalue and eigenvectors of K̃, respectively. The set of ξ constitute
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a projective dielectric eigenpotential (PDEP) basis [260, 286, 117], and the accuracy of

the low rank decomposition is controlled by NPDEP, the size of the basis. In the limit of

NPDEP = NPW (the number of plane waves), the PDEP basis and the plane wave basis are

related by a unitary transformation. In practical calculations it was shown that [260, 286]

one only need NPDEP � NPW to converge the computed quasiparticle energies. To obtain

the PDEP basis, an iterative diagonalization is performed for K̃, e.g. with the Davidson

algorithm [66]. The iterative diagonalization requires evaluating the action of K̃ on an

arbitrary trial function ξ:

(K̃ξ)(G) =
∑
G′

v
1
2
c (G)K(G,G′)v

1
2
c (G′)ξ(G′)

= v
1
2
c (G)FT

{∫
K(r, r′)

(
FT −1

[
v
1
2
c (G′)ξ(G′)

])
(r′)dr′

}
(G)

(3.8)

where FT and FT −1 denote forward and inverse Fourier transforms respectively. By using

Eq. 3.8 we cast the evaluation of K̃ξ to an integral in real space.

Defining a perturbation δV (G′) = v
1
2
c (G′)ξ(G′), the calculation of the real space integral

in Eq. 3.8 is equivalent to solving for the variation of the charge density δn due to δV :

∫
K(r, r′)

(
FT −1

[
v
1
2
c (G′)ξ(G′)

])
(r′)dr′ =

∫
K(r, r′)δV (r′)dr′ ≡ δn(r). (3.9)

In previous works δn(r) was obtained using DFPT for the case of K = χ0 [117]. In

this work we solve Eq. 3.9 by a finite-field approach. In particular, we perform two SCF

calculations under the action of the potentials ±δV :

(HKS ± δV )ψ±m(r) = ε±mψ
±
m(r), (3.10)
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and δn(r) is computed through a finite difference:

δn(r) =
1

2

[
occ.∑
m

∣∣ψ+
m(r)

∣∣2 − occ.∑
m

∣∣ψ−m(r)
∣∣2] (3.11)

In Eq. 3.11 we use a central difference instead of forward/backward difference to increase

the numerical accuracy of the computed δn(r).

If in the SCF procedure adopted in Eq. 3.10 all potential terms in the KS Hamiltonian

are computed self-consistently, then the solution of Eq. 3.11 yields K = χ (see Eq. 3.9). If

Vxc is evaluated for the initial charge density (i.e. Vxc = Vxc[n0]) and kept fixed during the

SCF iterations, then the solution of Eq. 3.11 yields K = χRPA. If both Vxc and VH are kept

fixed, the solution of Eq. 3.11 yields K = χ0.

Unlike DFPT, the finite-field approach adopted here allows for the straightforward cal-

culation of response functions beyond the RPA (i.e. for the calculation of χ instead of χ0 or

χRPA), and it can be readily applied to hybrid functionals for which analytical expressions of

fxc are not available. We note that finite-field calculations with hybrid functionals can easily

benefit from any methodological development that reduces the computational complexity of

evaluating exact exchange potentials [125, 127, 68].

Once the PDEP basis is obtained by iterative diagonalization of χ̃0, the projection of χ̃ on

the PDEP basis can also be performed using the finite-field approach. Then the symmetrized

exchange-correlation kernel f̃xc = v
−1

2
c fxcv

−1
2

c can be computed by inverting the Dyson-like

equation (Eq. 3.3):

f̃xc = χ̃−1
0 − χ̃−1 − 1. (3.12)

On the right hand side of Eq. 3.12 all matrices are NPDEP × NPDEP and therefore the

resulting f̃xc is also defined on the PDEP basis.

When using orbital-dependent functionals such as meta-GGA and hybrid functionals,

the f̃xc computed from Eq. 3.12 should be interpreted with caution. In this case, DFT

calculations for HKS ± δV can be performed using either the optimized effective potential
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(OEP) or the generalized Kohn-Sham (GKS) scheme. In the OEP scheme, vxc is local in

space and fxc(r, r′) =
δVxc(r)
δn(r′) depends on r and r′, as in the case of semilocal functionals.

In the GKS scheme, Vxc is non-local and fxc(r, r′; r′′) =
δVxc(r,r

′)
δn(r′′) depends on three position

vectors. We expect δn to be almost independent of the chosen scheme, whether GKS or

OEP, since both methods yield the same result within first order in the charge density [200].

We conducted hybrid functional calculations within the GKS scheme, assuming that for

every GKS calculation an OEP can be defined yielding the same charge density; with this

assumption the fxc from Eq. 3.12 is well defined within the OEP formalism.

Implementation and Verification

We implemented the finite-field algorithm described above by coupling the WEST [117]

and Qbox [124] codes in client-server mode, using the workflow summarized in Fig. 3.1.

In particular, in our implementation the WEST code performs an iterative diagonalization

of K̃ by outsourcing the evaluation of the action of K̃ on an arbitrary function to Qbox,

which performs DFT calculations in finite field. The two codes communicate through the

filesystem.

To verify the correctness of our implementation, we computed χ̃0, χ̃RPA, χ̃ for selected

molecules in the GW100 set and we compared the results to those obtained with DFPT.

Section 3.1.4 summarizes the parameters used including plane wave cutoff Ecut, NPDEP and

size of the simulation cell. In finite-field calculations we optimized the ground state wave-

function using a preconditioned steepest descent algorithm with Anderson acceleration[7].

The magnitude of δV was chosen to insure that calculations were performed within the linear

response regime (see Section 3.1.4). All calculations presented in this section were performed

with the PBE functional unless otherwise specified.

Fig. 3.2a shows the eigenvalues of χ̃RPA for a few molecules obtained with three ap-

proaches: iterative diagonalization of χ̃RPA with the finite-field approach; iterative diagonal-

ization of χ̃0 with either the finite-field approach or with DFPT, followed by a transformation
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Figure 3.1: Workflow of finite-field calculations. The WEST code performs an iterative
diagonalization of K̃ (χ̃0, χ̃RPA, χ̃). In GW calculations beyond the RPA, f̃xc is computed
from Eq. 3.12, which requires computing the spectral decomposition of χ̃0 and evaluating χ̃
in the space of χ̃0 eigenvectors. Finite-field calculations are carried out by the Qbox code.
If the Hartree (VH) and exchange correlation potential (Vxc) are updated self-consistently
when solving Eq. 3.10, one obtains K = χ; if Vxc is evaluated at the initial charge density
n0 and kept fixed during the SCF procedure, one obtains K = χRPA; if both Vxc and VH
are evaluated for n0 and kept fixed, one obtains K = χ0. The communications of δn and
δV between WEST and Qbox is carried through the filesystem.

of eigenvalues as in Eq. 3.6. The three approaches yield almost identical eigenvalues.

The eigenvectors of the response functions are shown in Fig. 3.2b, where we report

elements of the matrices defined by the overlap between finite-field and DFPT eigenvectors.

The inner product matrices are block-diagonal, with blocks corresponding to the presence of

degenerate eigenvalues. The agreement between eigenvalues and eigenvectors shown in Fig.

3.2 verifies the accuracy and robustness of finite-field calculations.

Fig. 3.3 shows the eigendecomposition of χ̃ compared to that of χ̃RPA.

As indicated by Fig. 3.3a, including fxc in the evaluation of χ results in a stronger

screening. The eigenvalues of χ̃ are systematically more negative than those of χ̃RPA, though

they asymptotically converge to zero in the same manner. While the eigenvalues are different,

the eigenvectors (eigenspaces in the case of degenerate eigenvalues) are almost identical, as

indicated by the block-diagonal form of the eigenvector overlap matrices (see Fig. 3.3b).
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Figure 3.2: Comparison of the eigenvalues(a) and eigenfunctions(b) of χ̃RPA obtained from
density functional perturbation theory (DFPT) and finite-field (FF) calculations. Three
approaches are used: diagonalization of χ̃0 by DFPT, diagonalization of χ̃0 by FF (denoted
by FF(0)) and diagonalization of χ̃RPA by FF (denoted by FF(RPA)). In the case of DFPT
and FF(0), Eq. 3.6 was used to obtain the eigenvalues of χ̃RPA from those of χ̃0. In (b) we

show the first 32× 32 elements of the 〈ξDFPT|ξFF(0)〉 and 〈ξDFPT|ξFF(RPA)〉 matrices (see
Eq. 3.7).

Finally, f̃xc can be computed from χ̃ and χ̃0 according to Eq. 3.12. Due to the similarity

of the eigenvectors of χ̃ and χ̃RPA (identical to that of χ̃0), the f̃xc matrix is almost diagonal.

In Section 3.1.4 we show the f̃xc matrix in the PDEP basis for a few systems. To verify the

accuracy of f̃xc obtained by the finite-field approach, we performed calculations with the

LDA functional, for which fxc can be computed analytically. In Fig. 3.4 we present for a

number of systems the average relative difference of the diagonal terms of the f̃xc matrices
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Figure 3.3: Comparison of eigenvalues(a) and eigenfunctions(b) of χ̃ and χ̃RPA obtained
from finite-field calculations. In (b), the first 32 × 32 elements of the 〈ξRPA|ξfull〉 matrices
are presented.

obtained analytically and through finite-field (FF) calculations. We define ∆fxc as

∆fxc =
1

NPDEP

NPDEP∑
i

∣∣∣ 〈ξi|f̃FF
xc |ξi〉 − 〈ξi|f̃

analytical
xc |ξi〉

∣∣∣∣∣∣ 〈ξi|f̃analytical
xc |ξi〉

∣∣∣ . (3.13)

As shown in Fig. 3.4, ∆fxc is smaller than a few percent for all systems studied here.

To further quantify the effect of the small difference found for the f̃xc matrices on GW

quasiparticle energies, we performed G0W
fxc
0 @LDA calculations for all the systems shown

in Fig. 3.4, using the analytical fxc and fxc computed from finite-field calculations. The two

approaches yielded almost identical quasiparticle energies, with mean absolute deviations of

0.04 and 0.004 eV for HOMO and LUMO levels, respectively.
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Figure 3.4: Average relative differences ∆fxc (see Eq. 3.13) between diagonal elements
of the f̃xc matrices computed analytically and numerically with the finite-field approach.
Calculations were performed with the LDA functional.

3.1.3 GW calculations

Formalism

In this section we discuss GW calculations within and beyond the RPA, utilizing fxc com-

puted with the finite-field approach. In the following equations we use 1, 2, ... as shorthand

notations for (r1, t1), (r2, t2), ... Indices with bars are integrated over. When no indices

are shown, the equation is a matrix equation in reciprocal space or in the PDEP basis. The

following discussion focuses on finite systems; for periodic systems a special treatment of the

long-range limit of χ is required and relevant formulae are presented in Section 3.1.4.

Based on a KS reference system, the Hedin equations [133] relate the exchange-correlation

self-energy Σxc (abbreviated as Σ), Green’s function G, the screened Coulomb interaction

W , the vertex Γ and the irreducible polarizability P :

Σ(1, 2) = iG(1, 4̄)W (1+, 3̄)Γ(4̄, 2; 3̄), (3.14)
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W (1, 2) = vc(1, 2) + vc(1, 3̄)P (3̄, 4̄)W (4̄, 2), (3.15)

P (1, 2) = −iG(1, 3̄)G(4̄, 1)Γ(3̄, 4̄, 2), (3.16)

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +
δΣ(1, 2)

δG(4̄, 5̄)
G(4̄, 6̄)G(7̄, 5̄)Γ(6̄, 7̄, 3), (3.17)

G(1, 2) = G0(1, 2) +G0(1, 3̄)Σ(3̄, 4̄)G(4̄, 2). (3.18)

We consider three different G0W0 approximations: the first is the common G0W0 formu-

lation within the RPA, here denoted as G0W
RPA
0 , where Γ(1, 2; 3) = δ(1, 2)δ(1, 3) and Σ is

given by:

Σ(1, 2) = iG(1, 2)WRPA(1+, 2), (3.19)

where

WRPA(1, 2) = vc(1, 2) + vc(1, 3̄)χRPA(3̄, 4̄)vc(4̄, 2), (3.20)

and

χRPA = (1− χ0vc)−1χ0. (3.21)

The second approximation, denoted as G0W
fxc
0 , includes fxc in the definition of W .

Specifically, χ is computed from χ0 and fxc with Eq. 3.3:

χ = (1− χ0(vc + fxc))−1χ0, (3.22)

and is used to construct the screened Coulomb interaction beyond the RPA:

Wfxc = vc(1, 2) + vc(1, 3̄)χ(3̄, 4̄)vc(4̄, 2). (3.23)

The third approximation, denoted as G0W0Γ0, includes fxc in both W and Σ. In partic-

ular, an initial guess for Σ is constructed from Vxc:

Σ0(1, 2) = δ(1, 2)Vxc(1) (3.24)
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from which one can obtain a zeroth order vertex function by iterating Hedin’s equations once

[350]:

Γ0(1, 2; 3) = δ(1, 2)(1− fxcχ0)−1(1, 3). (3.25)

Then the self-energy Σ is constructed using G, Wfxc and Γ0:

Σ(1, 2) = iG(1, 4̄)Wfxc(1
+, 3̄)Γ0(4̄, 2; 3̄)

= iG(1, 2)WΓ(1+, 3̄)

(3.26)

where we defined an effective screened Coulomb interaction

WΓ = vc(1, 2) + vc(1, 3̄)χΓ(3̄, 4̄)vc(4̄, 2), (3.27)

χΓ = [vc − vcχ0(vc + fxc)]−1 − v−1
c . (3.28)

The symmetrized forms of the three different density response functions (reducible po-

larizabilities) defined in Eq. 3.21, 3.22, 3.28 are:

χ̃RPA = [1− χ̃0]−1χ̃0 (3.29)

χ̃ = [1− χ̃0(1 + f̃xc)]−1χ̃0 (3.30)

χ̃Γ = [1− χ̃0(1 + f̃xc)]−1 − 1 (3.31)

Eqs. 3.29-3.31 have been implemented in the WEST code [117].

We note that finite-field calculations yield f̃xc matrices at zero frequency. Hence the

results presented here correspond to calculations performed within the adiabatic approxi-

mation, as they neglect the frequency dependence of f̃xc. An interesting future direction

would be to compute frequency-dependent f̃xc by performing finite-field calculations using
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real-time time-dependent DFT (RT-TDDFT).

When using theG0W0Γ0 formalism, the convergence of quasiparticle energies with respect

to NPDEP turned out to be extremely challenging. As discussed in Ref.325 the convergence

problem originates from the incorrect short-range behavior of f̃xc. In Section 3.2 below we

describe a renormalization scheme of f̃xc that improves the convergence of G0W0Γ0 results.

Renormalization of fxc

Thygesen and co-workers [325] showed that G0W0Γ0@LDA calculations with fxc computed

at the LDA level exhibit poor convergence with respect to the number of unoccupied states

and plane wave cutoff. We observed related convergence problems of G0W0Γ0 quasiparticle

energies as a function of NPDEP, the size of the basis set used here to represent response

functions (see Section 3.1.4). In this section we describe a generalization of the fxc renormal-

ization scheme proposed by Thygesen and co-workers [268, 269, 277] to overcome convergence

issues.

The approach of Ref.325 is based on the properties of the homogeneous electron gas

(HEG). For an HEG with density n, fHEG
xc [n](r, r′) depends only on (r−r′) due to transla-

tional invariance, and therefore fHEG
xc [n]GG′(q) is diagonal in reciprocal space. We denote

the diagonal elements of fHEG
xc [n]GG′(q) as fHEG

xc [n](k) where k = q + G. When using

the LDA functional, the exchange kernel fx exactly cancels the Coulomb interaction vc at

wavevector k = 2kF (the correlation kernel fc is small compared to fx for k ≥ 2kF ), where kF

is the Fermi wavevector. For k ≥ 2kF , fHEG-LDA
xc shows an incorrect asymptotic behavior,

leading to an unphysical correlation hole [268, 269]. Hence Thygesen and co-workers intro-

duced a renormalized LDA kernel fHEG-rLDA
xc (k) by setting fHEG-rLDA

xc (k) = fHEG-LDA
xc (k)

for k ≤ 2kF and fHEG-rLDA
xc (k) = −vc(k) for k > 2kF . They demonstrated that the

renormalized fxc improves the description of the short-range correlation hole as well as the

correlation energy, and when applied to GW calculations substantially accelerates the basis

set convergence of G0W0Γ0 quasiparticle energies.
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While within LDA fxc can be computed analytically and vc+fx = 0 at exactly k = 2kF ,

for a general functional it is not known a priori at which k this condition is satisfied.

In addition, for inhomogenous systems such as molecules and solids the fxc matrix is not

diagonal in reciprocal space. The authors of Ref 325 used a wavevector symmetrization

approach to evaluate fHEG-rLDA
xc for inhomogenous systems, which is not easily generalizable

to the formalism adopted in this work, where fxc is represented in the PDEP basis.

To overcome these difficulties, here we first diagonalize the f̃xc matrix in the PDEP basis:

f̃xc =

NPDEP∑
i

fi |ζi〉 〈ζi| , (3.32)

where f and ζ are eigenvalues and eigenvectors of f̃xc. Then we define a renormalized f̃xc

as:

f̃rxc =

NPDEP∑
i

max(fi,−1) |ζi〉 〈ζi| . (3.33)

Note that for f̃xc = −1, fxc = −vc, therefore frxc is strictly greater or equal to −vc. When

applied to the HEG, the frxc@LDA is equivalent to fHEG-rLDA
xc in the limit NPDEP → ∞,

where the PDEP and plane-wave basis are related by a unitary transformation. Thus, Eq.

3.33 represents a generalization of the scheme of Thygesen et al. to any functional and to

inhomogeneous electron gases. When using frxc, we observed a faster basis set convergence of

G0W0Γ0 results than G0W
RPA
0 results, consistent with Ref. 325. In Section 3.1.4 we discuss

in detail the effect of the fxc renormalization on the description of the density response

functions χ and χΓ, and we rationalize why the renormalization improves the convergence of

G0W0Γ0 results. Here we only mention that the response function χ̃Γ may possess positive

eigenvalues for large PDEP indices. When the renormalized fxc is used, the eigenvalues of

χ̃Γ are guaranteed to be nonpositive and they decay rapidly toward zero as the PDEP index

increase, which explains the improved convergence of G0W0Γ0 quasiparticle energies.

All G0W0Γ0 results shown in Section 3.3 were obtained with renormalized fxc matrices,
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while G0W
fxc
0 calculations were performed without renormalizing fxc, since we found that

the renormalization had a negligible effect on G0W
fxc
0 quasiparticle energies (see Section

3.1.4).

Results

In this section we report GW quasiparticle energies for molecules in the GW100 set [378]

and for several solids. Calculations are performed at G0W
RPA
0 , G0W

fxc
0 and G0W0Γ0 levels

of theory and with semilocal and hybrid functionals. Computational parameters including

Ecut and NPDEP for all calculations are summarized in Section 3.1.4. A discussion of the

convergence of G0W
RPA
0 quasiparticle energies with respect to these parameters can be found

in Ref.118.

We computed the vertical ionization potential (VIP), vertical electron affinity (VEA)

and fundamental gaps for molecules with LDA, PBE and PBE0 functionals. VIP and VEA

are defined as VIP = εvac − εHOMO and VEA = εvac − εLUMO respectively, where εvac is

the vacuum level estimated with the Makov-Payne method [227]; εHOMO and εLUMO are

HOMO and LUMO GW quasiparticle energies, respectively. The results are summarized in

Fig. 3.5, where VIP and VEA computed at G0W
fxc
0 and G0W0Γ0 levels are compared to

results obtained at the G0W
RPA
0 level.

Compared to G0W
RPA
0 results, the VIP computed at the G0W

fxc
0 and G0W0Γ0 level are

systematically lower, the VEA computed at the G0W
fxc
0 /G0W0Γ0 level are systematically

higher/lower. The deviation of G0W0Γ0 from G0W
RPA
0 results is more than twice as large

as that of G0W
fxc
0 results.

In Fig. 3.6 we compare GW results with experiments and quantum chemistry CCSD(T)

results [195]. The corresponding MD and mean absolute deviations (MAD) are summarized

in Table 3.1. At the G0W
RPA
0 @PBE level, the MAD for the computed VIP values compared

to CCSD(T) and experimental results are 0.50 and 0.55 eV respectively, and the MAD for

the computed VEA compared to experiments is 0.46 eV. These MAD values (0.50/0.55/0.46
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eV) are comparable to previous benchmark studies on the GW100 set using the FHI-aims

(0.41/0.46/0.45 eV) [378], VASP (0.44/0.49/0.42 eV) [226] and WEST codes (0.42/0.46/0.42

eV) [118], although in this work we did not extrapolate our results with respect to the basis

set due to the high computational cost.

Table 3.1: Mean deviation and mean absolute deviation (in brackets) for GW results com-
pared to experimental results and CCSD(T) calculations. We report vertical ionization
potentials (VIP), vertical electron affinities (VEA) and the fundamental electronic gaps. All
values are given in eV.

CCSD(T) VIP Exp. VIP Exp. VEA Exp. Gap

G0W
RPA
0 @LDA -0.23 (0.34) -0.19 (0.43) 0.04 (0.45) 0.21 (0.56)

G0W
fxc
0 @LDA -0.39 (0.48) -0.35 (0.53) 0.21 (0.51) 0.50 (0.69)

G0W0Γ0@LDA -0.58 (0.62) -0.54 (0.63) -0.49 (0.59) 0.04 (0.53)

G0W
RPA
0 @PBE -0.43 (0.50) -0.39 (0.55) -0.09 (0.46) 0.28 (0.57)

G0W
fxc
0 @PBE -0.56 (0.62) -0.52 (0.65) 0.08 (0.49) 0.56 (0.75)

G0W0Γ0@PBE -0.99 (1.01) -0.95 (0.98) -0.77 (0.84) 0.15 (0.58)

G0W
RPA
0 @PBE0 -0.05 (0.20) -0.01 (0.34) -0.26 (0.41) -0.26 (0.47)

G0W
fxc
0 @PBE0 -0.29 (0.39) -0.25 (0.48) 0.04 (0.43) 0.26 (0.52)

G0W0Γ0@PBE0 -0.45 (0.49) -0.41 (0.54) -1.10 (1.11) -0.68 (0.75)

Finally we report G0W
RPA
0 , G0W

fxc
0 and G0W0Γ0 results for several solids: Si, SiC

(4H), C (diamond), AlN, WO3 (monoclinic), Si3N4 (amorphous). We performed calcula-

tions starting with LDA and PBE functionals for all solids, and for Si we also performed

calculations with a dielectric-dependent hybrid (DDH) functional [346]. All solids are rep-

resented by supercells with 64-96 atoms (see Section 3.1.4) and only the Γ-point is used to

sample the Brillioun zone. In Table 3.2 we present the band gaps computed with different

GW approximations and functionals. Note that the supercells used here do not yield fully

converged results as a function of supercell size (or k-point sampling); however the com-

parisons between different GW calculations are sound and represent the main result of this

section.

Overall, band gaps obtained with different GW approximations are rather similar, with

differences much smaller than those observed for molecules. To further investigate the

positions of the band edges obtained from different GW approximations, we plotted in
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Table 3.2: Band gaps (eV) for solids computed by different GW approximations and
exchange-correlation (XC) functionals. All calculations are performed at the Γ-point of
supercells with 64-96 atoms (see Section 3.1.4 for details).

DFT G0W
RPA
0 G0W

fxc
0 G0W0Γ0

System XC
Si LDA 0.55 1.35 1.32 1.26

PBE 0.73 1.39 1.36 1.31
DDH 1.19 1.57 1.48 1.51

C LDA 4.28 5.99 5.92 5.88
PBE 4.46 6.05 5.97 5.93

SiC (4H) LDA 2.03 3.27 3.16 3.24
PBE 2.21 3.28 3.15 3.25

AlN LDA 3.85 5.67 5.51 5.89
PBE 4.04 5.67 5.48 5.83

WO3 (monoclinic) LDA 1.68 3.10 2.69 3.26
PBE 1.78 2.97 2.52 3.13

Si3N4 (amorphous) LDA 3.04 4.84 4.65 4.83
PBE 3.19 4.87 4.64 4.84

Fig. 3.7 the GW quasiparticle corrections to VBM and CBM, defined as ∆VBM/CBM =

εGW
VBM/CBM

− εDFT
VBM/CBM

where εGW
VBM/CBM

and εDFT
VBM/CBM

are the GW quasiparticle en-

ergy and the Kohn-Sham eigenvalue corresponding to the VBM/CBM, respectively.

Compared to G0W
RPA
0 , VBM and CBM computed at the G0W

fxc
0 level are slightly lower,

while VBM and CBM computed at the G0W0Γ0 level are significantly higher. The difference

between band edge energies computed by different GW approximations is larger with the

DDH functional, compared to that of semilocal functionals. Overall the trends observed for

solids are consistent with those found for molecules.
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Figure 3.5: Difference (∆E) between vertical ionization potential (VIP) and vertical electron

affinity (VEA) of molecules in the GW100 set computed at the G0W
fxc
0 /G0W0Γ0 level and

corresponding G0W
RPA
0 results. Mean deviations (MD) in eV are shown in brackets and

represented with black dashed lines. Results are presented for three different functionals
(LDA, PBE and PBE0) in the top, middle and bottom panel, respectively.
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Figure 3.6: Vertical ionization potential (VIP), vertical electron affinity (VEA) and electronic

gap of molecules in the GW100 set computed at G0W
RPA
0 , G0W

fxc
0 and G0W0Γ0 levels of

theory, compared to experimental and CCSD(T) results (black dashed lines).
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Figure 3.7: GW quasiparticle corrections to the valance band maximum (VBM) and the

conduction band minimum (CBM). Circles, squares and triangles are G0W
RPA
0 , G0W

fxc
0

and G0W0Γ0 results respectively; red, blue, green markers correspond to calculations with
LDA, PBE and DDH functionals.
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3.1.4 Technical details

Computational setup of DFT and GW calculations

In this section we describe the computational setup of DFT and GW calculations presented

in our paper. The energy cutoff (Ecut), number of eigenpotentials for the spectral decompo-

sition of the response functions (NPDEP) and the cell size for all systems studied in our work

are summarized in Table 3.3 and 3.4. All calculations are performed with norm-conserving

pseudopotentials of the SG15 library [324].

The values of Ecut are chosen such that the HOMO’s for molecules and the VBM’s

for solids are converged within 0.01 eV at the DFT(PBE) level. To minimize spurious

interactions between periodic images, cubic cells with edge of 25Å are used for molecules;

for solids, we used PBE lattice constants. For molecules, NPDEP = 10Nv where Nv is the

number of valence electrons [118]; NPDEP = 2048 for solids.

Table 3.3: The parameters Ecut and NPDEP for molecules. Molecules are
simulated in cubic cells with edge of 25Å.

Index Formula CAS Number Ecut (Ry) NPDEP
1 C8H10 100-41-4 60 420
2 O3 10028-15-6 70 180
3 BN 10043-11-5 55 80
4 C4H10 106-97-8 50 260
5 C7H8 108-88-3 55 360
6 C6H6O 108-95-2 60 360
7 C5H5N 110-86-1 60 300
8 C4 12184-80-4 60 160
9 P2 12185-09-0 35 100

10 Ag2 12187-06-3 45 380
11 Cu2 12190-70-4 80 380
12 CO2 124-38-9 60 160
13 BeO 1304-56-9 55 100
14 MgO 1309-48-4 50 160
15 BH3 13283-31-3 45 60
16 H2 1333-74-0 50 20
17 BF 13768-60-0 60 100
18 Li2 14452-59-6 50 60

Continued on next page
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Table 3.3: Continued.

Index Formula CAS Number Ecut (Ry) NPDEP
19 Si5H12 14868-53-2 45 320
20 Si2H6 1590-87-0 40 140
21 COSe 1603-84-5 65 160
22 GaCl 17108-85-9 60 200
23 PN 17739-47-8 60 100
24 B2H6 19287-45-7 50 120
25 As2 23878-46-8 30 100
26 Na2 25681-79-2 40 180
27 K2 25681-80-5 30 180
28 Rb2 25681-81-6 30 180
29 N2H4 302-01-2 45 140
30 C6F6 392-56-3 60 660
31 Na4 39297-86-4 45 360
32 Na6 39297-88-6 40 540
33 COS 463-58-1 65 160
34 H2CO 50-00-0 65 120
35 CI4 507-25-5 55 720
36 C5H6 542-92-7 60 260
37 CuCN 544-92-3 75 280
38 CBr4 558-13-4 55 320
39 CCl4 56-23-5 55 320
40 CH4N2O 57-13-6 55 240
41 C2H3Br 593-60-2 60 180
42 C2H3I 593-66-8 45 280
43 (C2H5)2O 60-29-7 55 320
44 C6H5NH2 62-53-3 55 360
45 C8H8 629-20-9 55 400
46 CO 630-08-0 65 100
47 CH3CH2OH 64-17-5 55 200
48 HCOOH 64-18-6 70 180
49 C5H6N2O2 65-71-4 65 480
50 C4H4N2O2 66-22-8 65 420
51 CH3OH 67-56-1 55 140
52 C4H5N3O 71-30-7 65 420
53 C6H6 71-43-2 60 300
54 C5H5N5 73-24-5 65 500
55 C5H5N5O 73-40-5 65 560
56 CH4 74-82-8 45 80
57 C2H6 74-84-0 50 140
58 C2H4 74-85-1 55 120
59 C2H2 74-86-2 55 100

Continued on next page
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Table 3.3: Continued.

Index Formula CAS Number Ecut (Ry) NPDEP
60 HCN 74-90-8 65 100
61 C3H8 74-98-6 50 200
62 Kr 7439-90-9 30 80
63 Ne 7440-01-9 45 80
64 Ar 7440-37-1 30 80
65 He 7440-59-7 70 20
66 Xe 7440-63-3 45 180
67 SO2 7446-09-5 65 180
68 C2H3Cl 75-01-4 60 180
69 C2H3F 75-02-5 60 180
70 CH3CHO 75-07-0 65 180
71 CS2 75-15-0 60 160
72 C3H6 75-19-4 50 180
73 CF4 75-73-0 65 320
74 I2 7553-56-2 30 340
75 LiH 7580-67-8 55 40
76 HCl 7647-01-0 30 80
77 NaCl 7647-14-5 40 160
78 HF 7664-39-3 65 80
79 NH3 7664-41-7 45 80
80 KH 7693-26-7 30 100
81 H2O2 7722-84-1 70 140
82 Br2 7726-95-6 30 140
83 N2 7727-37-9 70 100
84 H2O 7732-18-5 50 80
85 BrK 7758-02-3 30 160
86 F2 7782-41-4 65 140
87 Cl2 7782-50-5 40 140
88 GeH4 7782-65-2 45 180
89 HN3 7782-79-8 65 160
90 SH2 7783-06-4 30 80
91 MgF2 7783-40-6 65 240
92 SF4 7783-60-0 60 340
93 TiF4 7783-63-3 70 400
94 AlF3 7784-18-1 70 320
95 AlI3 7784-23-8 40 620
96 AsH3 7784-42-1 40 80
97 MgCl2 7786-30-3 40 240
98 LiF 7789-24-4 65 100
99 PH3 7803-51-2 40 80

100 SiH4 7803-62-5 45 80
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Table 3.4: The parameter Ecut, Natom (number of atoms), cell type and lattice constants
for solids. Natom and cell types are reported for the supercells used in actual calculations.
Lattice constants are reported for the unit cells used to construct supercells. NPDEP = 2048
is used.
System Ecut (Ry) Natom Cell type Lattice constants (Å)
AlN 60 96 orthorhombic a = 3.13, c = 5.02
C 60 64 cubic a = 3.57
Si 30 64 cubic a = 5.48
Si3N4 60 56 cubic a = 8.35
4H-SiC 45 96 orthorhombic a = 3.10, c = 5.07
WO3 55 32 monoclinic a = 7.31, b = 7.54, c = 7.69, β = 90.88◦

Convergence of finite-field calculations

In finite-field calculations, the response δn = δn(a,NSCF;K) to an applied potential δV

depends on the amplitude of δV (we denote with a the scaled amplitude, see below), the

number of SCF cycles NSCF, and the type of response function K: χ0, χRPA, χ. In this

section we investigate the dependence of δn on a and NSCF. All calculations were carried

out with the PBE functional and the wavefunction was optimized with a preconditioned

steepest descent algorithm with Anderson acceleration.

Amplitude of the applied potential δV

We define the amplitude of a given δV as amp(δV ) = maxr |δV (r)| and we compute

δn(a) as:

δn(a) =
amp(δV )

a

∫
K(r, r′)

{
a

amp(δV )
δV (r′)

}
dr′, (3.34)

where the integration is performed by the finite-field approach. In principle, for any a chosen

within the linear response regime, one should get identical results for δn(a). In practice, a

value of a that is too small gives rise to large numerical errors.

To determine the optimal range for a, we computed δn(a) for δV = v
1
2
c ξ1, where ξ1 is

the first eigenvector of K, for a number of systems, and we varied a between 10−5 to 10−2

Hartree. All calculations were performed with 10 self-consistent cycles. In Fig 3.8 we plot

the relative difference of δn computed with different amplitudes for two molecules (Ar, SiH4)

and for bulk Si.
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Figure 3.8: Relative difference ∆ij =
|δn(ai)−δn(aj)|
|δn(aj)|

, where |...| is the 2-norm of δn’s (see

Eq. 3.34) defined on a real space grid.

We found that for all choices of K = χ0, χ
RPA, χ, the relative differences of δn’s are

smaller than 10−2 for amplitudes between 10−2 and 10−4 Hartree.

Number of SCF cycles

For a given response function K, we tested the convergence of δn as a function of NSCF.

In Fig. 3.9 we show the convergence of δn with respect to NSCF for Ar, SiH4 and bulk Si.

We see that for all choices of K = χ0, χ
RPA, χ, δn converges within 0.02 with NSCF = 10.

The convergence of χRPA and χ requires a slightly smaller number of SCF cycles compared

to that of χ0. The same trend was observed for other molecules and solids considered in this

work.

Comparison of finite-field approach and density functional perturbation the-

ory
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Figure 3.9: Relative difference between δn(NSCF) and the converged result δn0. δn0 is
computed with NSCF = 50. See Eq. 3.34 for the definition of δn.

Based on the results of the two previous subsections, we carried out all the calculations

shown in the previous sections with a = 10−3 Hartree and NSCF = 10. Here we show that

this choice of a and NSCF gives accurate spectral decomposition of response functions for

G0W0 calculations.

We carried out G0W
RPA
0 calculations for the GW100 test set, with the spectral decom-

position of χ0 computed by either the finite-field (FF) approach with a and N as specified

above or by density functional perturbation theory (DFPT). All parameters (NPDEP, etc.)

for G0W
RPA
0 calculations are the same as those given in Section 3.1.4. In Fig 3.10 we

compare the VIP and VEA obtained with FF and DFPT.

Calculations based on χ0 computed with FF and DFPT yield almost identical VIP and

VEA. The mean absolute deviation for VIP (VEA) between the two sets of calculations is

0.005 (0.005) eV.
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Figure 3.10: Comparison of VIP and VEA for the GW100 set obtained at theG0W
RPA
0 @PBE

level, with χ0 computed with either the finite-field (FF) approach or DFPT. Diagonal dash
lines are DFPT results, dots are FF results.

Exchange-correlation kernel in the PDEP basis

Fig. 3.11 presents the symmetrized exchange-correlation kernel f̃xc matrix in the PDEP

basis for Ar, SiH4 and CO2 molecule.

Figure 3.11: First 32× 32 matrix elements of the exchange-correlation kernel in PDEP basis
(the space of χ̃0 eigenvectors) for Ar, SiH4 and CO2 molecule.

As shown in Fig. 3.11, the f̃xc matrix is almost diagonal in the PDEP basis due to the

similarity of χ̃0 and χ̃ eigenvectors.
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GW calculations beyond the random phase approximation for periodic sys-

tems

In this section we derive the expression of response functions for periodic systems. For

periodic systems, we partition χ̃, χ̃0 and f̃xc in G space into different components: the head

(G = G′ = 0), wing (G = 0,G′ 6= 0 or G′ = 0,G 6= 0) and body (G 6= 0 and G′ 6= 0). We

write χ̃0 and f̃xc as:

χ̃0 =

 h W †

W B

 (3.35)

f̃xc =

−α 0

0 F

 (3.36)

where h, W and B are head, wing and body of χ̃0. F and −α are body and head of f̃xc.

In the GW formalism adopted in this work, B and F are approximated by their low-rank

decomposition, and they correspond to the χ̃0 and f̃xc discussed previously.

Inserting Eq. 3.35, 3.36 into Eq. 3.29, 3.30, 3.31 and solving for the head and body of

χ̃, one obtains:

χ̃head =



1
k − 1 G0W

RPA
0

1−k
k(1−α)

G0W
fxc
0

1
k − 1 G0W0Γ0

(3.37)

χ̃body =


MB + 1

kMWW †M G0W
RPA
0

MB + 1−α
k MWW †[I + (I + F )MB] G0W

fxc
0

M + 1−α
k MWW †(I + F )M − I G0W0Γ0

(3.38)
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where I is the NPDEP ×NPDEP identity matrix, and

k =


1− h−W †MW G0W

RPA
0

1− (1− α)h− (1− α)W †(I + F )MW G0W
fxc
0 , G0W0Γ0

(3.39)

M =


(I −B)−1 G0W

RPA
0

[I −B(I + F )]−1 G0W
fxc
0 , G0W0Γ0

(3.40)

Finally, the screened Coulomb interaction is computed from Eq. 21, 22, 23 of Ref.117

using the head and body of χ̃, as derived above.

In the calculation for solids presented in the previous sections we neglected the head of

f̃xc by setting α = 0. In selected cases, we included the head by computing α from the

high-frequency dielectric constant of the material, as suggested in Ref.41, and we found that

the effect of the head on the computed quasiparticle energies was negligible. In Fig. 3.12

we present the quasiparticle energies of Si computed with α = 0 and α = 0.016 (note that

α = 0.016 here corresponds to α = 0.2 in Ref.41 due to a difference of 4π in the normalization

factors used here and in Ref.41). We see from Fig. 3.12 that α = 0 and α = 0.016 lead to

very similar quasiparticle energies for both G0W
fxc
0 and G0W0Γ0 calculations.

Renormalization of the exchange-correlation kernel

To illustrate the effect of renormalization on GW calculations, in Fig. 3.13 we present the

χ̃0, f̃xc, [1 − χ̃0(1 + f̃xc)]−1, χ̃RPA, χ̃ and χ̃Γ matrices in the PDEP basis for the SiH4

molecule. Calculations were performed with the PBE functional. Since χ̃0 is by definition

diagonal in the PDEP basis and f̃xc is nearly diagonal (see Fig. 3.11), in Fig. 3.13 only the

diagonal elements of matrices are shown, and in the following discussion when we refer to

these matrices we consider only their diagonal elements, which correspond approximately to

their eigenvalues.
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Figure 3.12: Quasiparticle energies of Si (64-atom supercell, PBE functional) computed with
and without the head of f̃xc. VBM obtained at G0W

RPA
0 level is set as the zero of energy.

According to Fig. 3.13, as the PDEP index increases, χ̃0 asymptotically decays to zero

while the magnitude of f̃xc keeps increasing, leading to the slow decaying tail of the [1 −

χ̃0(1 + f̃xc)]−1 matrix. In the case of χ̃, the slow decaying tail of [1 − χ̃0(1 + f̃xc)]−1 is

suppressed by being multiplied by χ̃0 (see Eq. 3.30), leading to similar tails for χ̃ and χ̃RPA;

on the other hand, χ̃Γ shows the same slow decay as [1 − χ̃0(1 + f̃xc)]−1 (see Eq. 3.31).

Note that for large PDEP indices χ̃Γ can be positive as f̃xc decreases below −1. An effective

response function (χ̃Γ) with positive eigenvalues may be unphysical. On the contrary, χ̃RPA

and χ̃ are always negative.

By renormalizing f̃xc (see Fig. 3.14) we exclude the short-range components of fxc that

are smaller than −vc (i.e. eigenvalues of f̃xc smaller than −1), and therefore we enforce the

negativity of χ̃Γ and ensure its fast convergence toward zero.

To illustrate the effect of the fxc renormalization on GW quasiparticle energies, in Fig.
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Figure 3.13: Diagonal elements of χ̃0, f̃xc, [1− χ̃0(1 + f̃xc)]−1, χ̃RPA, χ̃ and χ̃Γ for the SiH4
molecule.

3.15 we present the electronic gap of Si and SiH4 computed at G0W
fxc
0 and G0W0Γ0 levels of

theory as a function of NPDEP, using either un-renormalized or renormalized fxc. G0W
fxc
0

results are barely affected by the renormalization, which primarily acts on the tail of f̃xc,

which is suppressed by being multiplied by χ̃0 when computing χ̃. On the other hand, the

convergence of G0W0Γ0 results is significantly improved with renormalized f̃xc.
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Figure 3.14: Diagonal elements of un-renormalized (nr) and renormalized (r) f̃xc matrices
and resulting χ̃Γ matrices for the SiH4 molecule and bulk Si.
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Figure 3.15: Convergence of GW quasiparticle gaps of SiH4 and Si as a function of NPDEP,

using either un-renormalized (nr) or renormalized (r) f̃xc matrices.
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3.1.5 Conclusions

In summary, we developed a finite-field approach to compute density response functions (χ0,

χRPA and χ) for molecules and materials. The approach is non-perturbative and can be

used in a straightforward manner with both semilocal and orbital-dependent functionals.

Using this approach, we computed the exchange-correlation kernel fxc and performed GW

calculations using dielectric responses evaluated beyond the RPA.

We evaluated quasiparticle energies for molecules and solids and compared results ob-

tained within and beyond the RPA, and using DFT calculations with semilocal and hybrid

functionals as input. We found that the effect of vertex corrections on quasiparticle energies

is more notable when using input wavefunctions and single-particle energies from hybrid

functionals calculations. For the small molecules in the GW100 set, G0W
fxc
0 calculations

yielded lower VIP and higher VEA compared to G0W
RPA
0 results; G0W0Γ0 calculations

yielded lower VIP and VEA compared to G0W
RPA
0 results. In the case of solids, the energy

of the VBM and CBM shifts in the same direction, relative to RPA results, when vertex

corrections are included, and overall the band gaps were found to be rather insensitive to

the choice of the GW approximation.

In addition, we reported a scheme to renormalize fxc, which is built on previous work

[325] using the LDA functional. The scheme is general and applicable to any exchange-

correlation functional and to inhomogeneous systems including molecules and solids. Using

the renormalized f̃xc, the basis set convergence of G0W0Γ0 results was significantly improved.

Overall, the method introduced in our work represents a substantial progress towards

efficient computations of dielectric screening and large-scale G0W0 calculations for molecules

and materials beyond the random phase approximation.
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3.2 Bethe-Salpeter equation

Reprinted with permission from N. L. Nguyen, H. Ma, M. Govoni, F. Gygi, and G. Galli.

Physical Review Letters. 122, 237402 (2019). Copyright (2019) by the American Physical

Society. https://doi.org/10.1103/PhysRevLett.122.237402

We present a method to compute optical spectra and exciton binding energies of molecules

and solids based on the solution of the Bethe-Salpeter equation (BSE) and the calculation

of the screened Coulomb interaction in finite field. The method does not require the explicit

evaluation of dielectric matrices nor of virtual electronic states, and can be easily applied

without resorting to the random phase approximation. In addition, it utilizes localized

orbitals obtained from Bloch states using bisection techniques, thus greatly reducing the

complexity of the calculation and enabling the efficient use of hybrid functionals to obtain

single particle wavefunctions. We report exciton binding energies of several molecules and

absorption spectra of condensed systems of unprecedented size, including water and ice

samples with hundreds of atoms.

3.2.1 Introduction

The ability to simulate optical properties of materials from first principles is key to building

predictive strategies for the design of new materials and molecules, as well as to interpret-

ing increasingly complex experimental results [52, 283, 287]. The last three decades have

witnessed a tremendous success of many-body perturbation theory (MBPT) [271, 237] in

the description of the interaction of molecules and condensed matter with light. MBPT,

a Green’s function method, can be used to accurately compute various excitation proper-

ties, based on single particle energies and orbitals obtained, e.g. within density functional

theory (DFT) [146, 191]. In particular, by solving the Dyson equation [88] within the GW

approximation [133] and the Bethe-Salpeter equation (BSE) [271, 317], one can accurately

predict the energy of charged and neutral excitations [271], excitonic and charge transfer
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states [32, 304], and optical absorption spectra [130, 357, 309, 33, 291]. However, the so-

lution of the BSE is computationally demanding, more so, for example, than the use of

time-dependent density functional theory (TD-DFT) with semi-local or hybrid exchange-

correlation (xc) functionals [314, 235, 386]. Therefore, TD-DFT is still widely used to com-

pute absorption spectra, albeit often yielding less accurate results than the BSE.

The unfavorable cost of conventional approaches [5, 310, 29, 232, 238, 50] to solve the

BSE is mainly due to the evaluation of explicit summations over virtual states and to the

need of evaluating and inverting large dielectric matrices. In particular, the straightforward

diagonalization of the two-body exciton Hamiltonian in the basis of electron-hole pairs re-

quires a workload of order O(N6), where N is the number of electrons in the system [5, 309].

A formulation of the BSE without empty states that sidesteps the diagonalization of the

two-body exciton Hamiltonian, and does not require the inversion of dielectric matrices was

recently proposed [304, 305, 291], and shown to accurately yield absorption spectra over

a wide range of frequencies using the Liouville-Lanczos algorithm [386, 303]. A distinctive

feature of this formalism based on density matrix perturbation theory (DMPT) is the utiliza-

tion of projective dielectric eigenpotentials (PDEP) [400, 399] to compute screened exchange

integrals. Despite the advantages of the DMPT formulation and its more favourable O(N4)

scaling, drawbacks remain, including the need to extrapolate the results as a function of

the number of dielectric eigenpotentials and, most importantly, the difficulty to use DFT

calculations with hybrid density functionals [280, 45, 346] as a starting point for the BSE

solution.

In this Letter, we present a novel method to solve the BSE by performing calculations

in finite electric fields. The two key features of the method are: (i) the direct evaluation of

the screened Coulomb interaction in finite field (FF), thus eliminating the need to compute

dielectric matrices altogether; (ii) the use of a compact, localized representation [125] of

the ground state Kohn-Sham (KS) wavefunctions, leading to a great reduction of the cost

to evaluate screened exchange integrals. We show that these features lead to a major im-
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provement in the efficiency of the BSE solution and, importantly, to the straightforward use

of the results of hybrid functionals as a starting point for GW and BSE calculations. The

FF-BSE can be used to compute not only the properties of single molecules or solids, but its

solution may be easily coupled to first principles molecular dynamics (FPMD) simulations

to obtain, e.g. optical spectra over multiple snapshots extracted from trajectories at finite

temperature and pressure, as we show below. We report examples for the optical spectra

of liquid water and ice as obtained by averaging over multiple trajectories, for systems with

up to 2,048 electrons. In addition, we present the results of calculations using ground state

wavefunctions computed with hybrid functionals [346].

3.2.2 Method

Absorption spectra of solids and molecules can be obtained by computing the imaginary

part of the macroscopic dielectric function ImεMij = 4πIm ∂Pi
∂Ej

, where E is the macroscopic

electric field, and P = − 1
ΩTr {r̂ρ̂} the macroscopic polarization, r̂ is the position operator,

and ρ̂ the density matrix. We obtain ∂Pi
∂Ej

from the solution of the Liouville equation for

the density matrix.[386] For a system described by a mean-field Hamiltonian Ĥ(ρ̂) subject

to a monochromatic electrostatic potential φ(ω) = −E(ω) · r, the time evolution of the

density matrix is given by the Liouville equation ωρ̂ = [Ĥ(ρ̂) − φ̂, ρ̂]. Upon linearization,

we obtain the first order variation of the density matrix as the solution of the following

non-homogeneous linear system:

(ω − L)∆ρ̂ = −[φ̂, ρ̂o] , (3.41)

where ρ̂o is the unperturbed density matrix. The Liouville superoperator L acting on ∆ρ̂ is

defined as

L∆ρ̂ = [Ĥo,∆ρ̂] + [∆V̂H, ρ̂
o] + [∆Σ̂, ρ̂o] , (3.42)
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where Ĥo is the unperturbed Hamiltonian, and ∆V̂H and ∆Σ̂ are the first-order variation of

the Hartree and the exchange-correlation (xc) self-energy induced by ∆ρ̂, respectively. The

change in polarization induced by E, entering the definition of the absorption spectrum, can

hence be expressed as ∂Pi
∂Ej

= − 1
ΩTr

{
r̂i
∂∆ρ̂
∂Ej

}
. As previously noted [304], the homogeneous

linear system corresponding to Eq. 3.41 is a secular equation with neutral excitation energies

as eigenvalues; these energies are equivalent to those obtained by solving the BSE with static

screening if an effective Hamiltonian and the COHSEX self-energy [133, 237] are utilized for

Ĥo and ∆Σ̂, respectively. However, unlike BSE solvers based on the diagonalization of the

two-particle electron-hole Hamiltonian[271], Eq. 3.41 can be solved without defining a transi-

tion space, and hence a direct product of occupied and unoccupied active subspaces. In order

to avoid such definition and the need to compute virtual electronic orbitals, we introduce

the auxiliary functions |ajv〉 = P̂c
∂∆ρ̂
∂Ej
|ϕv〉, where ϕv is the v-th occupied state of the un-

perturbed Hamiltonian (with energy εv); P̂c = 1−
∑Nocc
v=1 |ϕv〉 〈ϕv| is the projector onto the

unoccupied manifold [21], and Nocc is the number of occupied states. It has been shown that

an Hermitian solution of Eq. 3.41 can be written as ∂∆ρ̂
∂Ej

=
∑Nocc
v=1

(
|ϕv〉 〈ajv|+ |ajv〉 〈ϕv|

)
,

and the functions a
j
v are obtained from the solution of the following non-homogeneous linear

systems:
Nocc∑
v′=1

(
ωδvv′ −Dvv′ −K1e

vv′ +K1d
vv′

)
|aj
v′〉 = P̂cr̂j |ϕv〉 , (3.43)

where the three terms on the RHS of Eq. 3.42 are:

Dvv′ |a
j
v′〉 = P̂c

(
Ĥo − εv

)
δvv′ |a

j
v′〉 , (3.44)

K1e
vv′ |a

j
v′〉 = 2P̂c

(∫
dr′vc(r, r′)ϕ∗v′(r

′)aj
v′(r
′)
)
ϕv(r) , (3.45)

K1d
vv′ |a

j
v′〉 = P̂cτvv′(r)a

j
v′(r) . (3.46)

and we have defined the screened integrals τvv′(r) =
∫
W (r, r′)ϕv(r′)ϕ∗v′(r

′)dr′, where W

and vc are the screened and bare Coulomb interactions, respectively. Eq. 3.43 can be solved
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for multiple frequencies using the Lanczos algorithm. The evaluation of the integrals τvv′

represents the most expensive part of the calculation because it entails a computation of the

dielectric matrix. Recently, Eq. 3.43-3.46 were solved using Kohn-Sham (KS) states as input,

using DFT calculations with semi-local functionals, and a spectral representation of the

dielectric matrix via its eigenvectors, called projective dielectric eigenpotentials (PDEP).[305,

293, 292]

Here we introduce a new approach with two key features: (i) the screened integrals

are directly computed from finite field calculations avoiding any explicit evaluation of the

dielectric matrix; in addition, (ii) the total number of required integrals, in principle equal

to N2
occ, is reduced to a much smaller number that scales linearly with the system size, by

using a compact, localized representation of single particle wavefunctions. The very same

representation is adopted to increase the efficiency of hybrid-DFT calculations[125], leading

to a formulation of BSE which requires the very same workload when using local or hybrid-

DFT starting points. We now illustrate steps (i) and (ii) in detail.

Using the definition of the screened Coulomb interaction in terms of the density-density

response function, W = vc + vcχvc, we express the screened integrals as τvv′ = τuvv′ +

vcχτ
u
vv′ , where τuvv′(r) =

∫
vc(r, r

′)ϕv(r′)ϕ∗v′(r
′)dr′ are obtained by multiplying orbitals in

real space and then applying the bare Coulomb potential vc in reciprocal space. For each τuvv′

we determined two densities (ρ±
vv′) by solving self-consistently the uncoupled-perturbed KS

equations with Hamiltonian (Ĥo± τuvv′). The screened exchange integrals are then obtained

as:

τvv′(r) = τuvv′(r) +

∫
vc(r, r

′)
ρ+
vv′(r

′)− ρ−
vv′(r

′)

2
dr′ , (3.47)

where a central finite difference formula was used to compute the linear variation of the den-

sity, i.e. χτuvv′ . The algorithm described above was implemented by coupling the WEST [117]

and Qbox [124] codes, operating in client-server mode, thus enabling massive parallel calcu-

lations by assigning independent finite field calculations to different Qbox instances, which

may be started at any point during, e.g. a first principle MD simulation.
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Next we reduced the number of integrals to compute, in principle equal to N2
occ, by local-

izing single particle wavefunctions in appropriate regions of real space and neglecting those

orbital pairs that do not overlap. To do so we used the recursive bisection technique[125],

whereby orbitals are truncated in subdomains of variable size while controlling the 2-norm

error caused by the truncation procedure. This technique was previously used to improve the

efficiency of calculations of exact exchange integrals and is here applied to screened exchange

integrals. When using orbital bisection, a unitary transformation U : |ϕ̃m〉 =
∑
v Umv|ϕv〉

of the occupied KS states is evaluated, and used to transform the matrix τ̃ = UτU† (and

similarly τu) into a sparse form, where only a relatively small number of selected elements

need to be computed using Eq. 3.47. The number of required non-zero screened integrals

scales linearly with system size. Different types of localized orbitals were used previously

to solve the BSE, e.g. atomic-orbital basis sets [215], or maximally localized Wannier or-

bitals [239, 236]. However, there are several advantages of the localization technique used

here: (i) it is adaptive, i.e. the orbitals can be localized in domains of different shapes and

sizes; (ii) it allows to systematically control the localization error with a single parameter,

and (iii) it is consistently applied to reduce the number of screened integrals and, at the same

time, to speed up hybrid-DFT calculations[127, 68]. Hence the workload of our calculations

is of O(N4) for the evaluation of τvv′ and of O(N3) for the evaluation of Eq. 3.46, irrespec-

tive of whether semilocal or hybrid functionals are used. This is an important achievement,

especially for the study of optical properties of materials, e.g. complex oxides, for which

semi-local functionals do not even represent a qualitatively correct starting point to solve

the BSE. In addition, we note that the computational gain of the method presented here

increases as the size of the system increases, that is the prefactor in our calculations is in-

creasingly smaller, compared to that of density functional perturbation theory calculations,

as the size of the system increases (see Section 3.2.4).
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3.2.3 Results

To demonstrate the accuracy of the FF-BSE methodology, we first calculated the neutral

singlet excitation energies for the Thiel’s set [343, 344], which consists of 28 small organic

molecules. We compared our results with the best theoretical estimates as obtained from

quantum chemistry calculations, i.e. coupled cluster and complete active space second-order

perturbation theory using the aug-cc-pVTZ atomic basis set [343, 344]. This molecular set

was recently used to benchmark GW-BSE [47, 297, 165] and TD-DFT calculations (with

PBE0 [165] and dielectric-dependent hybrid functionals [45]). We evaluated the screened in-

tegrals in Eq. 3.47 with and without the RPA, and using either the Perdew–Burke–Ernzerhof

(PBE) [279] or the PBE0 hybrid functional [4]. As shown in Fig.3.16, we obtained a good

agreement with benchmark calculations, thus validating our methodology for molecules. A

small change is observed when we compute the screened integrals with and without the

Random Phase Approximation (RPA). Our results also show that BSE calculations based

on G0W0 starting from the PBE (PBE0) ground state underestimate excitation energies

by ∼ 0.7 eV (∼ 0.1 eV). The improvement observed with the PBE0 functional underscores

the importance of an accurate ground state starting point. We also validated our method

for solid LiF and compared our calculations with experiment and previous results (Section

3.2.4).

Next, we show how the use of bisected orbitals can reduce the computational cost of BSE

calculations of optical spectra of the C60 fullerene in the gas phase. The computed electronic

gap at the optimized PBE geometry and at the G0W0@PBE level of theory is 4.23 eV. This

value is smaller than that obtained at the experimental geometry (4.55 eV) at the same

level of theory, consistent with Ref. 296, and it is ∼ 0.7 eV lower than the experimental

value, estimated as the energy difference between the measured ionization potential and the

electronic affinity [421, 389]. To evaluate the exciton binding energy, Eex
b , we computed the

energy difference between the electronic gap and the lowest optically-allowed singlet excited

state (the lowest neutral eigenstate has T 1
g symmetry). C60 has 120 doubly occupied valence
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Figure 3.16: The lowest singlet excitation energies of the 28 molecules of the Thiel’s set
computed by solving the Bethe Salpeter equation in finite field (FF-BSE) with (green) and
without (blue) the Random Phase Approximation (RPA), using the PBE and the PBE0 hy-
brid functional (red). Results are compared (∆E) with the best theory estimates obtained
using quantum chemistry methods [343, 344]. The horizontal lines denote the maximum,
mean, and minimum of the distribution of results, compared with quantum chemistry meth-
ods. χ denotes the response function computed with and without the RPA. The numerical
values are reported in Section 3.2.4.

2.5 3.0 3.5 4.0 4.5 5.0
(eV)

0

5

10

15

20

25

30

In
te

ns
ity

 (a
rb

. u
ni

t)

# integrals
132
420
4284
9558
14400

1.8 1.2 0.6 0.0 0.6
Eg (eV)

Expt.

Figure 3.17: Optical absorption spectra of C60 in the gas phase computed by solving the
BSE with several thresholds ξ for the screened exchange integrals. The resulting number of
integrals is indicated. The inset shows the same spectra plotted as a function of ω−Eg, and
compared with experiment [176]. Eg is the electronic gap. Note that an accurate spectrum
is obtained when using 4,284 integrals instead of the total number which is more than three
times larger (14,400).
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states, and in principle 14,400 integrals should be evaluated. As shown in Fig. 3.17, the

number of screened integrals entering Eq. 3.47 can be greatly reduced without hardly any

loss for accuracy in the computed absorption spectrum.
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Figure 3.18: Imaginary part of the macroscopic dielectric constant (εM ) as a function of the
photon frequency (ω) for a proton-disorder hexagonal ice model (left panel) and liquid water
(right panel) computed as an average over nine samples extracted from path-integral molec-
ular dynamics (PIMD) trajectories [95] generated with the MBPol potential. Experimental
results (from Refs. 136 and 187 for water and ice, respectively) are shown by the blue solid
lines. The black and red arrows indicate the positions of the first excitonic peak and the
onset of the spectra, respectively.

Finally, we report results for the optical absorption spectra of liquid water and ice. Even

though the first measurement of these spectra dates back to 1974 [187, 136, 179], experimental

estimates of the exciton binding energy, Eex
b , are yet uncertain due to uncertainties in the

values of ice and water electronic gaps [93, 95] and to the presence of a low energy tail

in the absorption spectra (∼ 1.0 eV) [187, 136, 179] hampering a precise determination

of the onset energy. Thus far, only a few GW-BSE computations of the optical spectra

of water and ice have been carried out; several theoretical studies used rather small unit

cells (' 17 water molecules) and approximations for the static dielectric matrix [100, 139,

140, 128, 101] (e.g. homogeneous electron gas model). Here, we performed calculations for

several samples of 64 water molecules of liquid water, extracted from MD trajectories [95]
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and for 96 water molecules of a proton-disorder hexagonal ice model [94], whose structure

was optimized with the PBE0 functional at 0 K [94]. In Fig.3.18, we compare our results

with experiments [187, 136]. Due to the underestimation of the G0W0@PBE [288, 55, 93]

electronic gaps of both systems, GW-BSE absorption spectra are red-shifted with respect to

the experimental one. Hence we aligned the first peak of the computed GW-BSE spectrum

with experiment, and we shifted the TD-DFT and GW-IPA (independent particle) spectra by

the same energy. We found a remarkable agreement between GW-BSE and experiment both

for the relative energy positions and intensities of the peaks over a wide range of energy. As

expected, the TD-DFT and GW-IPA approximations predict significantly different spectra.

We examined the influence of the DFT wavefunctions and eigenvalues chosen as starting

point of the calculation, finding a good qualitative agreement between spectra for one water

configuration computed at the DFT-PBE and dielectric hybrid (dielectric-dependent hybrid

(DDH)[346]) level of theory (see Section 3.2.4). We also investigated the effect of different

structural models on the computed spectra, by comparing results obtained using trajectories

generated with the MB-pol potential [15] and path integral MD, with those computed for

PBE trajectories, extracted from the PBE400 set [69]. Our results show a broadening of

the averaged PIMD absorption spectrum, and a red-shift of ∼ 0.5 eV with respect to the

averaged FPMD@PBE spectrum (see Section 3.2.4).

The exciton binding energies of liquid water and ice were computed using 64 and 96 water

molecules, and were evaluated as the energy differences between the onset (Eex
b1) and the first

main peak (Eex
b2) of the absorption spectra (marked by black and red arrows respectively in

Fig. 3.18). We obtained Eex
b1 = 1.64 eV and 1.82 eV, and Eex

b2 = 2.3 eV and 3.12 eV for water

and ice, respectively. The values for Eex
b2 are consistent with those reported in previous

calculations, i.e. 2.5 [101] and 3.2 [128] eV. Finally, we also performed calculations for a

larger supercell including 256 water molecules (2048 valence electrons) and concluded that

size effects, although not fully negligible, are rather minor on the value of the exciton binding

energies (of the order of ∼0.2-0.3 eV).
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3.2.4 Technical details

Solution of the Bethe Salpeter equation within density matrix perturbation

theory

Within density matrix perturbation theory (DMPT) [386, 304], the first order variation of

the density matrix is expressed as:

∆ρ̂ =
(
P̂v + P̂c

)
∆ρ̂
(
P̂v + P̂c

)
(3.48)

= P̂c∆ρ̂P̂v + P̂v∆ρ̂P̂c , (3.49)

where P̂v =
∑Nocc
i=1 |ϕi〉 〈ϕi|, P̂c = 1−P̂v, Nocc is the number of occupied states, and ϕi is the

i-th occupied state of the unperturbed Hamiltonian (with energy εi). In Eq. 3.48 we have

used the completeness of the eigenvectors of the unperturbed Hamiltonian, and in Eq. 3.49

we have used the property: P̂v∆ρ̂P̂v = P̂c∆ρ̂P̂c = 0. Introducing the following functions in

Eq. 3.49:

|av〉 = P̂c∆ρ̂ |ϕv〉 (3.50)

|bv〉 = P̂c∆ρ̂
† |ϕv〉 , (3.51)

we obtain an expression for ∆ρ̂ that does not contain any explicit summation over empty

states:

∆ρ̂ =

Nocc∑
v=1

(|av〉 〈ϕv|+ |ϕv〉 〈bv|) . (3.52)

The function av and bv are obtained solving the linearized Liouville equation:

ω∆ρ̂− [Ĥo,∆ρ̂]− [∆V̂H, ρ̂
o]− [∆Σ̂, ρ̂o] = −[φ̂, ρ̂o] . (3.53)
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Multiplying Eq. 3.53 and its Hermitian conjugate by P̂c to the left, and by |ϕv〉 to the right,

we obtain:

(
ωÎ − Ĥo + εv

)
|av〉 − P̂c

[
∆V̂H + ∆Σ̂, ρ̂o

]
|ϕv〉 = −P̂cφ̂ |ϕv〉 (3.54)(

ωÎ + Ĥo − εv
)
|bv〉+ P̂c

[
∆V̂
†
H + ∆Σ̂†, ρ̂o

]
|ϕv〉 = P̂cφ̂ |ϕv〉 , (3.55)

where Î is the identity operator. Because the two commutators in Eq. 3.54 and in Eq. 3.55

couple the set of av and bv, we introduce the following matrix notation:

 ωI − D −K1e +K1d −K2e +K2d

K2e −K2d ωI +D +K1e −K1d


 A
B

 =


{
−P̂cφ̂ |ϕv〉

}
{
P̂cφ̂ |ϕv〉

}
 , (3.56)

where A = {|av〉}, B = {|bv〉}, v ∈ [1. . Nocc] and

IA = A , IB = B , (3.57)

DA =
{
P̂c(Ĥ

o − εv Î) |av〉 : v ∈ [1. . Nocc]
}
, (3.58)

K1eA =

2

∫
dr′Pc(r, r′)ϕv(r′)

Nocc∑
v′

∫
dr′′vc(r′, r′′)ϕ∗v′(r

′′)av′(r
′′) : v ∈ [1. . Nocc]

 ,

(3.59)

K2eA =

2

∫
dr′Pc(r, r′)ϕv(r′)

Nocc∑
v′

∫
dr′′vc(r′, r′′)a∗v′(r

′′)ϕv′(r
′′) : v ∈ [1. . Nocc]

 ,

(3.60)
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K1dA =


∫
dr′Pc(r, r′)

Nocc∑
v′

av′(r
′)
∫
dr′′W (r′, r′′)ϕ∗v′(r

′′)ϕv(r′′) : v ∈ [1. . Nocc]

 ,

(3.61)

K2dA =


∫
dr′Pc(r, r′)

Nocc∑
v′

ϕv′(r
′)
∫
dr′′W (r′, r′′)a∗v′(r

′′)ϕv(r′′) : v ∈ [1. . Nocc]

 .

(3.62)

Equations for the application of D, K1e, K2e, K1d, and K2d on B can be obtained

substituting av with bv in Eq.s 3.58-3.62, where W and vc are the screened and bare Coulomb

interactions, respectively. In Eqs. 3.58, Ĥo is defined in terms of the G0W0 quasiparticle

energies ε
QP
m , the KS eigenvalues εKS

m and KS wavefunctions |ϕm〉 as:

Ĥo = Ĥo
KS +

Ncut∑
m=1

|ϕm〉(εQP
m − εKS

m −∆ε)〈ϕm|+ ∆εÎ, (3.63)

In our calculations, G0W0 eigenvalues are obtained for all the occupied states and for some

of the empty states up to a given number Ncut. For the systems studied in this work, Ncut

was chosen to correspond to energies about ∼ 10 eV and ∼ 20 eV above the conduction

band minimum for the molecules of the Thiel’s set, and for water and ice, respectively. For

the remaining states higher in energy, we approximated ∆ε = ε
QP
Ncut
− εKS

Ncut
.

In Eqs. 3.61 and 3.62, W is the statically screened Coulomb potential:

W = ε−1vc = vc + (vc + fxc)χvc, (3.64)

where χ is the density-density response function, vc is the bare Coulomb potential, and fxc

is the functional derivative of the xc potential with respect to the electron density.

Within the plane wave basis set, the bare Coulomb potential, vc = 4πe2

|q+G|2 δGG′ (δ is
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the Kronecker delta), is divergent in the long wavelength limit (q → 0). The divergence in

Eq. (3.64) occurring when G = G′ = 0 can be numerically integrated as:

W (0,0) = vc(0,0) + 4πe2
∫
Rq=0

dq

(2π)3

ε−1
M − 1

q2
, (3.65)

where εM = 1
ε−100

is the macroscopic dielectric constant. The first term, vc(0,0), in the

right-hand side of Eq. 3.65 was formally treated with the Gygi-Baldereschi method [126] to

compute the Fock exact exchange matrix elements in reciprocal space. The integration in

the second term is evaluated in the region Rq=0 of the first Brillouin zone (BZ) enclosing

the Γ-point (i.e. q = 0). The integration in Eq. (3.65) can be evaluated approximating the

BZ with a sphere, or by using a Monte Carlo integration method to take into account the

specific shape of the BZ [117]. εM is evaluated using the Qbox code [124] by computing

the variation of macroscopic polarization of the system in response to a macroscopic electric

field.

Finally, in this work we considered an Hermitian form of ∆ρ̂ (i.e. |bv〉 = |av〉), which is

referred to as the Tamm-Dancoff [65] approximation and has been extensively discussed in

the literature [306, 365, 318].

Finite field algorithm

In this section, we describe the steps followed when solving the BSE using the finite field

(FF) approach and bisection techniques; we also discuss the scaling of the algorithm.

Step 1: Ground state calculation

The first step of the calculation involves the solution of the KS equations to obtain

ground state single particle orbitals and energies. KS equations may be solved using local

or semi-local exchange-correlation functionals (we call this approximation simply DFT) or

hybrid-exchange correlation functionals (we call this approximation hybrid-DFT). Within a

plane-wave implementation, the solution of the KS equations is of O(N3) with both local or
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hybrid functionals. N is the number of valence electrons. However hybrid-DFT calculations

are computationally much more expensive, due to different prefactors and different relative

weights of the various parts of the calculations, as indicated in Table 3.5. In our work, the

efficiency of solving the KS equations with hybrid functionals is greatly improved by using

the bisection algorithm of Refs. 125, 127.

Table 3.5: The scaling of GGA and hybrid-DFT calculations is illustrated for the two main
parts involved in the solution of the KS equations: the calculations of Ĥo

KS |ϕi〉 (application of
the KS Hamiltonian to single particle orbitals) and 〈ϕi|ϕj〉 = δij (orbital orthogonalzation).
M denotes the number of plane waves. With (hybrid-DFT)b we denote hybrid calculations
carried out using the bisection technique [125, 127]; αb is the number of non zero orbital pairs
included in the calculations of the exchange potential and energy. αb is usually much smaller
than N . We note that in (hybrid-DFT)b the workload to evaluate Ĥo

KS |ϕi〉 can be reduced
to O(N) by computing the overlap integrals only in the domain where the bisected orbitals
are non zero (not yet implemented; work is in progress to estimate how the implementation
may affect parallelization).

GGA Hybrid-DFT (Hybrid-DFT)b
Ĥo|ϕi〉 NM log(M) N2M log(M) αbNM log(M) log(N)

〈ϕi|ϕj〉 N2M N2M N2M height

Step 2: Excited state energies

Excited state energies have been obtained within the G0W0 approximation starting from

DFT ground states (for water and ice) or from hybrid-DFT (for the molecules belonging

to the Thiel’s set and for one snapshot of water). The scaling of G0W0 calculations is of

O(N4), while that of hybrid-DFT, as mentioned above, is of O(N3).

In the following, factors log(M) and log(N) will be neglected.

Step 3: Solution of the Bethe Salpeter equation

Two main operations are involved in the solution of the BSE within a DMPT [304, 305,

291] approach: the evaluation of the screened Coulomb interaction W , Eq.(3.64) and the

application of the matrix in Eq. 3.56.

3.1 Calculation of W

Using density functional perturbation theory (DFPT) [21] to obtain the spectral decom-

position [400, 399] of the dielectric matrix ε, the scaling of the calculation is of O(N4),
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namely proportional to NPDEPN
3 where NPDEP is the number of eigenpotentials included

in the spectral decomposition of ε. We define αDFPT = NPDEP
N .

Using the FF method, the workload to compute W is proportional to N2 multiplied by

the workload of either DFT or hybrid-DFT calculations, hence it is of O(N5). However it can

be decreased to O(N4) using the bisection technique [125], and it becomes proportional to

αb×N4, where in general αb < αDFPT and, importantly, the larger the system, the smaller

is the ratio αb

αDFPT . Most importantly, the scaling of FF computations is the same for DFT

and hybrid-DFT calculations. The screening in the Random-Phase Approximation (RPA)

can be recovered within FF by skipping updates of the xc potential during self-consistency.

3.2 Application of the Liouville superoperator

The scaling of this step is O(N3), similar to the method of M. Marsili et al. [236], with

a pre-factor greatly reduced when using bisected orbitals, compared to calculations using

Bloch orbitals.

In addition to the overall scaling discussed above, pre-factors and parallelization tech-

niques play an important role in determining the feasibility and efficiency of any algorithm.

Our FF calculations is fully parallelized via coupling the WEST [117] and Qbox [124] codes

operating in client-server mode; the WEST code prepares simultaneously multiple unscreened

exchange integrals τuvv′ ; the calculations of the perturbed KS equations are performed by dif-

ferent Qbox instances, which in return yield the response densities, thus enabling WEST to

evaluate the screened exchange integrals τvv′ .

Convergence of BSE calculations as a function of bisection threshold

We used the bisection technique[125, 127, 68] to obtain localized orbitals from the KS wave-

functions by applying a unitary transformation U : |ϕ̃m〉 =
∑
v Umv|ϕv〉. We then defined

the transformed screened integral matrix τ̃ = UτU†, and leveraged the sparsity of the latter

to compute the FF response only for selected elements. In the bisection method [125], the

degree of localization of an orbital ϕ̃m in a subdomain Ω(k) is given by the singular value
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c
(k)
m of the Walsh projector[387] P (k) associated with the m-th orbital. Elements of τ̃ are

computed only if the corresponding orbitals have a sizable 2-norm in a common subdomain,

i.e. they are neglected if ∃P (k) :
(
c
(k)
m

)2
< ξ and

(
c
(k)
n

)2
> (1 − ξ) or

(
c
(k)
m

)2
> (1 − ξ)

and
(
c
(k)
n

)2
< ξ, where ξ ∈ [0, 1] is the bisection threshold[127].

In Fig. 3.19, we show the convergence of the BSE spectra of water as a function of the

number of screened exchange integrals included in the calculations. We show results for

three different snapshots. Note the similarity of the spectra computed with ' 5, 000 and

' 10, 000 integrals and the nearly identical results in the low part of the spectra (below 7.5

eV). The total number of integrals for the system shown in Fig. 3.19 (64 water molecules at

the experimental density) is 65,536.

In Tab. 3.6, we show the convergence of the exciton binding energy of C60 as a function

of the number of screened exchange integrals included in the calculations.

We found that a convenient way to determine the threshold ξ for which spectra are

reasonably well converged is by determining the convergence of the Fock energy, Ẽx, as a

function of ξ. In Tables 3.7, 3.8 and 3.9, we show how the Fock energy and the relative

error r =
∣∣∣[Ẽx(ξ)− Ẽx(ξ = 0)]/Ẽx(ξ = 0)

∣∣∣, vary as a function of the bisection threshold, ξ,

for C60, water and ice samples. See also Fig. 3.20, 3.21, and 3.22.

Table 3.6: The number of screened exchange integrals (Nint) entering Eq. 3.46 and the
computed exciton energy of the first singlet transition of the C60 molecule as a function of
the bisection threshold, ξ, compared with experiment. The bisection orbitals were obtained
using 5 bisection layers in each direction.

ξ Nint Eex (eV)
0.500 132 3.05
0.282 420 3.03
0.032 4284 3.01
0.010 9558 3.00
0.000 14400 3.00
Expt. – 3.01
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Figure 3.19: Imaginary part of the macroscopic dielectric constant (εM ) of three snapshots
representing liquid water, as a function of the photon frequency (ω), computed with two
different bisection thresholds of 0.07 and 0.02. The number of the screened exchange integrals
corresponding to these threshold values are shown in the inset of each panel. The bisection
orbitals were obtained using 2 bisection layers in each direction.
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Figure 3.20: The Fock energy, Ẽx, as a function of the number of screened exchange integrals
(Nint), for the C60 molecule.
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Figure 3.21: The Fock energy, Ẽx, as a function of the number of screened exchange integrals
(Nint), for a representative liquid water sample.
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Table 3.7: The number of the screened exchange integrals (Nint) and the Fock energy Ẽx as
function of the bisection threshold, ξ. The last two columns show s = Nint(ξ = 0)/Nint(ξ)

and the relative error r =
∣∣∣[Ẽx(ξ)− Ẽx(ξ = 0)]/Ẽx(ξ = 0)

∣∣∣ (in %), for the C60 molecule (see

also in Table 3.6). The bisection orbitals were obtained using 5 bisection layers in each
direction. The function Ẽx(Nint) is shown in Fig.(3.20).

ξ Nint Ẽx (Ry) s r(%)
0.0000 14400 -187.79985 1.00000 0.00000
0.0032 12954 -187.79268 1.11163 0.00382
0.0100 9558 -187.66025 1.50659 0.07433
0.0316 4296 -186.67825 3.35196 0.59723
0.0400 3894 -186.38910 3.69800 0.75120
0.1000 1956 -183.12780 7.36196 2.48778
0.2000 732 -155.66261 19.67213 17.11250
0.2815 420 -154.75853 34.28571 17.59390
0.5000 132 -153.20143 109.09091 18.42303

Table 3.8: The same quantities as in Table 3.7 are reported for a liquid water snapshot.
The bisection orbitals were obtained using 2 bisection layers in each direction. The function
Ẽx(Nint) is shown in Fig.(3.21).

ξ Nint Ẽx (Ry) s r(%)
0.0000 65536 -501.77258 1.00000 0.00000
0.0032 23818 -501.74415 2.75153 0.00567
0.0100 15388 -501.65208 4.25890 0.02402
0.0200 11700 -501.50407 5.60137 0.05351
0.0316 9404 -501.33773 6.96895 0.08666
0.1000 4198 -500.43546 15.61124 0.26648
0.3162 1838 -488.48393 35.65615 2.64834
0.4472 1430 -476.11718 45.82937 5.11296

Table 3.9: The same quantities as in Table 3.7 are reported for the ice model. The bisection
orbitals were obtained using 2 bisection layers in each direction. The function Ẽx(Nint) is
shown in Fig.(3.22).

ξ Nint Ẽx (Ry) s r(%)
0.0000 147456 -755.46176 1.00000 0.00000
0.0032 20878 -755.37680 7.06275 0.01125
0.0100 10416 -755.26208 14.15668 0.02643
0.0200 7622 -754.94636 19.34610 0.06822
0.0316 6194 -754.53863 23.80626 0.12219
0.1000 3318 -750.97496 44.44123 0.59391
0.3162 2948 -746.69768 50.01900 1.16010
0.4472 2368 -728.21575 62.27027 3.60654
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Figure 3.22: The Fock energy, Ẽx, as a function of the number of screened exchange integrals
(Nint), for the ice model used in this work.

Computational setup for the calculation of neutral excitation energies of

molecules belonging to the Thiel’s set

The coordinates of the 28 organic molecules were taken from the supplementary material of

Ref. 327, where geometrical relaxations were performed at the Møller-Plesset second-order

perturbation theory level with the 6-31G∗ basis (MP2/6-31G level). We performed DFT

calculations using both the Perdew–Burke–Ernzerhof (PBE) generalized gradient density

functional [279] and the PBE0 hybrid functional [4] with the optimized norm-conserving

Vanderbilt (ONCV) pseudopotentials [324] to model the interaction between ionic cores and

electrons. The kinetic energy cutoff for the plane-wave basis set expansion was set to 60 Ry

(240 Ry for the charge density). We used periodic boundary conditions and orthorhombic

cells with the smallest distance between atoms belonging to different replicas equal to 15 Å in

each direction.

The quasi-particle energies of the molecules were computed with the G0W0 method

using the WEST code [117]. We used 10×N projective dielectric eigenpotentials (PDEPs)

to represent the dielectric matrix (N is the number of valance electrons). Based on the

convergence tests performed for the GW100 set [118], 10 × N is sufficient to converge the
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computed vertical ionization potential (VIP) and vertical electron affinity (VEA) within 0.1

eV. We note that G0W0 calculations may also be carried out in finite field, without the need

of determining eigenpotentials of the dielectric matrix [220].

Table 3.10 shows the G0W0 VIP energy of the molecules of the Thiel’s set [343, 344]

computed using the PBE and PBE0 functional ground state wavefunctions. The G0W0

VIP energy of the molecules are in close agreement with experiments, with a mean absolute

deviation (MAD) of 0.59 (PBE) and 0.26 (PBE0) eV, respectively.

Table 3.11 shows the BSE singlet excitation energies of the molecules of the Thiel’s

set [343, 344] computed using PBE and PBE0 hybrid functionals, and using different levels

of theory for W corresponding to different approximations for fxc and χ.

Table 3.10: Vertical ionization potentials (eV) of 28 molecules computed
using DFT-PBE, G0W0@PBE and G0W0@PBE0. Experimental values were
taken from the NIST Computational Chemistry Comparison and Benchmark
Database (with the exception of propanamide for which no experiment was
available). The last two rows show the mean absolute deviation (MAD) and
root mean squared deviation (RMSD) between the computed energies and
experimental values.

Molecule DFT-PBE G0W0@PBE G0W0@PBE0 Expt.
Ethene 6.61 10.25 10.39 10.68
Butadiene 5.71 8.69 8.89 9.07
Hexatriene 5.25 7.81 8.06 8.30
Octatetraene 5.05 7.28 6.31 7.79
Cyclopropene 5.93 9.62 9.75 9.86
Cyclopentadiene 5.16 8.17 8.34 8.61
Norbornadiene 5.10 8.17 8.38 8.38
Benzene 6.14 8.87 9.06 9.25
Naphthalene 5.27 7.61 7.82 8.14
Furan 5.47 8.52 8.71 8.90
Pyrrole 4.96 7.90 8.07 8.23
Imidazole 5.53 8.57 8.74 8.96
Pyridine 5.73 8.90 9.44 9.51
Pyrazine 5.70 9.00 9.47 9.63
Pyrimidine 5.80 9.04 9.53 9.73
Pyridazine 5.26 8.50 9.07 9.31
Triazine 6.37 9.73 10.22 10.40
Tetrazine 5.67 9.11 9.61 9.70

Continued on next page
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Table 3.10: Continued.

Molecule DFT-PBE G0W0@PBE G0W0@PBE0 Expt.
Formaldehyde 6.14 10.24 10.67 10.88
Acetone 5.51 8.93 9.46 9.80
Benzoquinone 6.15 8.88 9.77 10.11
Formamide 5.90 9.35 10.02 10.16
Acetamide 5.60 8.96 9.57 10.00
Propanamide 5.60 8.86 9.47 –
Cytosine 5.52 8.11 8.53 8.90
Thymine 5.83 8.50 8.88 9.10
Uracil 6.00 8.98 9.26 9.50
Adenine 5.30 7.77 8.08 8.40
MAD 3.65 0.59 0.27
RMSD 3.69 0.63 0.37

Table 3.11: The BSE singlet excitation energies (eV) of the Thiel’s molec-
ular set, computed with different levels of theory for the screened Coulomb
interaction W [see Eq. 3.64]: WRPA is obtained with χ evaluated within
the Random Phase Approximation (RPA), and fxc = 0 in Eq. 3.64. W̃RPA

is obtained with χ evaluated within RPA and fxc 6= 0 in Eq. 3.64. W is
obtained with χ evaluated beyond RPA and fxc = 0. W̃ is obtained with χ
evaluated beyond RPA and fxc 6= 0 in Eq. 3.64. All BSE calculations were
performed using PBE wavefunctions except for those maked as W@PBE0,
where we used PBE0 wavefunctions. The BSE results were compared with
the best theory estimates (BTE) reported in Ref. 344, and with the results of
BSE@G0W0@PBE0 reported in Ref. 165. The last two rows show the mean
deviation (MD) and mean absolute deviation (MAD) between BSE and BTE
energies for the data presented in the table.

Molecule State
BSE BTE

WRPA W̃RPA W W̃ W@PBE0 Ref. 165 Ref. 344
Ethene 1B1u 7.65 7.61 7.88 7.87 8.18 7.02 7.80
E-Butadiene 1Bu 5.53 5.57 5.64 5.70 6.11 5.36 6.18
E-Butadiene 2Ag 5.39 5.47 5.44 5.54 5.99 6.20 6.55
E-Hexatriene 1Bu 4.55 4.56 4.65 4.67 5.11 4.41 5.10
E-Hexatriene 2Ag 4.36 4.41 4.40 4.47 5.31 5.53 5.09
E-Octatetraene 2Ag 3.53 3.57 3.57 3.62 4.12 4.93 4.47
E-Octatetraene 1Bu 3.89 3.89 3.98 3.99 4.83 3.80 4.66
Cyclopropene 1B1 5.99 5.95 6.16 6.13 6.56 6.22 6.67
Cyclopropene 1B2 5.59 5.57 5.71 5.74 6.13 5.82 6.68
Cyclopentadiene 1B2 5.39 5.56 5.43 5.61 5.78 4.58 5.55
Cyclopentadiene 2A1 5.31 5.38 5.37 5.45 6.01 6.07 6.28

Continued on next page
71



Table 3.11: Continued.

Molecule State
BSE BTE

WRPA W̃RPA W W̃ W@PBE0 Ref. 165 Ref. 344
Norbornadiene 1A2 4.64 4.62 4.77 4.75 5.17 4.61 5.37
Norbornadiene 1B2 4.89 5.03 4.92 5.07 5.26 5.45 6.21
Benzene 1B2u 4.39 4.45 4.48 4.55 4.93 4.76 5.08
Benzene 1B1u 6.07 6.19 6.15 6.29 6.50 5.59 6.54
Naphthalene 1B3u 3.82 3.81 3.91 3.90 4.38 3.93 4.25
Naphthalene 1B2u 3.57 3.60 3.63 3.68 4.04 3.96 4.82
Naphthalene 2Ag 4.91 4.94 4.98 5.02 5.27 5.45 5.90
Naphthalene 1B1g 4.61 4.65 4.67 4.71 5.48 5.14 5.75
Naphthalene 2B3u 5.45 5.41 5.55 5.52 6.04 5.35 6.11
Naphthalene 2B2u 5.37 5.39 5.45 5.48 5.95 5.58 6.36
Naphthalene 2B1g 5.40 5.42 5.45 5.51 6.29 – 6.46
Naphthalene 3Ag 5.57 5.62 5.59 5.66 6.37 – 6.49
Furan 1B2 5.66 5.83 5.69 5.87 6.04 5.50 6.32
Furan 2A1 5.57 5.64 5.62 5.71 5.98 5.98 6.57
Furan 3A1 7.00 7.19 7.01 7.22 7.40 – 8.13
Pyrrole 2A1 5.28 5.33 5.34 5.42 5.49 5.57 6.37
Pyrrole 1B2 4.90 5.06 4.95 5.11 5.29 6.38 6.57
Pyrrole 3A1 6.17 6.37 6.20 6.40 6.64 – 7.91

Imidazole 2A
′

5.27 5.30 5.34 5.39 5.55 5.61 6.25

Imidazole 1A
′′

4.64 4.80 4.67 4.84 4.93 – 6.65

Imidazole 3A
′

5.74 5.87 5.76 5.94 6.10 6.39 6.73
Pyridine 1B2 3.89 3.78 4.06 3.96 4.82 4.81 4.85
Pyridine 1B1 4.49 4.54 4.52 4.60 5.04 4.34 4.59
Pyridine 1A2 4.08 4.09 4.16 4.19 4.95 4.68 5.11
Pyridine 2A1 5.44 5.57 5.47 5.63 6.13 5.77 6.26
Pyridine 2B2 6.12 6.25 6.16 6.30 6.65 – 7.27
Pyridine 3A1 5.65 5.63 5.76 5.72 6.33 – 7.18
Pyrazine 1B3u 4.51 4.55 4.56 4.61 4.96 3.49 4.13
Pyrazine 1Au 3.74 3.75 3.83 3.85 4.56 4.31 4.98
Pyrazine 1B2u 4.37 4.21 4.59 4.44 3.98 4.61 4.97
Pyrazine 1B2g 6.93 7.09 6.95 7.12 7.62 4.96 5.65
Pyrazine 1B1g 5.05 5.10 5.12 5.18 6.11 5.89 6.69
Pyrazine 1B1u 6.00 5.95 6.11 6.09 6.54 5.93 6.83
Pyrazine 2B2u 6.44 6.62 6.46 6.63 7.11 – 7.81
Pyrazine 2B1u 6.29 6.46 6.33 6.51 7.00 – 7.86
Pyrimidine 1B1 3.28 3.22 3.46 3.41 5.26 3.80 4.43
Pyrimidine 1A2 3.57 3.57 3.72 3.73 4.46 4.17 4.85
Pyrimidine 1B2 4.65 4.71 4.74 4.82 4.19 5.02 5.34
Pyrimidine 2A1 5.85 5.81 6.00 5.97 6.58 6.01 6.82
Pyridazine 1B1 4.95 5.10 4.98 5.14 5.63 3.11 3.85

Continued on next page
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Table 3.11: Continued.

Molecule State
BSE BTE

WRPA W̃RPA W W̃ W@PBE0 Ref. 165 Ref. 344
Pyridazine 1A2 3.13 3.12 3.27 3.28 4.08 3.75 4.44
Pyridazine 2A1 4.61 4.66 4.69 4.77 5.11 4.86 5.20
Pyridazine 2A2 4.33 4.22 4.55 4.44 5.49 5.04 5.66

s-Triazine 1A
′′
1 3.42 3.45 3.51 3.56 4.25 4.01 4.70

s-Tetrazine 1B3u 4.47 4.52 4.50 4.56 2.25 1.73 2.46
s-Tetrazine 1Au 2.56 2.55 2.65 2.66 3.41 3.11 3.78
s-Tetrazine 1B1g 3.99 3.88 4.16 4.06 4.59 4.08 4.87
s-Tetrazine 1B2u 1.40 1.31 1.56 1.47 5.06 4.70 5.08
s-Tetrazine 1B2g 5.09 5.23 5.13 5.27 5.83 4.65 5.28
s-Tetrazine 2Au 4.19 4.11 4.34 4.25 5.14 4.73 5.39
s-Tetrazine 1B3g 4.18 4.12 4.31 4.26 5.07 – 5.76
Formaldehyde 1A2 2.68 2.64 2.99 2.96 3.70 3.15 3.88
Formaldehyde 1B1 5.50 5.77 5.52 5.83 6.15 8.11 9.04
Formaldehyde 2A1 6.74 7.02 6.77 7.08 7.45 – 9.29
Acetone 1A2 3.15 3.06 3.37 3.30 4.15 3.54 4.38
Acetone 1B1 4.97 5.13 4.99 5.16 5.61 8.46 9.04
Acetone 2A1 6.28 6.46 6.31 6.49 6.95 8.16 8.90
p-Benzoquinone 1B1g 1.35 1.24 1.51 1.41 2.61 2.12 2.74
p-Benzoquinone 1Au 1.35 1.24 1.52 1.41 2.71 2.19 2.86
p-Benzoquinone 1B3g 4.16 4.17 4.22 4.23 5.46 3.66 4.44
p-Benzoquinone 1B1u 4.55 4.56 4.61 4.63 5.20 4.58 5.47
p-Benzoquinone 1B3u 5.56 5.69 5.59 5.72 6.65 5.17 5.55
p-Benzoquinone 2B3g 5.55 5.48 5.69 5.62 6.76 6.60 7.16

Formamide 1A
′′

4.02 3.95 4.30 4.24 5.13 5.01 5.55

Formamide 2A
′

5.14 5.33 5.19 5.41 5.93 6.93 7.35

Acetamide 1A
′′

3.95 3.87 4.19 4.11 4.37 5.02 5.62

Acetamide 2A
′

4.94 5.13 4.97 5.16 5.56 6.85 7.14

Propanamide 1A
′′

3.93 3.85 4.18 4.10 5.64 5.04 5.65

Propanamide 2A
′

4.97 5.14 5.00 5.18 4.37 6.87 7.09

Cytosine 2A
′

3.76 3.78 3.82 3.85 4.41 4.12 4.66

Cytosine 1A
′′

3.83 3.83 3.92 3.93 4.73 4.49 4.87

Cytosine 2A
′′

4.11 4.04 4.21 4.21 4.91 4.98 5.26

Cytosine 3A
′

4.53 4.57 4.59 4.64 5.18 5.02 5.62

Thymine 1A
′′

3.53 3.44 3.70 3.63 4.69 4.20 4.82

Thymine 2A
′

4.28 4.29 4.34 4.37 5.01 4.57 5.20

Thymine 3A
′

5.06 5.08 5.12 5.15 5.86 5.65 6.27

Thymine 2A
′′

4.64 4.55 4.81 4.73 5.25 5.41 6.16

Thymine 4A
′

5.49 5.52 5.54 5.60 6.06 – 6.53
Continued on next page
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Table 3.11: Continued.

Molecule State
BSE BTE

WRPA W̃RPA W W̃ W@PBE0 Ref. 165 Ref. 344

Uracil 1A
′′

3.48 3.40 3.65 3.58 4.61 4.16 5.00

Uracil 2A
′

4.38 4.40 4.45 4.48 5.16 4.68 5.25

Uracil 3A
′

4.97 5.01 5.02 5.07 5.40 5.60 6.26

Uracil 2A
′′

4.57 4.49 4.74 4.67 5.56 5.37 6.10

Uracil 4A
′

5.49 5.57 5.52 5.62 5.69 – 6.70

Uracil 3A
′′

5.03 5.13 5.07 5.18 6.27 – 6.56

Adenine 1A
′′

3.97 3.95 4.08 4.08 4.69 4.59 5.12

Adenine 2A
′

4.21 4.23 4.28 4.31 4.85 4.59 5.25

Adenine 3A
′

4.42 4.42 4.50 4.51 4.92 4.70 5.25

Adenine 2A
′′

4.52 4.47 4.57 4.62 5.01 5.19 5.75
MD (eV) -1.11 -1.08 -1.02 -0.97 -0.42 -0.58
MAD (eV) 1.21 1.18 1.12 1.09 0.62 0.60

Computational setup for the C60 fullerene

The geometry of C60 was relaxed at the DFT-PBE level of theory, and the calculations were

carried out in a supercell of edge 21 Å. We used a ONCV pseudopotential [324], a kinetic

energy cut-off for the plane-wave basis of 30 Ry (120 Ry for the charge density). In G0W0

calculations, we employed 2048 PDEPs to represent the dielectric matrix. G0W0 corrections

were computed for 800 states above the lowest unoccupied molecular orbital, and they were

used to construct the effective G0W0 Hamiltonian (see Eq. 3.63).

Computational setup for liquid water and ice

We used an ice model with 96-water molecules which was optimized using the PBE0 func-

tional (Ref. 94). We considered two water models based on 64 water molecule samples.

The first one includes nine snapshots extracted from 1 ns trajectories obtained using the

MB-Pol potential and path integral molecular dynamics (PIMD); the snapshots were taken

from Ref. 95. The second model includes five equilibrated water snapshots, extracted from

the PBE400 dataset [69]. This dataset consists of simulations of an ensemble of 32 indepen-
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Figure 3.23: Imaginary part of the macroscopic dielectric constant (εM ) as a function of
the photon frequency (ω) for liquid water done on the same snapshot, computed using GW-
BSE starting from PBE and from dielectric-dependent hybrid (DDH)[346] functional ground
states. We used a global dielectric hybrid functional with the parameter determining the
fraction of exact exchange equal to the high frequency dielectric constant.

dent samples of liquid water performed using first-principles molecular dynamics simulations

(FPMD) at 400 K with the PBE functional[69]. The ground state calculations for ice and

water models were carried out with the PBE functional, using ONCV pseudopotentials [324]

and a plane-wave kinetic energy cutoff set to 60 Ry. For one water snapshot (see Fig. 3.23) we

also conducted calculations with dielectric dependent hybrid functionals. The quasiparticle

energies of the systems were obtained with the G0W0 approximation, where quasi-particle

corrections were computed for 800 electronic states (corresponding to ∼ 20 eV) above the

conduction band minimum, and they were used to construct the effective G0W0 Hamilto-

nian, see Eq. 3.63. G0W0 calculations were performed using the WEST code [117] and were

carried out with 2048 PDEPs. In Fig. 3.24 and 3.25 we show the energy gaps and averaged

spectra computed for different PIMD and FPMD snapshots, respectively.

Computational setup for solid LiF

The calculation of solid LiF was carried out using a 216 atom cubic supercell with an edge

length of 22.83 a.u. We used ONCV pseudopotentials [324], a kinetic energy cut-off for the

75



2 4 6 8
Snapshot index

4

5

6

7

8

En
er

gy
 g

ap
 (e

V)

1 2 3 4 5
Snapshot index

4

5

6

7

8

Eg@PBE
Eg@G0W0

Eopt@BSE

Figure 3.24: The BSE optical (Eopt) gap and the electronic (Eg) gaps computed with PBE
and G0W0@PBE for different snapshots extracted from PIMD simulations with the MBPol
potential (left-panel) and FPMD with the PBE functional (right-panel).
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Figure 3.25: Imaginary part of the frequency-dependent macroscopic dielectric constant (εM )
for liquid water computed as an average (blue line) over nine different snapshots (black-dotted
lines) extracted from the PIMD-MBPol trajectories [95] (top panel) and from FPMD-PBE
trajectories [69] (bottom panel).
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Figure 3.26: Imaginary part of the frequency-dependent macroscopic dielectric constant (εM )
for solid LiF.

plane-wave basis of 60 Ry (240 Ry for the charge density). In G0W0 calculations, we em-

ployed 2160 PDEPs to represent the dielectric matrix. G0W0 corrections were computed for

1800 states, and they were used to construct the effective G0W0 Hamiltonian (see Eq. 3.63).

The optical absorption spectrum obtained with the proposed methodology is reported in

Fig. 3.26, and compares well with the theoretical results reported by Sagmeister[316] using

a (4× 4× 4) sampling of the Brillouin Zone. In the figure we also report theoretical results

obtained by Marini et al.[231], and by Sagmeister[316] using a (8 × 8 × 8) Brillouin zone

sampling. As is common procedure in the literature and adopted in ref. 316, we aligned

the position of the first peak to experiment[307]. The differences between our results and

those of Sagmeister[316] are due to a difference on k-point sampling (e.g. the spurious peak

at about 14 eV), which are also responsible for the difference between the results with two

different k-meshes reported by Sagmeister[316].
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3.2.5 Conclusions

In summary, we have presented a novel method to solve the BSE in finite field, which not

only avoids the calculations of virtual electronic states, but avoids all together the calculation

of dielectric matrices. In addition, our formulation uses linear combinations of Bloch orbitals

that are localized in appropriate regions of real space, leading to substantial computational

savings. There are several advantages of the method presented here: calculations beyond the

RPA are straightforward and the complexity and scaling of solving the BSE is the same when

using local or hybrid-DFT starting points. As a consequence, the method proposed here leads

to an improvement in both accuracy and efficiency in the calculations of optical spectra of

large molecular and condensed systems, and to the ability of coupling such computations

with first principles molecular dynamics.
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CHAPTER 4

QUANTUM EMBEDDING AND QUANTUM SIMULATIONS

OF STRONGLY-CORRELATED ELECTRONIC STATES

Density functional theory (DFT) and post-DFT methods such as many-body perturbation

theory have been successfully applied to simulate a wide range of molecular and materials

systems. However, DFT fails to give accurate descriptions of electronic structure in certain

cases. One of the outstanding challenges for DFT is the strongly-correlated (multireference)

electronic states, which are states that cannot be represented as a single determinant of one-

electron orbitals. Methods tailored for strongly-correlated states are usually computationally

expensive and thus limited to relatively small systems. Fortunately, in many important

chemical and materials systems, the strongly-correlated electronic states are localized in

certain regions of the space, which motivates a multi-scale description of the system where

the active region of the system is described by a high level of theory, with the rest of the

system (environment) treated with a low level of theory such as DFT.

In this chapter, we present a quantum embedding theory based on the concept of dielectric

screening. The quantum embedding theory is capable of constructing effective models of the

active region of the system, with the environment acting as a dielectric screening media

described as DFT level. We show that the quantum embedding theory can be used to

generate effective models for realistic materials science problems, which can be solved by

both classical and quantum computers.
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Adapted with permission from H. Ma, M. Govoni, and G. Galli. npj Computational Ma-

terials. 6, 85 (2020). Copyright (2020) by Springer Nature. https://doi.org/10.1038/s41524-

020-00353-z.

4.1 Introduction

In the last three decades, atomistic simulations based on the solution of the basic equa-

tion of quantum mechanics have played an increasingly important role in predicting the

properties of functional materials, encompassing catalysts and energy storage systems for

energy applications, and materials for quantum information science. Especially in the case

of complex, heterogeneous materials, the great majority of first-principles simulations are

conducted using density functional theory (DFT), which is in principle exact but in practice

requires approximations to enable calculations. Within its various approximations, DFT has

been extremely successful in predicting numerous properties of solids, liquids and molecules,

and in providing key interpretations to a variety of experimental results; however it is often

inadequate to describe so-called strongly-correlated electronic states [61, 358]. We will use

here the intuitive notion of strong correlation as pertaining to electronic states that cannot

be described by static mean-field theories. Several theoretical and computational methods

have been developed over the years to treat systems exhibiting strongly-correlated elec-

tronic states, including dynamical mean-field theory [103, 194] and quantum Monte-Carlo

[53, 384]; in addition, ab initio quantum chemistry methods, traditionally developed for

molecules, have been recently applied to solid state problems as well [360]. Unfortunately,

these approaches are computationally demanding and it is still challenging to apply them to

complex materials containing defects and interfaces, even using high-performance computing

architectures.

Quantum computers hold promise to enable efficient quantum mechanical simulations of

weakly and strongly-correlated molecules and materials alike [11, 43, 14, 181, 252, 266, 347,

348, 25]; in particular when using quantum computers, one is able to simulate systems of
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interacting electrons exponentially faster than using classical computers. Thanks to decades

of successful experimental efforts, we are now entering the noisy intermediate-scale quantum

(NISQ) era [295], with quantum computers expected to have on the order of 100 quantum bits

(qubits); unfortunately this limited number of qubits still prevents straightforward quantum

simulations of realistic molecules and materials, whose description requires hundreds of atoms

and thousands to millions of degrees of freedom to represent the electronic wavefunctions.

An important requirement to tackle complex chemistry and material science problems using

NISQ computers is the reduction of the number of electrons treated explicitly at the highest

level of accuracy [313, 409]. For instance, building on the idea underpinning dynamical mean

field theory [103, 194], one may simplify complex molecular and material science problems

by defining active regions (or building blocks) with strongly-correlated electronic states,

embedded in an environment that may be described within mean-field theory [26, 196, 315].

In this work, we present a quantum embedding theory built on DFT, which is scalable

to large systems and which includes the effect of exchange-correlation interactions of the

environment on active regions, thus going beyond commonly adopted approximations. In

order to demonstrate the effectiveness and accuracy of the theory, we compute ground and

excited state properties of several spin-defects in solids including the negatively charged

nitrogen-vacancy (NV) center [67, 308, 75, 242, 58, 76, 112], the neutral silicon-vacancy (SiV)

center [79, 98, 120, 312, 119, 370] in diamond, and the Cr impurity (4+) in 4H-SiC [352,

189, 72]. These spin-defects are promising platforms for solid-state quantum information

technologies, and they exhibit strongly-correlated electronic states that are critical for the

initialization and read-out of their spin states [392, 334, 335, 160, 81, 6]. Our quantum

embedding theory yields results in good agreement with existing measurements. In addition,

we present theoretical predictions for the position and ordering of the singlet states of SiV

and of Cr, and we provide an interpretation of experiments which have so far remained

unexplained.

Importantly, we report calculations of spin-defects using a quantum computer [2]. Based
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on the effective Hamiltonian derived from the quantum embedding theory, we investigated

the strongly-correlated electronic states of the NV center in diamond using quantum phase es-

timation algorithm (PEA) [3, 11] and variational quantum eigensolvers (VQE) [282, 244, 173],

and we show that quantum simulations yield results in agreement with those obtained with

classical full configuration interaction (FCI) calculations. Our findings pave the way to the

use of near term quantum computers to investigate the properties of realistic heterogeneous

materials with first-principles theories.

4.2 Formalism

4.2.1 General strategy

We summarize our strategy in Fig. 4.1. Starting from an atomistic structural model of

materials (e.g. obtained from DFT calculations or molecular dynamics simulations), we

identify active regions with strongly-correlated electrons, which we describe with an effective

Hamiltonian that includes the effect of the environment on the active region. This effective

Hamiltonian is constructed using the quantum embedding theory described below, and its

eigenvalues can be obtained by either classical algorithms such as exact diagonalization (FCI)

or quantum algorithms.

4.2.2 Embedding theory

A number of interesting quantum embedding theories have been proposed over the past

decades [361]. For instance, density functional embedding theory has been developed to

improve the accuracy and scalability of DFT calculations [152, 115, 164, 102, 395]. Den-

sity matrix embedding theory (DMET) [185, 401, 284] and various Green’s function based

approaches [205, 83], e.g. dynamical mean field theory (DMFT), have been developed to de-

scribe systems with strongly-correlated electronic states. At present, ab initio calculations

of materials using DMET and DMFT have been limited to relatively small unit cells (a few
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Figure 4.1: General strategy for quantum simulations of materials using quantum embedding.
The full system is separated into an active space and its environment, with the electronic
states in the active space described by an effective Hamiltonian solved with either classi-
cal (e.g. full configuration interaction, FCI) or quantum algorithms (e.g. phase estimation
algorithm (PEA), variational quantum eigensolver (VQE)). The effective interaction be-
tween electrons in the active space includes the bare Coulomb interaction and a polarization
term arising from the dielectric screening of the environment, which is evaluated including
exchange-correlation interactions.

tens of atoms) of pristine crystals, due to their high computational cost [420, 62]. In this

work, we present a quantum embedding theory that is applicable to strongly-correlated elec-

tronic states in realistic heterogeneous materials and we apply it to systems with hundreds

of atoms. The theory, inspired by the constrained random phase approximation (cRPA)

approach [9, 247, 143], does not require the explicit evaluation of virtual electronic states

[399, 117], thus making the method scalable to materials containing thousands of electrons.

Furthermore, cRPA approaches contain a specific approximation (RPA) to the screened

Coulomb interaction, which neglects exchange-correlation effects and may lead to inaccura-

cies in the description of dielectric screening. Our embedding theory goes beyond the RPA

by explicitly including exchange-correlation effects, which are evaluated with a recently de-

veloped finite-field algorithm [220, 261].

The embedding theory developed here aims at constructing an effective Hamiltonian

operating on an active space (A), defined as a subspace of the single-particle Hilbert space:

Heff =
A∑
ij

teff
ij a
†
iaj +

1

2

A∑
ijkl

V eff
ijkla

†
ia
†
jalak. (4.1)
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Here teff and V eff are one-body and two-body interaction terms that take into account the

effect of all the electrons that are part of the environment (E) in a mean-field fashion, at the

DFT level. An active space can be defined, for example, by solving the Kohn-Sham equations

of the full system and selecting a subset of eigenstates among which electronic excitations

of interest take place (e.g. defect states within the gap of a semiconductor or insulator).

To derive an expression for V eff that properly accounts for all effects of the environment

including exchange and correlation interactions, we define the environment density response

function (reducible polarizability) χE = χE0 +χE
0 fχ

E , where χE
0 = χ0−χA

0 is the difference

between the polarizability of the Kohn-Sham system χ0 and its projection onto the active

space χA
0 (see Section 4.2.3). χE thus represents the density response outside the active space.

The term f = V + fxc is often called the Hartree-exchange-correlation kernel, where V is

the Coulomb interaction and the exchange-correlation kernel fxc is defined as the derivative

of the exchange-correlation potential with respect to the electron density. We define the

effective interactions between electrons in A as

V eff = V + fχEf, (4.2)

given by the sum of the bare Coulomb potential and a polarization term arising from the

density response in the environment E. When the RPA is adopted, the exchange-correlation

kernel fxc is neglected in Eq. 4.2 and the expression derived here reduces to that used within

cRPA. We represent χE and f on a compact basis obtained from a low-rank decomposition

of the dielectric matrix [399, 117] that allows us to avoid the evaluation and summation

over virtual electronic states. Once V eff is defined, the one-body term teff can be computed

by subtracting from the Kohn-Sham Hamiltonian a term that accounts for Hartree and

exchange-correlation effects in the active space (see Section 4.2.3).
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4.2.3 Derivation of the embedding formalism

Within density functional theory (DFT), the single-particle electronic structure of a physical

system is determined by the Kohn-Sham (KS) equation

HKS |ψm〉 = εm |ψm〉 , (4.3)

where the Kohn-Sham Hamiltonian HKS = T +Vion +VH +Vxc includes the kinetic operator

as well as ionic, Hartree and exchange-correlation potentials; εm and ψm are eigenvalues and

eigenvectors of HKS. The density response function of the Kohn-Sham system is

χ0(x1,x2) = 2
∑
i<j

(fi − fj)
〈ψi|n̂(x1)|ψj〉 〈ψj |n̂(x2)|ψi〉

εi − εj
(4.4)

where n̂(x) is the density operator at x = rσ and r and σ are coordinate and spin indeces,

respectively, fi denotes the occupation number of the spin orbital i (not to be confused with

the Hartree-exchange-correlation kernel f).

The set of Kohn-Sham orbitals constitutes a complete orthogonal basis of the one-particle

Hilbert space. In this work we define an active space (denoted as A) as a subset of the orthog-

onal basis where relevant electronic excitations take place. We note that such a definition is

closely related to the notion of active spaces in multireference quantum chemistry methods,

in the sense that it is a set of single-particle orbitals among which all possible excitations

are explicitly taken into account; however, in the embedding theory developed here, the

environmental effects manifest as a renormalization of one-body and two-body terms in the

Hamiltonian, and we do not keep track of wavefunctions in the environment after effective

Hamiltonians are constructed.

For a given definition of A, χ0 can be partitioned into two parts:

χ0(x1,x2) = χA
0 (x1,x2) + χE

0 (x1,x2) (4.5)
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χA
0 (x1,x2) = 2

∑
i∈A

∑
j>i
j∈A

(fi − fj)
〈ψi|n̂(x1)|ψj〉 〈ψj |n̂(x2)|ψi〉

εi − εj
(4.6)

χE
0 (x1,x2) = 2

∑
i∈A

∑
j>i
j /∈A

(fi − fj)
〈ψi|n̂(x1)|ψj〉 〈ψj |n̂(x2)|ψi〉

εi − εj

+2
∑
i/∈A

∑
j>i
j∈A

(fi − fj)
〈ψi|n̂(x1)|ψj〉 〈ψj |n̂(x2)|ψi〉

εi − εj

+2
∑
i/∈A

∑
j>i
j /∈A

(fi − fj)
〈ψi|n̂(x1)|ψj〉 〈ψj |n̂(x2)|ψi〉

εi − εj

(4.7)

where the superscript E denotes the environment of the active space.

Within the RPA, one can define the partial screened Coulomb interaction WE
RPA as

WE
RPA = V + V χE

0W
E
RPA (4.8)

where V represents the bare Coulomb interaction. In the cRPA formalism, WE
RPA is used as

effective electron interactions in A, and has the property that the full RPA screened Coulomb

interaction WRPA can be obtained by further screening WE
RPA with χA

0

WRPA = WE
RPA +WE

RPAχ
A
0 WRPA (4.9)

To derive a formalism that goes beyond the RPA and includes exchange-correlation inter-

actions between electrons, we consider a system subject to a perturbative potential δVbare.

The corresponding screened potential is denoted as δVscf . We define self-consistent and bare

charge density responses as

δnscf = χδVbare = χ0δVscf (4.10)

δnbare = χ0δVbare (4.11)

In the presence of a perturbation, the Hartree-exchange-correlation potential of the sys-
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tem changes by δVHxc = fδnscf , where f = δVHxc
δnscf

= V + fxc is the Hartree-exchange-

correlation kernel introduced previously.

The functional derivative of δVHxc with respect to δnbare is equal to the screened Coulomb

interaction W

W =
δVHxc

δnbare
= f + fχf (4.12)

We note that W defined above represents the interaction between electrons in the system (i.e.

it is the electron-electron screened Coulomb interaction) and is widely used in first-principles

theories of electron-phonon coupling [108, 243]. W should not be confused with test-charge

test-charge screened Coulomb interactionWTC−TC or electron-test-charge screened Coulomb

interaction WE−TC [157, 350]. W , WTC−TC, and WE−TC all reduce to WRPA when fxc = 0,

but represent different types of screened Coulomb interactions beyond the RPA.

From Eq. 4.12, δVHxc can be written as

δVHxc = Wδnbare

= fδnbare + fχ0Wδnbare

=

(
δVH

δnscf
+
δVxc

δnscf

)
δnbare +

(
δVH

δnscf
+
δVxc

δnscf

)
χ0Wδnbare

=

(
δVH

δnscf
+
δVxc

δnscf

)
δnbare +

(
δVH

δnscf
+
δVxc

δnscf

)
δnscr

(4.13)

where we defined the screening density

δnscr = χ0Wδnbare = χfδnbare (4.14)

and the self-consistent charge density response is simply the sum of bare and screening

contributions:

δnscf = δnbare + δnscr (4.15)

Now we consider a bare change of density in the A space, denoted by δnA
bare, and we
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consider a constrained screening process that only occurs in the E space, characterized by

χE
0 =

δnEscf
δVscf

. The resulting screening density δnscr thus belongs to the E space, and we denote

it by

δnE
scr = χEfδnA

bare (4.16)

where χE is defined as

χE = χE
0 + χE

0 fχ
E (4.17)

The resulting change of the Hartree-exchange-correlation potential, denoted by δV c
Hxc (c

stands for constrained, indicating the fact that screening processes in A are not included),

is given by:

δV c
Hxc =

(
δVH

δnscf
+
δVxc

δnscf

)
δnA

bare +

(
δVH

δnscf
+
δVxc

δnscf

)
δnE

scr

=

[
δVH

δnscf
δnA

bare +

(
δVH

δnscf
+
δVxc

δnscf

)
δnE

scr

]
+
δVxc

δnscf
δnA

bare

=
δV eff

H

δnscf
δnA

bare +
δVxc

δnscf
δnA

bare

(4.18)

where we grouped terms in the square bracket and formally defined:

δV eff
H

δnscf
=

δVH

δnscf
+

(
δVH

δnscf
+
δVxc

δnscf

)
δnE

scr

δnA
bare

(4.19)

Recall that f = δVHxc
δnscf

. Thus, for a general change of density δnscf , the resulting change

of the Hartree-exchange-correlation potential is

δVHxc =
δVH

δnscf
δnscf +

δVxc

δnscf
δnscf (4.20)

By comparing Eq. 4.18 with Eq. 4.20, we see that the constrained change of Hartree-

exchange-correlation potential δV c
Hxc induced by δnA

bare is equivalent to the unconstrained

change of Hartree-exchange-correlation potential δVHxc induced by δnscf in a system with
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effective electron-electron interaction:

V eff =
δV eff

H

δnscf
=

δVH

δnscf
+

(
δVH

δnscf
+
δVxc

δnscf

)
δnE

scr

δnA
bare

= V + fχEf

(4.21)

We represent χE, f and other relevant quantities on a compact basis obtained through

a low-rank decomposition of the dielectric matrix [399, 400, 260, 286, 117] obtained using

density functional perturbation theory [21], and evaluate fxc with a finite-field algorithm

[220, 261].

After V eff is obtained, the effective one-particle term teff
ij is computed from the Kohn-

Sham Hamiltonian by subtracting a double-counting term [39] computed at the Hartree-Fock

level

teff
ij = HKS

ij −

(∑
kl

V eff
ikjlρkl −

∑
kl

V eff
ijklρkl

)
(4.22)

where ρ is the one-electron density matrix.

We note that throughout this work we used the following index notation for V :

Vijkl =

∫
dx1dx2

ϕ∗i (x1)ϕ∗j (x2)ϕk(x1)ϕl(x2)

|r1 − r2|
(4.23)

where ϕ’s are spin orbitals spanning the active space.

4.3 Application of embedding theory to spin-defects

The embedding theory presented above is general and can be applied to a variety of systems

for which active regions, or building blocks, with strongly-correlated electronic states may

be identified: for example active sites in inorganic catalysts or organic molecules or defects

in solids and liquids (e.g. solvated ions in water). Here we apply the theory to spin-defects

including NV and SiV in diamond and Cr in 4H-SiC. Most of these defects’ excited states

are strongly-correlated (they cannot be represented by a single Slater determinant of single-
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particle orbitals), as shown e.g. for the NV center in diamond by Bockstedte et al.[39] using

cRPA calculations. We demonstrate that our embedding theory can successfully describe

the many-body electronic structure of different types of defects including transition metal

atoms; our results not only confirm existing experimental observations but also provide a

detailed description of the electronic structure of defects not presented before, which sheds

light into their optical cycles.

We first performed spin-restricted DFT calculations using hybrid functionals [346] to

obtain a mean-field description of the defects and of the whole host solid. The spin restriction

ensures that both spin channels are treated on an equal footing and that there is no spin-

contamination when building effective Hamiltonians. Based on our DFT results, we then

selected active spaces that include single-particle defect wavefunctions and relevant resonant

and band edge states. We verified that the size of the chosen active spaces yields converged

excitation energies (see Section 4.3.2). We then constructed effective Hamiltonians (Eq. 4.1-

4.2) by taking into account exchange-correlation effects, and we obtained many-body ground

and excited states using classical (FCI) and, for selected cases, quantum algorithms (PEA,

VQE). All calculations were performed at the spin triplet ground state geometries obtained

by spin-unrestricted DFT calculations, thus obtaining vertical excitation energies (equal to

the sums of zero phonon line (ZPL) and Stokes energies). It is straightforward to extend

the current approach to compute potential energy surfaces at additional geometries For

example, one may follow the strategy of Ref. [39] and compute excited states of defects along

given normal modes, which are usually obtained from delta-SCF calculations. This type of

treatment, albeit approximate, provides valuable insights into the vibrational properties of

defects in excited states., so as to include relaxations and Jahn-Teller effects [39, 370]. In Fig.

4.2 we present atomistic structures, single-particle defect levels and the many-body electronic

structure of three spin-defects. Several relevant vertical excitation energies are reported in

Table 1, and additional ones are given in the 4.3.1. In the following discussion, lower-case

symbols represent single-particle states obtained from DFT and upper-case symbols represent
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Figure 4.2: Electronic structure of spin-defects. Panels (a), (b), and (c) present results
for the negatively-charged nitrogen vacancy (NV) in diamond, the neutral silicon vacancy
(SiV) in diamond, and the Cr impurity (4+) in 4H-SiC, respectively. Left panels show spin
densities obtained from spin unrestricted DFT calculations. Middle panels show the position
of single-particle defect levels computed by spin restricted DFT calculations. States included
in active spaces are indicated by blue vertical lines. Right panels show the symmetry and
ordering of the low-lying many-body electronic states obtained by exact diagonalization (FCI
calculations) of effective Hamiltonians constructed with exchange-correlation interactions
included.
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many-body states.

Table 4.1: Vertical excitation energies (eV) of the negatively charged nitrogen vacancy (NV)
and neutral silicon vacancy (SiV) in diamond and Cr (4+) in 4H-SiC, obtained using the
random phase approximation (RPA: third column) and including exchange-correlation in-
teractions (beyond RPA: fourth column). Experimental measurements of zero-phonon-line
(ZPL) energies are shown in brackets in the fifth column. Reference vertical excitation
energies are computed from experimental ZPL when Stokes energies are available.

System Excitation RPA Beyond-RPA Expt.

NV 3A2 ↔ 3E 1.921 2.001 2.180a (1.945a)
3A2 ↔ 1A1 1.376 1.759
3A2 ↔ 1E 0.476 0.561
1E ↔ 1A1 0.900 1.198 (1.190b)
1A1 ↔ 3E 0.545 0.243 (0.344-0.430c)

SiV 3A2g ↔ 3Eu 1.590 1.594 1.568d (1.31e)
3A2g ↔ 3A1u 1.741 1.792
3A2g ↔ 1Eg 0.261 0.336
3A2g ↔ 1A1g 0.466 0.583
3A2g ↔ 1A1u 1.608 1.623
3A2g ↔ 1Eu 2.056 2.171
3A2g ↔ 1A2u 2.365 2.515
3A2u ↔ 3Eu 0.003 0.011 (0.007e)

Cr 3A2 ↔ 3E 1.365 1.304
3A2 ↔ 3A1 1.480 1.406
3A2 ↔ 3E′ 1.597 1.704
3A2 ↔ 3A′2 1.635 1.755
3A2 ↔ 1E 0.860 1.090 (1.190f )
3A2 ↔ 1A1 1.560 1.937

aRef [67]. bRef [308]. cEstimated by Ref [112] with a model for intersystem crossing.
dComputed with Stokes energy from Ref [370]. eRef [119]. fRef [352].

For the NV in diamond, we constructed effective Hamiltonians (Eq. 4.1) by using an

active space that includes a1 and e single-particle defect levels in the band gap and states

near the valence band maximum (VBM). Our FCI calculations correctly yield the symmetry

and ordering of the low-lying 3A2, 3E, 1E and 1A1 states. The vertical excitation energies

reported in Table 4.1 show that including exchange-correlation effects yields results in better

agreement with experiments than those obtained within the RPA. The results obtained
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within RPA (0.476/1.376/1.921 eV for 1E/1A1/3E states) are in good agreement with cRPA

results reported in Ref. [39] (0.47/1.41/2.02 eV).

In the case of the SiV in diamond, we built effective Hamiltonians using an active space

with the eu and eg defect levels and states near the VBM, including resonant e′u and e′g

states. Effective Hamiltonians including or neglecting exchange-correlation effects yield sim-

ilar results, with the excitation energies obtained beyond RPA being slightly higher. We

predicted the first optically-allowed excited state to be a 3Eu state with vertical excitation

energy of 1.59 eV, in good agreement with the sum of 1.31 eV ZPL measured experimentally

[79] and 0.258 eV Stokes shift estimated using an electron-phonon model [370]. Our calcu-

lations predicted a 3A2u state 11 meV below the 3Eu state, in qualitative agreement with a

recent experimental observation by Green et al. [119], which proposed a 3A2u-3Eu manifold

with 7 meV separation in energy. The small difference in energy splitting between our results

and experiment is likely due to geometry relaxation effects not yet taken into account in our

study. In addition to states of u symmetry generated by eu → eg excitations, we observed

a number of optically dark states of g symmetry (grey levels in Fig. 4.2b) originating from

the excitation from the e′g level and the VBM states to the eg level.

Despite significant efforts [120, 312, 119, 370], several important questions on the singlet

states of SiV remain open. These states are crucial for a complete understanding of the

optical cycle of the SiV center. Our predicted ordering of singlet states of SiV is shown in

Fig. 4.2b. We find the vertical excitation energies of the 1A1u state to be slightly higher

than that of the 3A2u-3Eu triplet manifold, suggesting that the intersystem crossing (ISC)

from 3A2u or 3Eu to singlet states may be energetically unfavorable (first-order ISC to

lower 1Eg and 1A1g states are forbidden). We note that the 1Eu and 1A2u states are much

higher in energy than 1A1u and are not expected to play a significant role in the optical

cycle. In addition the first-order ISC process from the lowest energy singlet state 1Eg to

the 3A2g ground state is forbidden by symmetry. Overall our results indicate that the 3A2g

state is populated through higher-order processes and therefore the spin-selectivity of the full
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optical cycle is expected to be low. While more detailed studies including spin-orbit coupling

are required for definitive conclusions, our predictions shed light on the strongly-correlated

singlet states of SiV and provide a possible explanation for the experimental difficulties in

measuring optically-detected magnetic resonance (ODMR) of SiV.

We now turn to Cr in 4H-SiC, where we considered the hexagonal configuration. We

constructed effective Hamiltonians with the half-filling e level in the band gap and states near

the conduction band minimum (CBM) including resonance states. Upon solving the effective

Hamiltonian, we predict the lowest excited state to be a 1E state arising from e→ e spin-flip

transition, with excitation energy of 1.09 (0.86) eV based on embedding calculations beyond

(within) the RPA. Results including exchange-correlation effects are in better agreement with

the measured ZPL of 1.19 eV [352], where the Stokes energy is expected to be small given

the large Debye-Waller factor [72]. There is currently no experimental report for the triplet

excitation energies of Cr in 4H-SiC, but our results are in good agreement with existing

experimental measurements for Cr in GaN, a host material with a crystal field strength

similar to that of 4H-SiC [189]. We predict the existence of a 3E+ 3A1 manifold at ' 1.4 eV

and a 3E′+3A′2 manifold at ' 1.7 eV above the ground state (Fig. 4.2c), resembling the 3T2

manifold (1.2 eV) and 3T1 manifold (1.6 eV) for Cr in GaN observed experimentally [134].

We note that in many cases it is challenging to study materials containing transition metal

elements with DFT [8]. The agreement between FCI results and experimental measurements

clearly demonstrates that the embedding theory developed here can effectively describe the

strongly-correlated part of the system, while yielding at the same time a quantitatively

correct description of the environment.

4.3.1 Excitation energies of defects

In the following tables we list low-energy FCI solutions of the effective Hamiltonian for

defects. VBM and CBM denote valence band maximum and conduction band minimum,

respectively.
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Table 4.2: Energies (eV), symmetries and characters of low-energy eigenstates obtained
from FCI calculation of effective Hamiltonians for the NV center in diamond. Effective
Hamiltonians are constructed within and beyond the random phase approximation (RPA).
The ground state energy is set to zero. GS indicates ground state, GS-SF indicates spin-flip
excitations within the ground state orbital configuration.

State RPA Beyond-RPA
Energy Symmetry Character Energy Symmetry Character

0 0.000 3A2 GS 0.000 3A2 GS

1 0.476 1E GS-SF 0.561 1E GS-SF

2 1.376 1A1 GS-SF 1.759 1A1 GS-SF

3 1.921 3E a1 → e 2.001 3E a1 → e

4 2.996 1E a1 → e 3.461 1E a1 → e

Table 4.3: Energies (eV), symmetries and characters of low-energy eigenstates obtained from
FCI calculation of effective Hamiltonians for the SiV in diamond. The ground state energy
is set to zero. GS indicates ground state, GS-SF indicates spin-flip excitations within ground
state orbital configurations.

State RPA Beyond-RPA
Energy Symmetry Character Energy Symmetry Character

0 0.000 3A2g GS 0.000 3A2g GS

1 0.261 1Eg GS-SF 0.336 1Eg GS-SF

2 0.466 1A1g GS-SF 0.583 1A1g GS-SF

3 1.254 3Eg VBM → eg 1.347 3Eg VBM → eg
4 1.268 1Eg VBM → eg 1.363 1Eg VBM → eg
5 1.424 3A1g e′g → eg 1.508 3A1g e′g → eg
6 1.441 3Eg e′g → eg 1.530 3Eg e′g → eg
7 1.469 1A2g e′g → eg 1.563 1A2g e′g → eg
8 1.545 3A2g e′g → eg 1.583 3A2u eu → eg
9 1.587 3A2u eu → eg 1.594 3Eu eu → eg
10 1.590 3Eu eu → eg 1.623 1A1u eu → eg
11 1.608 1A1u eu → eg 1.636 3A2g e′g → eg
12 1.619 1Eg e′g → eg 1.723 1Eg e′g → eg
13 1.692 1A1g e′g → eg 1.792 3A1u eu → eg
14 1.741 3A1u eu → eg 1.812 1A1g e′g → eg
15 2.056 1Eu eu → eg 2.171 1Eu eu → eg
16 2.365 1A2u eu → eg 2.515 1A2u eu → eg

4.3.2 Convergence of the active space size

In previous sections we report results obtained with active spaces sufficiently large to converge

the excitation energies; they include 21/38/23 spatial orbitals (42/76/46 spin orbitals) for
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Table 4.4: Energies (eV), symmetries and characters of low-energy eigenstates obtained from
FCI calculation of effective Hamiltonians for Cr in 4H-SiC. The ground state energy is set to
zero. GS indicates ground state, GS-SF indicates spin-flip excitations within ground state
orbital configuration. Excitations from e level to the CBM are positioned more than 3 eV
above the ground state.

State RPA Beyond-RPA
Energy Symmetry Character Energy Symmetry Character

0 0.000 3A2 GS 0.000 3A2 GS

1 0.860 1E GS-SF 1.090 1E GS-SF

2 1.365 3E e→ t′ 1.304 3E e→ t′

3 1.480 3A1 e→ t′ 1.406 3A1 e→ t′

4 1.560 1A1 GS-SF 1.704 3E e→ t′

5 1.597 3E e→ t′ 1.755 3A2 e→ t′

6 1.635 3A2 e→ t′ 1.937 1A1 GS-SF

7 1.770 1E e→ t′ 1.948 1E e→ t′

NV/SiV/Cr defects, respectively. As an example, in Fig. 4.3 we show the convergence of FCI

eigenvalues of the NV center as a function of the size of the active space. The minimum model

{a1, e} already yields excitation energies within 0.2 eV of the converged results. Inclusion

of a′1 level and other valence band states near the VBM yields results that converge rapidly.

Including empty states does not affect the computed excitation energies.

4.4 Quantum simulations

The results presented in the previous section were obtained using classical algorithms. We

now turn to the use of quantum algorithms. To perform quantum simulations with PEA and

VQE, we constructed a minimum model of an NV center including only a1 and e orbitals in

the band gap. This model (4 electrons in 6 spin orbitals) yields excitation energies within

0.2 eV of the converged results using a larger active space. In Fig. 4.4 we show the results

of quantum simulations.

We first performed PEA simulations with a quantum simulator (without noise) [2] to

compute the energy of 3A2, 3E, 1E and 1A1 states. We used molecular orbital approxima-

tions of these states derived from group theory [75] as initial states for PEA, which are single
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Figure 4.3: (a) Single-particle level diagrams for the NV center in diamond. The minimum
model for the NV center includes the a1 and e levels in the band gap. (b) Convergence of
FCI eigenvalues as functions of the size of active space (represented by intervals between
the lowest and highest single-particle levels). Empty and full circles represent RPA and
beyond-RPA results, respectively.

Slater determinant for 3A2 (MS = 1) and 3E (MS = 1) states, and superpositions of two

Slater determinants for 1E and 1A1 states. As shown in Fig. 4.4a, PEA results converge to

classical FCI results with an increasing number of ancilla qubits.

We then performed VQE simulations with a quantum simulator and with the IBM Q 5

Yorktown quantum computer. We estimated the energy of the 3A2 ground state manifold by

performing VQE calculations for both the single-Slater-determinant MS = 1 component and

the strongly-correlated MS = 0 component. Within a molecular orbital notation, MS = 1

and MS = 0 ground states can be represented as |aāexey〉 and 1
2

(
|aāexēy〉+ |aāēxey〉

)
,

respectively, where a, ex, ey (spin-up) and ā, ēx, ēy (spin-down) denote a1 and e orbitals.

To obtain the MS = 0 ground state, we used a closed-shell Hartree-Fock state |aāexēx〉 as

reference; the MS = 1 ground state is itself an open-shell Hartree-Fock state, so we started

with a higher energy reference state |aexēxey〉 in the 3E manifold. We used unitary coupled-

cluster single and double (UCCSD) ansatzes [282] to represent the trial wavefunctions. Fig.
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Figure 4.4: Quantum simulations of a minimum model of the NV center in diamond using
the phase estimation algorithm (PEA) and a variational quantum eigensolver (VQE). The
energy of the 3A2 ground state manifold is set to zero for convenience. (a) PEA estimation
of ground and excited states of the NV center. Error bars represent the uncertainties due to
the finite number of ancilla qubits used in the simulations; dashed lines show classical FCI
results. (b) VQE estimation of ground state energy, starting from |aexēxey〉 state (MS = 1).
(c) VQE estimation of ground state energy, starting from |aāexēx〉 state (MS = 0); strongly-
correlated 1

2

(
|aāexēy〉+ |aāēxey〉

)
state (MS = 0 state in the 3A2 manifold) is obtained

with VQE.
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4.4b and Fig. 4.4c show the estimated ground state energy as a function of the number of

VQE iterations, where VQE calculations performed with the quantum simulator correctly

converges to the ground state energy in both the MS = 1 and MS = 0 case. Despite the

presence of noise, whose characterization and study will be critical to improve the use of

quantum algorithms [174], the results obtained with the quantum computer converge to the

ground state energy within a 0.2 eV error. Calculations of excited states with quantum

algorithms will be the focus of future works.

4.5 Technical details

Density Functional Theory

All ground state DFT calculations are performed with the Quantum Espresso code [106]

using the plane-wave pseudopotential formalism. Electron-ion interactions are modeled with

norm-conserving pseudopotentials from the SG15 library [324]. A kinetic energy cutoff of

50 Ry is used. All geometries are relaxed with spin-unrestricted DFT calculations using

the Perdew–Burke-Ernzerhof (PBE) functional [279] until forces acting on atoms are smaller

than 0.013 eV/Å. NV and SiV in diamond are modeled with 216-atom supercells; Cr in

4H-SiC is modeled with a 128-atom supercell. The Brillouin zone is sampled with the Γ

point.

Construction of effective Hamiltonians

Construction of effective Hamiltonians is performed with the WEST code [117], starting from

wavefunctions of spin-restricted DFT calculations. For this step, we remark that the use of

hybrid functional is important for an accurate mean-field description of defect levels, even

though the geometry of defects are well represented at the PBE level. We used a dielectric

dependent hybrid (DDH) functional [346] which self-consistently determines the fraction of

exact exchange based on the dielectric constant of the host material. In particular, 17.8 %
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and 15.2 % of exact exchange were used for the calculations of defects in diamond and 4H-SiC,

respectively. The DDH functional was shown to yield accurate band gaps of diamond and

silicon carbide, as well as optical properties of defects [334, 335, 285, 349, 104]. After hybrid

functional solutions of the Kohn-Sham equations are obtained, iterative diagonalizations of

χ0 are performed, and density response functions and fxc of the system are represented on

a basis consisting of the first 512 eigenpotentials of χ0. Finite field calculations of fxc are

performed by coupling the WEST code with the Qbox [124] code. FCI calculations [186] on

the effective Hamiltonian are carried out using the PySCF [360] code.

Quantum simulations

In order to carry out quantum simulations, a minimum model of the NV center is constructed

by applying the embedding theory with a1 and e orbitals beyond the RPA.

In PEA simulations, the Jordan-Wigner transformation [170] is used to map the fermionic

effective Hamiltonian to a qubit Hamiltonian, and Pauli operators with prefactors smaller

than 10−6 a.u. are neglected to reduce the circuit depth, which results in less than 10−4 a.u.

(0.003 eV) change in eigenvalues. In order to achieve optimal precision, the Hamiltonian is

scaled such that 0 and 2.5 eV are mapped to phases φ = 0 and φ = 1 of the ancilla qubits,

respectively. We used the first-order Trotter formula to split time evolution operators into 4

time slices.

In VQE simulations, the parity transformation [43] is adopted. For the simulation of the

MS = 1 state, the resulting qubit Hamiltonian acts on 4 qubits and there are 2 variational

parameters in the UCCSD ansatz. For the simulation of the MS = 0 state, we fixed the oc-

cupation of the a orbital and the resulting qubit Hamiltonian acts on 2 qubits. We replicated

the exponential excitation operator twice, with parameters in both replicas variationally op-

timized. Such a choice results in 6 variational parameters, providing a sufficient number of

degrees of freedom for an accurate representation of the strongly-correlated MS = 0 state.

Parameters in the ansatz are optimized with the COBYLA algorithm [294].
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Quantum simulations are performed with the QASM simulator and the IBM Q 5 York-

town quantum computer using the IBM Qiskit package [2]. Each quantum circuit is executed

8192 times to obtain statistically reliable sampling of the measurement results.

4.6 Discussion

With the goal of providing a strategy to solve complex materials problems on NISQ com-

puters, we proposed a first-principles quantum embedding theory where appropriate active

regions of a material and their environment are described with different levels of accuracy,

and the whole system is treated quantum mechanically. In particular, we used hybrid den-

sity functional theory for the environment, and we built a many-body Hamiltonian for the

active space with effective electron-electron interactions that include dielectric screening and

exchange-correlation effects from the environment. Our method overcomes the commonly

used random phase approximation, which neglects exchange-correlation effects; importantly

it is applicable to heterogeneous materials and scalable to large systems, due to the algo-

rithms used here to compute response functions [220, 261]. We emphasize that the embedding

theory presented here provides a flexible framework where multiple effects of the environment

may be easily incorporated. For instance, dynamical screening effects can be included by

considering a frequency-dependent screened Coulomb interaction, evaluated using the same

procedure as the one outlined here for static screening; electron-phonon coupling effects can

be incorporated by including phonon contributions in the screened Coulomb interactions.

Furthermore, for systems where the electronic structure of the active region is expected to

influence that of the host material, a self-consistent cycle in the calculation of the screened

Coulomb interaction of the environment can be easily added to the approach.

We presented results for spin-defects in semiconductors obtained with both classical and

quantum algorithms, and we showed excellent agreement between the two sets of techniques.

Importantly, for selected cases we showed results obtained using a quantum simulator and

a quantum computer, which agree within a relatively small error, in spite of the presence
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of noise in the quantum hardware. We made several predictions for excited states of SiV

in diamond and Cr in SiC, which provide important insights into their full optical cycle.

We also demonstrated that a treatment of the dielectric screening beyond the random phase

approximation leads to an accurate prediction of excitation energies.

The method proposed in our work enables calculations of realistic, heterogeneous ma-

terials using the resources of NISQ computers. We demonstrated quantum simulations of

strongly-correlated electronic states in considerably larger systems (with hundreds of atoms)

than previous studies combining quantum simulation and quantum embedding [313, 409,

26, 196, 315]. We have studied solids with defects, not just pristine materials, which are of

great interest for quantum technologies. The strategy adopted here is general and may be

applied to a variety of problems, including the simulation of active regions in molecules and

materials for the understanding and discovery of catalysts and new drugs, and of aqueous

solutions containing complex dissolved species. We finally note that our approach is not

restricted to strongly-correlated active regions and will be useful also in the case of weakly

correlated systems, where different regions of a material may be treated with varying levels

of accuracy. Hence we expect the strategy presented here to be widely applicable to carry

out quantum simulations of materials on near-term quantum computers.
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CHAPTER 5

FIRST-PRINCIPLES CALCULATION OF SPIN PROPERTIES

OF MOLECULES AND MATERIALS

Many important physical and chemical processes involve the magnetic interactions among

electron and nuclear spins. Such interactions are relativistic in nature and are not directly

accessible from the solution of the nonrelativistic electronic structure problem. This chapter

discusses density functional theory (DFT) calculation of spin properties of paramagnetic

molecules and semiconductor defects including the hyperfine interaction, zero-field splitting

and nuclear quadruple interaction. These properties are numerically difficult to compute

using usual basis sets such as plane waves or Gaussian orbitals. In Section 5.1 we describe a

novel approach based on finite-element basis sets, which enables all-electron DFT calculation

of spin properties and leads to results that can be systematically converged as a function of

basis set size. In Section 5.2 we present an extension of the formalism in Section 5.1 where

only selected atoms need to be treated at the all-electron level and the rest of the system

can be treated with pseudopotentials. This mixed all-electron-pseudopotential approach is

highly scalable and allows for calculations of spin properties for systems containing more

than one thousand atoms.
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5.1 All-electron calculation of spin properties using

finite-element DFT

Reprinted with permission from K. Ghosh, H. Ma, V. Gavini, and G. Galli. Physical Re-

view Materials. 3, 043801 (2019). Copyright (2019) by the American Physical Society.

https://doi.org/10.1103/PhysRevMaterials.3.043801

The interaction between electronic and nuclear spins in the presence of external magnetic

fields can be described by a spin Hamiltonian, with parameters obtained from first principles,

electronic structure calculations. We describe an approach to compute these parameters,

applicable to both molecules and solids, which is based on Density Functional Theory (DFT)

and real-space, all-electron calculations using finite elements (FE). We report results for

hyperfine tensors, zero field splitting tensors (spin-spin component) and nuclear quadrupole

tensors of a series of molecules and of the nitrogen-vacancy center in diamond. We compare

our results with those of calculations using Gaussian orbitals and plane-wave basis sets,

and we discuss their numerical accuracy. We show that calculations based on FE can be

systematically converged with respect to the basis set, thus allowing one to establish reference

values for the spin Hamiltonian parameters, at a given level of DFT.

5.1.1 Introduction

Electron spins in molecules, nanostructures and solids are important resources in many areas

including spintronics [158] and quantum information science [392]. For instance, high-spin

magnetic molecules can be utilized as single-molecule magnets and are promising platforms

for next-generation data storage devices [122]; in the solid state, spin-carrying deep centers

in semiconductors can serve as quantum bits for quantum information processing [190]. In

order to understand the physical properties of electron spins in molecules and solids, one

needs to describe the interaction of electron and nuclear spins, in the presence of external

electromagnetic fields. Such a description may be achieved by using spin Hamiltonians, with
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parameters derived from experiments or from calculations. For systems with a single effective

electron spin, the leading terms in the spin Hamiltonian are [331, 131, 1]:

H = µBB · g · S +
∑
N

γNB · IN +
∑
N

S ·AN · IN + S ·D · S +
∑
N

IN · PN · IN (5.1)

where µB is Bohr magneton; S is the effective electron spin; B is the external magnetic

field; IN and γN are the spin and gyromagnetic ratio of the N th nucleus; g, A, D, and P

are rank-2 tensors that characterize the strength of electron Zeeman interaction, hyperfine

interaction, zero-field splitting and nuclear quadrupole interaction, respectively. Nuclear

spin-spin interactions and the chemical shielding effect in nuclear Zeeman interactions are

neglected in Eq. 5.1.

The spin Hamiltonian parameters g, A, D and P may be obtained by electron para-

magnetic resonance (EPR), nuclear quadrupole resonance (NQR) and related spectroscopic

techniques [393]. Theoretically their values can be determined by first-principles electronic

structure calculations, which also provide important information complementary to experi-

ments. For example, in the case of spin defects in solids often times the atomistic structure

and charge state of the defect are not straightforward to determine, experimentally. Com-

paring the computed spin Hamiltonian parameters for candidate structures and charge states

with experimental results is a useful means to identify the properties of the defect. In addi-

tion, first-principles calculations can provide insights into the structure-property relations of

molecules and spin defects, thus facilitating the rational design of molecules and materials

with desirable spin properties. Finally, by simulating spin systems under external pertur-

bations such as mechanical strain or applied electromagnetic fields, one can obtain valuable

information and guidance for the experimental manipulation of electron spins [86, 396].

Therefore, in order to devise predictive computational strategies, the development of ro-

bust methods for the calculation of spin Hamiltonian parameters is an important task. In

spite of important progress in the fields of materials science [377, 35, 289, 290, 16, 298, 40, 31]
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and quantum chemistry [267, 208, 345, 255, 301, 193, 256], there is not yet a general and well

established computational protocol that can reliably predict various spin Hamiltonian pa-

rameters with high accuracy for broad classes of systems. At present, the method most often

adopted for spin Hamiltonian parameter calculations is Density Functional Theory (DFT).

While calculations using ab initio wavefunction-based methods have also appeared in the

literature [321, 359], they have so far been limited to relatively small molecular systems due

to their high computational cost. To solve the Kohn-Sham equations in DFT, single particle

electronic wavefunctions are usually represented using basis sets, with Gaussian-type orbitals

(GTO) and plane-waves (PW) being among the most popular choices for molecular and ex-

tended systems, respectively. In PW-based DFT calculations, pseudopotentials are employed

and the electronic wavefunctions near the nuclei are not explicitly evaluated, and one gen-

erally needs to perform a so-called projected augmented wave (PAW) reconstruction [34] to

extract all-electron wavefunctions for the calculation of certain spin Hamiltonian parame-

ters. Besides PW, there are studies exploring other basis sets including numerical atomic

orbitals [171], linearized augmented plane-wave [330], linear muffin-tin orbitals [63, 274], and

GTO [78] for the calculation of A-tensors and V -tensors (electric field gradient tensor) for

solids.

In this work we present calculations of spin Hamiltonian parameters carried out, for the

first time, using a real-space finite-element (FE) formulation of DFT [251]. The FE basis

is a piece-wise continuous polynomial basis [46] that allows for systematic convergence of

calculations with increasing polynomial order and decreasing element size. An important

attribute of the FE basis is its spatial adaptivity that can provide increased resolution in

specific regions of interest in real space, while using coarser descriptions elsewhere. In the

present context, the FE basis can be chosen to have higher resolution in the core region

to accurately describe the highly oscillatory nature of the single particle wavefunctions,

and a coarser resolution far from the core where the orbitals are smoother. Further, FE-

based calculations can be performed with either open or periodic boundary conditions, and
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therefore molecular and extended systems can be treated on an equal footing. There are

several advantages in using FE-based DFT calculations for computing spin Hamiltonian

parameters. The cusp of the wavefunctions near the nuclei can be more efficiently represented

than with GTO basis sets, and this is an important requisite to compute quantities such as

the Fermi contact component of the A-tensor. In addition, FE-based calculations can be

systematically converged with respect to the basis set size in a more straightforward manner

than GTO-based calculations, and they do not mandate the use of pseudopotentials and

PAW reconstructions, as required when using PWs.

Here we specifically consider the isotropic (Fermi contact) and the spin dipolar contribu-

tion to the hyperfine A-tensor, the spin-spin component of the zero-field splitting D-tensor,

and the nuclear quadrupole P -tensor.

5.1.2 Formalism

Hyperfine tensor

The isotropic (Fermi contact) and the spin dipolar component of the A-tensor are given by:

Aiso = − 1

3S
µ0γeγN~2ns(rN ), (5.2)

A
dip
ab =

1

2S

µ0

4π
γeγN~2

∫
|r − rN |2δab − 3(r − rN )a(r − rN )b

|r − rN |5
ns(r)dr, (5.3)

where a, b = x, y, z, S is the effective electron spin (S = 0 for a singlet, 1
2 for a doublet,

etc.); ns is the electron spin density; rN is the position of the nucleus; (r − rN )a is the

a-direction component of r−rN ; γe and γN are gyromagnetic ratios for electron and nuclei,

respectively.

As can be seen from Eq. 5.2, the isotropic (Fermi contact) component of the A-tensor

exhibits a strong dependence on the electron spin density at the nuclei. An all-electron

A-tensor calculation in real-space requires very refined finite elements near the nuclei to ac-
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curately compute the electron spin density. The spatial adaptivity of the finite element mesh

(h refinement) is hence extremely useful here. On the other hand, the dipolar component

of the A-tensor involves an integration with 1
r5

and 1
r3

kernels. This requires high accuracy

in the electronic spin density within a certain region surrounding the nuclei, which can be

systematically improved through the p-refinement.

Zero-field splitting tensor

The spin-spin component of the D-tensor evaluated using the Kohn-Sham wavefunctions, is

given by [245, 298]

Dab =
1

2S(2S − 1)

µ0

4π
(γe~)2

occ.∑
i<j

χij

∫ ∫
Φ∗ij(r, r

′
)
r̃2δab − 3r̃ar̃b

r5
Φij(r, r

′
)drdr

′

 , (5.4)

where the summation is over all pairs of occupied orbitals, and Φij(r, r
′
) are 2× 2 determi-

nants formed from orbitals φi and φj , Φij(r, r
′
) = 1√

2

[
φi(r)φj(r

′
) − φi(r

′
)φj(r)]; χij = ±1

for parallel and antiparallel spins respectively; r̃ is a scalar representing |r−r
′|; r̃a represents

the a-direction component of the vector r − r
′
. The operator r̃2δab−3r̃ar̃b

r5
is the ab element

of the Hessian of the Green’s function of − 1
4π∇

2, i.e. G(r, r
′
) = 1

|r−r′ |
. Since the operator,

∂2G(r,r
′
)

∂ra∂r
′
b

, is invariant under particle exchange, the real-space integrals in Eq. 5.4 can be split

into direct (M
ij,D
ab ) and exchange terms (M

ij,E
ab ) given by

M
ij,D
ab =

∫ ∫
φi(r)φj(r

′
)
∂2G(r, r

′
)

∂ra∂r
′
b

φ∗i (r)φ∗j (r
′
)drdr

′
, (5.5)

and

M
ij,E
ab =

∫ ∫
φi(r)φj(r

′
)
∂2G(r, r

′
)

∂ra∂r
′
b

φ∗i (r
′
)φ∗j (r)drdr

′
. (5.6)
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Equation 5.5 and Eq. 5.6 can be rewritten as

M
ij,D
ab =

∫ ∫
∂(φi(r)φ∗i (r))

∂ra
G(r, r

′
)
∂(φj(r

′
)φ∗j (r

′
))

∂r
′
b

drdr
′
, (5.7)

and

M
ij,E
ab =

∫ ∫ ∂(φi(r)φ∗j (r))

∂ra
G(r, r

′
)
∂(φ∗i (r

′
)φj(r

′
))

∂r
′
b

drdr
′
. (5.8)

While the equivalence of Eqs. 5.5-5.6 with Eqs. 5.7-5.8 is trivial to see for molecular systems

(using integration by parts), showing the equivalence for periodic systems requires a more

complex manipulation (see Sec. 5.1.4).

In order to evaluate the double integrals in Eq. 5.7 and Eq. 5.8, we note that the kernel of

extended interactions is the Green’s function of − 1
4π∇

2, and we take recourse to the solution

of the Poisson equation. Thus, we obtain,

M
ij,D
ab =

∫
∂(φi(r)φ∗i (r))

∂ra
Λ
jj,D
b (r)dr (5.9)

and

M
ij,E
ab =

∫ ∂(φi(r)φ∗j (r))

∂ra
Λ
ij,E
b (r)dr , (5.10)

where ∇2Λ
jj,D
b (r) = −4π

∂(φj(r)φ∗j (r))

∂rb
and ∇2Λ

ij,E
b (r) = −4π

∂(φ∗i (r)φj(r))
∂rb

. Thus, finally, the

D-tensor can be expressed as

Dab =
1

2S(2S − 1)

µ0

4π
(γe~)2

occ.∑
i<j

χij(M
ij,D
ab −M ij,E

ab ) . (5.11)

The computationally expensive part of the D-tensor calculation involves the solution of

Poisson problems, which are solved on the same FE mesh that represents the KS wavefunc-

tions. However, this computation is embarrassingly parallel over the pairs of orbitals φi and

φj . We note that, unlike the A-tensor, the dipole-dipole integral entering the D-tensor ex-

pression (Eq. 5.4) does not explicitly depend on the nuclear coordinates, and thus we expect
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the D-tensor to be less sensitive to the cusps in the spin density at the nuclei. Therefore, a

p-refinement is ideal to systematically improve the accuracy in the calculation of D.

Electric Field Gradient Tensor

The nuclear quadrupole interaction P -tensor is directly related to the electric field gradient

(EFG) V-tensor. We denote the nuclear quadrupole moment by Q and the quantum number

(a component) of the nuclear spin as I (Ia); the nuclear quadrupole Hamiltonian is given

by [331]

HQ = I · P · I

=
eQ

6I(2I − 1)

∑
a,b

Vab

[
3

2
(IaIb + IbIa)− δabI(I + 1)

]
,

(5.12)

where the EFG V -tensor is the second derivative of the electrostatic potential at the nucleus:

Vab = [∇a∇bV (r)]|r=rN

=

∇a∇b
−∫ dr′

n(r′)
|r − r′|

+
∑
I 6=N

ZI
|r − rI |


∣∣∣∣∣
r=rN

(5.13)

Here n is the electron density (defined as positive), and ZI and rI are the charge and position

of the Ith nucleus in the system, respectively.

Calculation of the nuclear contribution to the V -tensor (second term in Eq. 5.13) is

trivial, and only requires the knowledge of the nuclear charges and the respective positions

of the nuclei. We note that the electronic contribution to the V -tensor is given by the Hessian

of the electrostatic potential. To this end, from a converged self-consistent DFT calculation,

we extract the Hartree potential and compute the Hessian at the FE quadrature points. By

construction, every nucleus is on an FE node in the FE mesh. Thus, the value of the Hessian

at each nucleus is obtained via a projection of the quadrature point values to nodal value.

As the V -tensor involves point-wise second-order derivatives, a careful convergence study of
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both h and p refinement is required.

5.1.3 Results

We carried out calculations of spin Hamiltonian parameters for a series of molecules/radicals

and the nitrogen-vacancy (NV) center in diamond. For the calculation of the NV center,

the -1 charge state was considered, which is the most relevant charge state for NV-based

quantum information processing. A 64-atom supercell of diamond and Γ-point sampling of

the Brillouin zone were used. In the following discussion of A and V -tensors of the NV center,

we focus on the nitrogen atom and the three carbon atoms with dangling bonds (DB). All

calculations were performed with the PBE functional [279]. When treating charged systems

we included a neutralizing jellium background. All structures were optimized with plane-

wave DFT using the QUANTUM ESPRESSO code [106] and the same structures were used for

all-electron calculations.

All-electron FE calculations were performed with the DFT-FE code using adaptive real-

space meshes. The tensor elements were converged with respect to the FE basis through h

and p refinements, within 1-2 MHz for the A-tensor, 5 × 10−4 cm−1 for the D-tensor and

0.05 a.u. for the V -tensor of molecules. Convergence of the spin Hamiltonian parameters

for the NV center with respect to the FE basis is presented later in the discussion.

In order to verify our FE results, we also performed PW-based calculations for all systems

and GTO-based calculations for molecules. PW calculations of the A and V tensors were

carried out with the GIPAW code using the GIPAW pseudopotentials (PP). PW calculations of

the D-tensor were conducted with two different PP: GIPAW and ONCV [324]. We followed

the numerical method in Ref. 298 to evaluate Eq. 5.4 in reciprocal space, using normalized

pseudo-wavefunctions [162, 86, 335, 396] (without PAW reconstructions) from the QUANTUM

ESPRESSO code. A kinetic energy cutoff of 200 Ry was used for PW calculations of molecules;

for the NV center we used 100 Ry for computational efficiency. GTO calculations of A, D

and P tensors were carried out with the ORCA code [257]. Two Gaussian basis sets were
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considered: EPR-III [299] and IGLO-III [204], both of which are designed for an accurate

representation of core electrons. We also tested a series of general-purpose basis sets from

Dunning and co-workers (cc-pVDZ, cc-pVTZ, cc-pVQZ and cc-pV5Z) [82], but we found

that the values of A, D and P tensors converge poorly as a function of the basis set and the

poor convergence prevented any meaningful extrapolation to the complete basis set limit.

We present GTO results obtained with cc- basis sets in Sec. 5.1.4.

Table-I and Table-II show the isotropic (Fermi contact) and spin dipolar component of

the A-tensor for several molecules (CN, BO, AlO, NH) and the NV center. Due to the

symmetry of the systems considered here, the dipolar A-tensor has only one independent

component (except for DB carbons in the NV center). Denoting the principal values of the

dipolar A-tensor as A
dip
11 , A

dip
22 , A

dip
33 (|Adip

11 | = |A
dip
22 | =

1
2 |A

dip
33 |), we show A

dip
33 in Table-II. In

PW calculations we tested three different treatments of core relaxation (Slater exchange-only,

exchange-only and exchange-correlation) implemented in the GIPAW code [16]. Experimental

values are also shown in the Tables for reference. We note that all of the results presented

here, in addition to numerical errors which are quantified and discussed in detail below, suffer

from systematic errors introduced by the use of a specific, approximate exchange-correlation

functional, the PBE functional. A previous study has shown that more advanced functionals,

such as certain hybrid and meta-GGA functionals, may improve the agreement with exper-

iments, relative to GGA functionals, for the A-tensor of small radicals and transition metal

complexes [193]. However, there is yet no consensus on which functional is the most accurate

one, in general, for the calculation of the A-tensor or other spin Hamiltonian parameters.

112



T
ab

le
5.

1:
Is

ot
ro

p
ic

h
y
p

er
fi
n
e

te
n
so

r
(s

ee
E

q
.

5.
2)

(M
H

z)
co

m
p
u
te

d
b
y

D
F

T
w

it
h

fi
n
it

e-
el

em
en

t
(F

E
),

G
au

ss
ia

n
-t

y
p

e
or

b
it

al
(G

T
O

)
an

d
p
la

n
e-

w
av

e
(P

W
)

b
as

is
se

ts
.

F
or

P
W

ca
lc

u
la

ti
on

s
th

re
e

d
iff

er
en

t
tr

ea
tm

en
ts

of
th

e
co

re
-r

el
ax

at
io

n
eff

ec
t

ar
e

co
n
si

d
er

ed
,
w

h
ic

h
in

cl
u
d
e

S
la

te
r

ex
ch

an
ge

(S
la

te
r-

X
),

ex
ch

an
ge

(X
),

an
d

ex
ch

an
ge

+
co

rr
el

at
io

n
(X

C
)

in
th

e
p

er
tu

rb
at

iv
e

p
ot

en
ti

al
fo

r
th

e
ca

lc
u
la

ti
on

of
sp

in
d
en

si
ti

es
at

th
e

co
re

re
gi

on
.

S
y
st

em
A

to
m

F
E

G
T

O
(E

P
R

-I
II

)
G

T
O

(I
G

L
O

-I
II

)
P

W
(S

la
te

r-
X

)

P
W

(X
)

P
W

(X
C

)
E

x
p

C
N

(S
=

1 2
)

13
C

50
4.

21
50

0.
50

50
9.

63
53

9.
55

53
6.

04
56

6.
57

58
8

[8
4]

14
N

-1
2.

81
-1

2.
47

-1
2.

25
-1

4.
87

-1
5.

15
-1

2.
43

-1
3

[8
4]

B
O

(S
=

1 2
)

11
B

10
07

.7
1

99
8.

17
10

02
.3

4
98

3.
68

98
0.

02
10

09
.3

1
10

27
[3

66
]

17
O

-7
.3

4
-7

.1
8

-7
.2

6
-7

.8
3

-8
.1

3
-7

.2
4

A
lO

(S
=

1 2
)

27
A

l
59

0.
80

64
6.

95
56

4.
18

56
0.

09
62

6.
93

76
6

[1
84

]
17

O
11

.4
7

12
.2

0
-1

5.
22

-1
4.

78
-2

2.
99

N
H

(S
=

1)
14

N
11

.2
7

10
.2

0
9.

77
24

.2
4

22
.0

0
33

.6
0

20
[3

94
]

1
H

-5
3.

52
-5

3.
13

-4
7.

74
-5

1.
60

-5
1.

60
-5

1.
60

-7
0

[3
94

]

D
ia

m
on

d
N

V
(S

=
1)

14
N

-2
.3

2
-2

.6
0

-2
.6

0
-2

.5
6

2.
23

[1
32

],
-2

.5
1

[8
7]

,
-2

.5
3

[4
12

]

D
B

13
C

98
.7

2
10

0.
27

99
.0

5
10

8.
51

14
6.

7
[8

7]

113



T
ab

le
5.

2:
S
p
in

d
ip

ol
ar

h
y
p

er
fi
n
e

te
n
so

r
(s

ee
E

q
.

5.
3)

(M
H

z)
co

m
p
u
te

d
b
y

D
F

T
w

it
h

fi
n
it

e-
el

em
en

t
(F

E
),

G
au

ss
ia

n
-t

y
p

e
or

b
it

al
(G

T
O

)
an

d
p
la

n
e-

w
av

e
(P

W
)

b
as

is
se

ts
.

T
h
e

ei
ge

n
va

lu
e

w
it

h
th

e
la

rg
es

t
ab

so
lu

te
va

lu
e

is
sh

ow
n
.

S
y
st

em
A

to
m

F
E

G
T

O
(E

P
R

-I
II

)
G

T
O

(I
G

L
O

-I
II

)
P

W
E

x
p

C
N

(S
=

1 2
)

13
C

11
5.

33
11

8.
47

11
7.

43
12

4.
20

89
.9

[8
4]

14
N

44
.5

1
42

.6
2

42
.4

0
45

.2
5

30
.8

[8
4]

B
O

(S
=

1 2
)

11
B

53
.7

1
53

.3
8

53
.7

6
55

.3
7

54
.2

54
[3

66
]

17
O

-4
7.

83
-4

6.
47

-4
5.

97
-5

1.
55

A
lO

(S
=

1 2
)

27
A

l
11

4.
23

11
1.

67
11

2.
51

10
6

[1
84

]
17

O
-1

22
.6

5
-1

16
.4

2
-1

27
.5

7

N
H

(S
=

1)
14

N
-4

7.
87

-4
5.

82
-4

6.
01

-4
9.

59
-4

6
[3

94
]

1
H

58
.0

8
58

.5
0

59
.9

2
58

.0
2

60
[3

94
]

D
ia

m
on

d
N

V
(S

=
1)

14
N

-0
.0

7
-0

.0
5

-0
.1

3
[1

32
],

0.
37

[8
7]

,
0.

33
[4

12
]

D
B

13
C

54
.8

7
58

.3
4

52
.9

[8
7]

114



We found that in general, GTO results obtained with EPR-III and IGLO-III basis sets

are similar, with a mean absolute deviation (MAD) of 3.2 (0.6) MHz for Aiso (Adip) for

the systems considered here. FE and GTO results agree well: the MAD between FE and

GTO@EPR-III results is 2.5 (1.5) MHz for Aiso (Adip). However, for the Al atom in AlO, FE

and GTO@IGLO-III yield different values of Aiso by 56 MHz (9%). We expect the difference

to originate from inaccuracies of the IGLO-III basis set used in GTO calculation; for example,

we found that GTO calculations using different cc- basis sets yield large variations, between

580 to 520 MHz, for the Aiso value of Al. Overall, the agreement between FE and GTO results

serves as a verification of our FE implementation for the calculation of the A-tensor. We note

that EPR-III and IGLO-III sets are specialized GTO basis designed for spin Hamiltonian

parameter calculations, and they are not available for all elements (for instance, an EPR-III

basis set for Al is not available). FE-based calculations, on the other hand, can be performed

for any element in the periodic table and the results can be systematically converged with

respect to the basis set.

We found that PW calculations agree well with all-electron FE and GTO calculations for

Adip, while they deviate slightly for Aiso. For Adip, the MAD between FE and PW results is

2.7 MHz, while the MAD for Aiso ranges from 13-17 MHz depending on the treatment of core

relaxation in PW calculations. Notably, in the case of the AlO molecule, PW calculations

predicted a different sign for the Aiso of the O atom compared to all-electron FE and GTO

calculations.

PW and FE calculations for the NV center yielded qualitatively similar values for Aiso

and Adip for both nitrogen and DB carbons. The larger value of Aiso compared to Adip for

the nitrogen atom reveals a strong s character of the spin density on the nitrogen. The spin

density on the DB carbons has instead a significant p-type contribution as revealed by the

comparable values of Aiso and Adip. There is a sizable difference between DFT results and

experimental values for the Aiso of DB carbons (30%), which might be due to the use of a

small (64-atom) supercell for the NV center.
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In Table-III we present the computed zero field splitting D-tensor for several spin-triplet

molecules/radicals (O2, CH2, NH, C5H +
5 ) as well as for the NV center. We report the scalar

parameter D = 3
2D33, where D11, D22, D33 are principal values of the D-tensor such that

|D11| ≤ |D22| ≤ |D33|. For low symmetry systems such as the CH2 carbene, we additionally

report the scalar parameter E = 1
2(D11 −D22).
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Overall, GTO results show a weak dependence on the basis set, with a MAD of 0.016

cm−1 between values obtained with EPR-III and IGLO-III basis sets. PW calculations show

a weak dependence on the chosen pseudopotential, with a MAD of 0.017 cm−1 between

ONCV and GIPAW results. Similar to the case of the A-tensor, GTO and FE results agree

well, with a MAD of 0.001 cm−1 between FE and GTO@EPR-III values. Due to the use

of pseudo-wavefunctions for the evaluation of Eq. 5.4 and the lack of PAW reconstruction,

PW results deviate from all-electron ones, with a MAD of 0.064 cm−1 between FE and

PW@GIPAW values. For the case of the NV center, results from FE, PW and experiments

appear to be in good agreement.

Table-IV summarizes the electric field gradient V -tensor for several closed-shell molecules

(HCN, NCCN, N2, H2O) and for the NV center. Following the convention of the NQR spec-

troscopy literature, we report the quadrupole coupling constants eQV33, where V11, V22, V33

are principal values of the V -tensor such that |V11| ≤ |V22| ≤ |V33|. For low symmetry

systems, we additionally report η =
∣∣∣V22−V11V33

∣∣∣.
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Unlike the A tensor, which depends on charge density differences, the V -tensor depends

on the absolute value of the charge density and thus it is more sensitive to the details of

the electronic structure. Differences are indeed observed for GTO calculations with different

basis sets (MAD = 0.09 MHz), as well as between GTO and FE calculations (MAD = 0.18

MHz between FE and GTO@EPR-III). PW results significantly deviate from all-electron

GTO and FE results, with a MAD of 0.76 MHz between FE and PW values. In the case

of the NV center, PW and FE yield similar nuclear quadrupole coupling for nitrogen, in

qualitative agreement with experiment, while for DB carbons the predicted V33 values using

PW and FE have opposite signs.

Finally, to demonstrate the convergence of the FE results with respect to the basis set,

in Table-V we show A-, D- and V-tensors for the NV center computed with different FE

polynomial degrees. We denote calculations with nth-order polynomials as FEn. For the

A-tensor and V-tensor calculations a mesh size of 0.1 Bohr was used surrounding the nuclei,

while for the D-tensor calculation the mesh size was 0.5 Bohr. We see in Table-V that

our results for the A-tensor are well converged at the FE6 level, as indicated by the small

difference (less than 3%) between FE5 and FE6 results. Similarly, D-tensor values are well

converged at the FE5 level. The numerical value of the V tensor is sensitive to the details of

the electronic wavefunctions around the nuclei, as mentioned previously, and its convergence

is indeed more challenging compared to that of the A- and D-tensors. We performed V-tensor

calculations with polynomial degrees up to 7. At the FE7 level, most of the computed V

tensor elements are converged within 10%, based on asymptotic estimates obtained by power

law extrapolations.
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Table 5.5: The principle values of A (top, in MHz), D (center, in cm−1), and V (bottom, in
a.u.) tensors for the NV center computed by FE-based DFT using different finite-element
polynomial degrees.

14N DB 13C

A
dip
11 A

dip
22 A

dip
33 Aiso A

dip
11 A

dip
22 A

dip
33 Aiso

FE3 0.033 0.033 -0.066 -2.362 -27.303 -27.592 54.896 100.492
FE4 0.034 0.034 -0.067 -2.307 -27.199 -27.654 54.853 99.708
FE5 0.035 0.035 -0.070 -2.319 -27.189 -27.664 54.854 99.016
FE6 0.035 0.035 -0.070 -2.316 -27.171 -27.696 54.867 98.721

D11 D22 D33

FE3 -0.0327 -0.0327 0.0654
FE4 -0.0321 -0.0321 0.0642
FE5 -0.0329 -0.0329 0.0658

N DB C
V11 V22 V33 V11 V22 V33

FE5 0.865 0.865 -1.731 -0.033 -0.127 0.160
FE6 0.804 0.804 -1.609 -0.081 -0.136 0.217
FE7 0.761 0.761 -1.520 -0.122 -0.129 0.251

5.1.4 Technical details

Real space computation of D-tensor for crystalline solids

Here, we describe the mathematical formulation behind translating Eq. 5.5 (Eq. 5.6) to Eq.

5.7 (Eq. 5.8) for crystalline solids. Eq. 5.5, in a periodic system, has the following the form

given by

M
ij,D
ab =

∫
Ω

∫
R3
f(r)

∂2G(r, r
′
)

∂ra∂r
′
b

h(r
′
)dr
′
dr , (5.14)

with h(r
′
) = φj(r

′
)φ∗j (r

′
) and f(r) = φi(r)φ∗i (r). Ω is the volume representing the unit cell.

Integrating by parts with respect to r, we arrive at

M
ij,D
ab = −

∫
Ω

∂f(r)

∂ra

∫
R3

∂G(r, r
′
)

∂r
′
b

h(r
′
)dr
′
dr +

∮
S(Ω)

f(r)
(∫

R3

∂G(r, r
′
)

∂r
′
b

h(r
′
)dr
′)
d(â.S) .

(5.15)
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Now noting the fact that
∂G(r,r

′
)

∂r
′
b

= −∂G(r,r
′
)

∂rb
, we can rewrite the second term on the right

hand side of Eq. 5.15 as

M
ij,D
ab,2 = −

∮
S(Ω)

f(r)
∂

∂rb

(∫
R3
G(r, r

′
)h(r

′
)dr
′)
d(â.S) . (5.16)

The term within the parenthesis (let us denote it as Φ(r)) can be obtained from the solution

of the PDE, ∇2Φ(r) = −4πh(r), with periodic boundary conditions on the unit cell domain,

provided
∫

Ω h(r)dr = 0. However, this condition is not valid while computing the direct part

of the D-tensor, as
∫

Ω h(r)dr = 1. Thus, we rewrite Eq. 5.3 as the sum of two terms, given

by

M
ij,D
ab,2 =−

∮
S(Ω)

f(r)
∂

∂rb

(∫
R3
G(r, r

′
)
(
h(r
′
)− 1

Ω

)
dr
′
)
d(â.S)

− 1

Ω

∮
S(Ω)

f(r)
(∫

R3

∂G(r, r
′
)

∂rb
dr
′)
d(â.S) .

(5.17)

Considering the second term on the right hand side of Eq. 5.4, it is straightforward to

show that the integral within the parenthesis (over R3) vanishes. Further, noting that the

convolution integral within the parenthesis (over R3) of the first term of Eq. 5.17 is the

given by the solution of the Poisson equation, the resulting field is periodic on the unit cell.

Thus, the surface integral in the first term of Eq. 5.17 vanishes owing to the periodicity of

the functions. Thus, Eq. 5.15 can be rewritten as

M
ij,D
ab = −

∫
Ω

∂f(r)

∂ra

∫
R3

∂G(r, r
′
)

∂r
′
b

h(r
′
)dr
′
dr , (5.18)

which, again, through integration by parts can be written as

M
ij,D
ab =

∫
Ω

∫
R3

∂f(r)

∂ra
G(r, r

′
)
∂h(r

′
)

∂r
′
b

dr
′
dr , (5.19)
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which is same as Eq. 5.7 of. We note that the boundary term, resulting from integration by

parts, in the above equation vanishes as G(r, r
′
)→ 0 as r

′ →∞.

The treatment of the exchange term is similar. In this case, we define h(r
′
) = φi(r

′
)φ∗j (r

′
),

and f(r) = φi(r)φ∗j (r), ∀ i 6= j. Thus, the condition
∫

Ω h(r)dr = 0 holds from the orthogo-

nality of the Kohn-Sham wavefunctions, and one need not split Eq. 5.16 into two parts as

above. The rest of the arguments are identical.

Convergence tests for GTO calculations with cc- basis sets

In this section we present Aiso, A
dip
33 , D and V33 computed with GTO DFT as a function

of basis sets: cc-pVDZ (ζ = 2), cc-pVTZ (ζ = 3), cc-pVQZ (ζ = 4), cc-pV5Z (ζ = 5).

According to the following plots, in many cases spin Hamiltonian parameters do not converge

with respect to basis in a reasonable manner. Therefore, it is challenging to extrapolate the

results to the complete basis set (CBS) limit, as is usually done for the calculation of DFT

total energies.
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Figure 5.1: Aiso as a function of basis set.
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Figure 5.2: A
dip
33 as a function of basis set.
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Figure 5.3: D as a function of basis set. cc-pV5Z calculation for C5H+
5 is not performed due

to computational cost.
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Figure 5.4: V33 as a function of basis set.
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5.1.5 Conclusions

To summarize, we presented an approach to compute spin Hamiltonian parameters based

on DFT, which uses all-electron calculations and finite element basis sets to solve the Kohn-

Sham equations. The approach can be applied to both solids and molecules and offers the

important advantage of straightforward convergence of the calculations with respect to the

basis set, which can be systematically achieved by refinement of the finite element basis.

We reported calculations of the Fermi contact and dipolar component of the A-tensor,

the spin-spin component of the D-tensor and the nuclear quadrupole P -tensor for several

molecules and for the NV center in diamond. We presented detailed comparisons of results

obtained using FE, GTO and PW basis. For molecules, we showed that all-electron results

obtained with FE basis sets are in good agreement with those obtained with GTO basis sets.

The approach introduced in our work represents the first step towards building a robust

protocol for the first-principles prediction of various spin Hamiltonian parameters based on

finite element density functional theory. There are multiple prospects of future work in this

direction, both in terms of the level of physics and computational efficiency. It is impor-

tant to extend the current formalism to include relativistic effects since proper treatment of

scalar relativistic effects will be crucial for accurate calculations of spin Hamiltonian param-

eters of heavy elements. The ability to include spin-orbit coupling effects will also allow for

the computation of additional spin Hamiltonian parameters, including the g-tensor and the

spin-orbit component of the A and D-tensor. Further, it would be interesting to develop and

test more advanced density functionals, such as meta-GGAs and hybrid functionals, and to

establish which functional performs better, compared to experiments. With regards to the

computational efficiency, the FE basis functions can be enriched using compactly supported

precomputed enrichment functions [175], which will drastically reduce the computational

cost, while providing systematic convergence. Finally, we plan to utilize a combination of

all-electron and pseudopotential based calculation under the same framework, where certain

atoms of interest are treated at all-electron level and other atoms are treated using pseudopo-
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tential approximation, which will enable the computation of spin Hamiltonian parameters

in systems involving thousands of atoms.
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5.2 Mixed all-electron-pseudopotential calculation of spin

properties

Adapted from K. Ghosh, H. Ma, M. Onizhuk, V. Gavini, and G. Galli. To be submitted.

Spin-defects in semiconductors are promising quantum bits (qubits) for quantum infor-

mation technologies including quantum computation, quantum communication and quantum

sensing. The prime example of spin-defect is the nitrogen-vacancy (NV) center in diamond,

which can be optically initialized and read-out, and possesses millisecond coherence time

even at room temperature. In recent years, great efforts have been devoted to the search for

novel spin-defects in industrially friendly host materials with similar or superior properties

to diamond NV centers for quantum information applications. For instance, several promis-

ing spin-defects have been investigated in silicon carbide, including the divacancy (VV), Cr

impurity, V impurity, etc. There are also growing interests in discovering and designing spin

qubits in aluminum nitride, zinc oxide, and 2D materials.

First-principles simulations based on density functional theory (DFT) have played an

important role in the discovery and identification of novel spin-defects. In particular, DFT

simulations can predict various thermodynamic and spin properties of spin-defects, which

provide critical information for the interpretation of optical and magnetic measurements, and

the determination of atomistic configuration and electronic structure of unknown defects.

Among various properties DFT can compute, spin properties are among the most important

predictors for promising defect spin qubits. The spin properties of a point defect in a certain

electronic state (such as the ground state) can be summarized by its spin Hamiltonian (SH),

which describes the interaction between electron spins, nuclei spins and external fields. A

typical SH for a spin-defect is

H = µBB · g · S +
∑
N

S ·AN · IN + S ·D · S (5.20)

where g-tensor characterizes the coupling strength between the electron and the external
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magnetic field, hyperfine A-tensors characterize the coupling between electron and nuclei

spins, and zero field splitting D-tensor characterizes the energy splitting between different

spin states at zero magnetic field. We have neglected other terms with smaller magnitudes.

The A-tensor and D-tensor are particularly important descriptors of novel defects: large

hyperfine couplings limit the coherence time of electron spin, but may benefit the use of

nuclear spins as quantum memories; the dependence of D-tensor on external environment

characterizes the coupling between electron spins and other degrees of freedom such as lattice

strain, electric field and temperature, and are important for quantum sensing applications.

The great majority of existing DFT calculations of SH parameters are based on the

plane-wave pseudopotential formalism. Other formalism exists but is often limited to small

systems. In the plane-wave pseudopotential formalism, pseudopotentials are used to approx-

imate interactions between valence electrons and nuclei, and wavefunctions of core electrons

are not explicitly evaluated. Based on the results of plane-wave pseudopotential calculations,

one generally needs to perform a so-called projected augmented wave (PAW) reconstruction

to extract all-electron wavefunctions for the calculation of SH parameters. Such calculations

yield results dependent on the choice of pseudopotentials. In the previous section, we pro-

posed and benchmarked a real-space all-electron DFT framework based on finite-element

(FE) basis sets for accurate prediction of SH parameters in molecules and solids. This

framework enables all-electron calculations of SH parameters and leads to results that can

be systematically converged with respect to basis sets. In this work, we propose a novel

computational scheme that combines the all-electron and pseudopotential formalism, and

we demonstrate calculations of systems with ∼1000 atoms. In particular, the new scheme

proposed here treats selected atoms in the system on the all-electron level, while treating

the rest of atoms using pseudopotentials (see Figure 5.5). We applied the mixed all-electron

pseudopotential scheme to compute the A-tensor and D-tensor of NV in diamond and VV

in 4H-SiC. Remarkably, we show that by only treating a few atoms around the defect on

the all-electron level, one can already obtain results almost identical to those obtained with
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pure all-electron calculations.

Figure 5.5: Structure and spin density of nitrogen-vacancy (NV) center in diamond (left)
and divacancy in 4H-SiC (right). In both systems, the spin density is localized around three
carbon atoms with dangling bonds. By only treating a few atoms near the defect at the
all-electron (AE) level, one can obtain accurate predictions of spin Hamiltonian parameters,
while the remaining atoms can be treated using the pseudopotential (PP) approximation.
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CHAPTER 6

FIRST-PRINCIPLES SIMULATION OF SPIN-DEFECTS FOR

QUANTUM INFORMATION SCIENCE

In this chapter, we present several studies where we apply first-principles methods to inves-

tigate spin-defects for quantum information science (QIS). Spin-defects in semiconductors

are point defects that carry electron spins, whose spin sublevels can be harnessed to encode

quantum information. Compared to other physical realization of quantum bits (qubits),

spin-defects combines several desirable features such as long coherence time, room tempera-

ture operability and optical addressibility. Spin-defects have been widely used in QIS fields

including quantum sensing, quantum communication and hybrid quantum architectures.

The research summarized in this chapter can be partitioned into two topics. The first

topic is the computational design and characterization of novel spin-defects. Currently, the

most studied spin-defect is the nitrogen-vacancy (NV) center in diamond, and a lot of efforts

have been devoted to explore novel spin-defects in diamond and other materials, with the

hope of finding novel defects with distinct (hopefully improved) properties from NV centers

in diamond. In Section 6.1 we proposed several novel transition metal ion-vacancy complexes

in silicon carbide and aluminum nitride as promising spin qubits. In Section 6.2 we present

a computational study of strongly-correlated electronic states of group-4 vacancy centers in

diamond.

The second topic of this chapter is the computational study of existing spin-defects, where

first-principles calculations are used to interpret experimental measurements and to provide

guidance for the design of new experiments. In Section 6.3 we present a joint experimental-

computational study of divacancy (VV) defects in silicon carbide under mechanical waves,

where DFT and group theory are used to derive a complete microscopic theory of spin-phonon

interaction of VV. In Section 6.4 we briefly introduce quantum dynamics simulations of spin-

defects using the cluster correlation expansion (CCE) method, which allowed us to predict
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the coherence time of spin-defects in the bath of nuclear spins and other spin-defects.
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6.1 Discovery of novel spin qubits in silicon carbide and

aluminum nitride

Reprinted with permission from H. Seo, H. Ma, M. Govoni, and G. Galli. Physical Re-

view Materials. 1, 075002 (2017). Copyright (2017) by the American Physical Society.

https://doi.org/10.1103/PhysRevMaterials.1.075002

The development of novel quantum bits is key to extend the scope of solid-state quan-

tum information science and technology. Using first-principles calculations, we propose that

large metal ion - vacancy pairs are promising qubit candidates in two binary crystals: 4H-SiC

and w-AlN. In particular, we found that the formation of neutral Hf- and Zr-vacancy pairs

is energetically favorable in both solids; these defects have spin-triplet ground states, with

electronic structures similar to those of the diamond NV center and the SiC di-vacancy. In-

terestingly, they exhibit different spin-strain coupling characteristics, and the nature of heavy

metal ions may allow for easy defect implantation in desired lattice locations and ensure sta-

bility against defect diffusion. In order to support future experimental identification of the

proposed defects, we report predictions of their optical zero-phonon line, zero-field splitting

and hyperfine parameters. The defect design concept identified here may be generalized to

other binary semiconductors to facilitate the exploration of new solid-state qubits.

6.1.1 Introduction

Optically active spin defects in wide-gap semiconductors are important resources for solid-

state quantum technologies [12, 57, 138, 99]. One well-known spin defect is the nitrogen-

vacancy (NV) center in diamond [76], which may be used for applications ranging from

quantum information processing [385] to quantum sensing [71, 406]. Recently, alternative

defect qubits in wide-gap binary semiconductors have been proposed [188, 397, 351, 18]. In

particular, di-vacancies in SiC were shown to have several desired properties similar to the

diamond NV center [188, 59, 60] and to exhibit a quantum coherence time much longer than
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that of the diamond NV [59, 333, 410]. In a previous study, we showed that the binary nature

of SiC is responsible for the improved coherence time [333]. Given the attractive properties of

SiC - i.e., much cheaper than diamond and with well-established synthesis procedures - and

the promising properties of its point defects, it is interesting to explore whether additional

defects may be engineered in SiC as qubit candidates [392, 190].

In recent years, first-principles calculations have played a key role in the search of de-

fect qubits in wide-gap semiconductors. For example, by using density functional theory

(DFT), Gali pointed out similarities between the divacancy spin in SiC and the diamond

NV center [96], originating from the same C3v configuration of C 2sp3 dangling bonds in

the two materials [163]. An experimental investigation of the divacancy by Koehl et al.

readily followed [188]. Weber et al. formulated criteria for the systematic identification of

qubits in wide-gap semiconductors and proposed to realize ‘NV centers’ in SiC [392]. Later,

Bardeleben et al. experimentally verified the existence of the NV center in SiC [382], which

were followed by further experimental and theoretical characterizations [416, 381]. First-

principles DFT calculations have also been used to investigate Si vacancies (VSi) in SiC and

to identify the role of C 2sp3 dangling bonds in determining the properties of the optically

addressable solid-state qubit [355].

The realization of ‘NV-like’ qubits in SiC, based on C 2sp3 dangling bonds, may lead

to several advantageous properties [138, 392, 190], nevertheless a number of drawbacks are

present. For example, the SiC divacancy, similar to the diamond NV center, may exhibit low

optical read-out fidelity [76, 356] and small ground-state spin-transverse strain coupling [209,

86], which is unfavorable for certain hybrid quantum applications [222, 30, 329, 114, 373]. In

addition, the implementation of spin qubits using C 2sp3 dangling bonds is not generalizable

to other binary materials, e.g. nitrides. In the case of nitrides, theoretical studies have

suggested that defects based on N 2sp3 dangling bonds, e.g. VAlON may be potential qubit

candidates [373]. However, in a previous study on AlN [334], we showed that the occupied

spin-orbitals of VAlON are in strong resonance with the valence band of the host, which
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make them unfavorable for spin qubit applications.

Therefore, it is desirable to explore the possibility of realizing qubits that are based on

novel defects rather than on C or N 2sp3 dangling bonds. Recent theoretical studies have

proposed spin defects in SiC and AlN based on cationic dangling bonds, e.g. Al 3sp3 states

and Si 3sp3 states [334, 362, 379]. In a previous work, we showed that the negatively charged

N vacancy in w-AlN could have an optically addressable spin-triplet state under a uniaxial

or biaxial strain [334]. Varley et al. considered impurity-vacancy pairs in w-AlN based on

Group-IV elements including Ge, Sn, Ti, and Zr [379]. They suggested that Zr- and Ti-

vacancy pairs would be good candidates for spin qubits in w-AlN. In the case of 4H-SiC,

Szasz et al. proposed that the S = 1 state of the carbon-antisite vacancy defect may be

stable, and hence may be a valuable qubit [362].

Using a combination of first-principles calculations, here we propose that large metal ion

- vacancy (LMI-vacancy) pairs are promising qubit candidates in both 4H-SiC and w-AlN. In

particular, we selected Y, La, Zr, and Hf ions for two reasons: (i) They have ionic radii larger

than those of Si and Al [339], and hence they may favorably pair with anion vacancies, i.e.

N vacancies in w-AlN and C vacancies in 4H-SiC. Such pairing was previously investigated

for Nb in SiC [161] and Ce in AlN [212] are lower than those of Al (1.6), Si (1.9), possibly

leading to the stabilization of desired charge states for the defect complexes. We found that

neutral Hf- and Zr-vacancy pairs are promising candidates for spin qubits in both 4H-SiC

and w-AlN. Our calculations showed that these defect complexes are energetically stable and

exhibit a spin-triplet ground state localized in the band gap of SiC and AlN, which could be

optically addressable. In addition, we predicted the optical zero-phonon line, spin zero-field

splitting, and hyperfine coupling parameters of the defects, to assist future experimental

detection.

The rest of the paper is organized as follow. In Section 6.1.2, we describe the first-

principles computational methods used in this work. Our main results are presented in

Section 6.1.3. In Section 6.1.4, we discuss the unique features of the defects proposed here
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as potential qubits in 4H-SiC and w-AlN and we summarize our results.

6.1.2 Methods

Density functional theory and G0W0 calculations

We performed DFT calculations with semi-local and hybrid functionals using plane-wave

basis sets (with an energy cutoff of 75 Ry), optimized norm-conserving Vanderbilt (ONCV)

pseudopotentials [129, 324] and the Quantum Espresso code [106]. We used the PBE semi-

local functional [279] and the dielectric-dependent hybrid (DDH) functional proposed in

Ref. 346 with the self-consistent Hartree-Fock mixing parameter (α) determined in Ref.

346 for SiC (αSiC = 0.15 = 1/ε∞,SiC, where ε∞,SiC = 6.5 was self-consistently computed

by including the full response of the electronic density to the perturbing external electric

field). For AlN, we used the PBE0 hybrid functional [4], whose choice for AlN was extensively

verified in Ref. 334 (For PBE0, αAlN = 0.25, close to the self-consistently determined mixing

parameter; 1/ε∞,AlN = 1/4.16 = 0.2446). Bulk properties of 4H-SiC (see Table 6.1) and

w-AlN (reported in our previous study [334]) computed with the DDH functionals were

found to be in excellent agreement with experimental data [212, 278]. In addition, we also

performed calculations with the Heyd-Scuseria-Ernzerhof (HSE06) range-separated hybrid

functional 141 and projector-augmented-wave (PAW) pseudopotentials [34] to cross-check

some of our results obtained with the DDH functional.

The calculation of the defect formation energy [90] of charged point defects in a crystal

was carried out with the charge correction scheme developed by Freysoldt, Neugebauer, and

Van de Walle [91]. We employed supercells with 480 atoms and 96 atoms for PBE and DDH

calculations, respectively, and we sampled the Brillouin zone with the Gamma point only for

the largest supercell and with a 2× 2× 2 k-point for the smallest one. Convergence studies

as a function of cell size and k-meshes were reported in a previous paper [334].

The zero-phonon line (ZPL) of the LMI-vacancy pairs was obtained by calculating total
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Table 6.1: Computed bulk properties of the 4H-SiC calculated at the PBE and the DDH-
DFT levels of theory along using ONCV pseudopotentials [129, 324]. Experimental values
are from Ref. 212, 278.

Lattice parameters Dielectric constants

a (Å) c (Å) Electronic
(ε∞,‖ /ε∞,⊥)

Static (ε0,‖ /ε0,⊥)

PBE 3.096 10.136 6.938 / 7.251 10.306 / 10.938
DDH 3.087 10.089 6.396 / 6.623 9.663 / 9.926

Experiment 3.073 10.053 6.52 / 6.70 9.66 / 10.03

Table 6.2: Computed band-gaps (eV) of the crystals considered in this study calculated at
the G0W0@PBE, the DDH hybrid, and the HSE06 hybrid functional levels of theory.
Host crystals DD-hybrid

(eV)
HSE06
(eV)

G0W0@PBE
(eV)

Experiment

Diamond 5.59 5.42 4.25 5.48 [180]
4H -SiC 3.28 3.19 3.29 3.23 [212]
w -AlN 6.39 5.67 6.12 6.03 - 6.28 [302]

energy differences (∆SCF method) with 480-atom supercells with the PBE semi-local func-

tional and 240-atom supercells with the hybrid functionals (DDH and HSE06). We found

that energy differences computed with 480- and 240-atom supercells at the PBE level differed

by less than 50 meV.

We also calculated defect level diagrams of the LMI-vacancy pairs in 4H-SiC and w-AlN

within the G0W0@PBE approximation [133, 156] using the WEST code [117] with 240-atom

supercells and the Γ point only. Table 6.2 compares the band-gap of diamond, 4H-SiC, and

w-AlN obtained with the G0W0@PBE as well as with hybrid DFT calculations, showing

excellent agreement with experiment.

Spin Hamiltonian: zero-field splitting and hyperfine parameters

The properties of a defect in a crystal with spin S > 1/2, interacting with a nuclear spin I

can be described by the following spin Hamiltonian [331]:

H = S ·D · S + S ·A · I (6.1)
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where D is the zero-field splitting (ZFS) tensor describing the splitting and the mixing of

levels with different values of magnetic spin quantum number (e.g. ms = 0,±1 for S = 1),

occuring even in the absence of an applied magnetic field and A is the hyperfine tensor

describing the coupling between the electron spin and the nuclear spin. The first term of

Eq. 6.1 can be written as:

HZFS = DxxS
2
x +DyyS

2
y +DzzS

2
z = D

(
S2
z −

S(S + 1)

3

)
+ E(S2

x − S2
y) (6.2)

where D = 3Dzz/2 and E = (Dxx−Dyy)/2 are called the axial and rhombic ZFS parameters,

respectively, and the ZFS tensor D is traceless [331]. Hence, in the case of spin S = 1, the

D term describes the energy splitting between the ms = ±1 and ms = 0 spin sub-levels,

while the E term mixes the spin sub-levels. In the case of C3v symmetry, the E term is zero

and the C3v axis aligns with the spin quantization axis of the D tensor.

For a defect spin in a crystal composed of light elements (such as Si and C), the inter-

actions contributing to the ZFS tensor are known to be dominated by the magnetic dipole-

dipole interaction between the constituent electron spins (Hdd) [131]. For instance, for a

defect system with S = 1 composed of only two unpaired electrons (s1 = 1/2, s2 = 1/2, and

S = s1 + s2), the general form of the magnetic dipole-dipole coupling is given by:

Hdd =
µ0

4π

(γe~)2

|r1 − r2|5
(r2s1 · s2 − 3(s1 · (r1 − r2))(s2 · (r1 − r2))) (6.3)

where µ0 is the vacuum magnetic permeability, γe is the electron gyromagnetic ratio, ~ is the

Planck constant divided by 2π, s1 and s2 are the spin-1/2 operators for the two electrons, r1

and r2 are the positions of the electrons, and r is the distance between them. Using the total

spin (S = s1 + s2) and averaging over the spatial coordinates, one can derive an expression

for the ZFS tensor’s components originating from the magnetic dipole-dipole interaction of

Eq. 6.3:

Dab =
1

2

µ0

4π
(γe~)2 〈Ψij(r1, r2)|r

2δab − 3rarb
r5

|Ψij(r1, r2)〉 (6.4)
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where a and b label the Cartesian coordinates and Ψij(r1, r2) is the wavefunction of the

two-electron system.

For many-electron systems such as the LMI-vacancy spins considered here, we computed

the D-tensor’s components following Ref. 298:

Dab =
1

2

µ0

4π
(γe~)2 1

S(2S − 1)

occupied∑
i>j

χij 〈Ψij(r1, r2)|r
2δab − 3rarb

r5
|Ψij(r1, r2)〉 (6.5)

where Ψij(r1, r2) is a Slater-determinant approximated by using the i-th and j-th Kohn-

Sham wavefunctions of a given spin defect. The sum in Eq. 6.5 is over all the possible pairs

of occupied Kohn-Sham wavefunctions. χij is +1 (-1) for parallel (antiparallel) spins. As

suggested in Ref. 298, we computed Eq. 6.5 in Fourier space; we used PBE wavefunctions

obtained with a 480-atom supercell with the Γ point only.

Our results for diamond and SiC, obtained with the ONCV norm-conserving pseudopo-

tentials (see Table 6.5) systematically overestimate the experimental ZFS parameters by 200

∼ 300 MHz [166, 85].

The hyperfine parameters were calculated by first obtaining the ground-state wavefunc-

tions of a LMI-vacancy spin at the PBE level of theory, with the PAW pseudopotentials,

and the 480-atom supercell (Gamma-only calculations). We then calculated the hyperfine

parameters by using the gauge-including projector-augmented wave method [289] (GIPAW)

as implemented in the GIPAW module of the Quantum Espresso code. The core polarization

effects [16] were included throughout all of our calculations.

6.1.3 Results

Electronic properties of metal ion-vacancy pairs

As a validation step of the computational strategy applied to LMI-vacancy pairs, we first

applied the DDH hybrid functionals to the diamond NV center and a divacancy defect
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(the (hh)-divacancy) in 4H-SiC, which have the same C3v symmetry as that of the defect

complexes studied here; we compared our results with those already present in the litera-

ture [86, 97, 116] and found good agreement.

We then computed the atomic and electronic structure of the Hf- and Zr-vacancy in

4H-SiC using the DDH functionals. For the LMI-vacancy pairs considered in this study,

we note that we only consider (hh) axial configuration and C3v symmetry: for Hf-vacancy

pairs in SiC, Hf substitutes Si at an h-site and it pairs with a C vacancy at the nearest

neighboring h-site. Fig. 6.1a shows the structure of a Hf-vacancy defect complex in 4H-SiC

in a neutral charge state. Our hybrid functional calculation showed that substitutional Hf

does not occupy the original Si site, rather it is significantly off-centered (by 0.41 A), closer

to the C vacancy site, which provides extra space to accommodate the large substitutional

Hf. As noted earlier, the electronegativity of this Hf (1.341) is smaller than that of Si

(1.9), indicating that substitutional Hf would transfer four valence electrons to the nearest

neighboring C and Si dangling bonds, thus remaining in a 4+ oxidation state. Therefore, the

defect geometry includes three passivated C sp3 dangling bonds around substitutional Hf,

and three Si 3sp3 dangling bonds in the C3v symmetry, with one e− from each Si dangling

bond and one e− transferred from Hf.

Fig. 6.1b and 1c show the defect level diagram of the neutral Hf-vacancy complex in 4H-

SiC and its spin density, respectively, with a fully occupied a state and two degenerate ex and

ey states with two unpaired electrons localized within the band gap of the crystal. Although

there are significant contributions from Hf and the nearby C atoms to the defect spin density,

the major contribution arises from the Si 3sp3 dangling bonds. Hence, one may qualitatively

understand the level diagram of Fig. 6.1b, as originating from a C3v configuration of three

Si dangling bonds with four electrons, corresponding to a 3A2 spin-triplet state, analogous

to that of the diamond NV or the SiC (hh)-divacancy. A spin-conserving intra-defect optical

excitation would then be allowed, by promoting an a electron to the e manifold in the spin-

down channel, leading to a 3E excited state [97]. We also found that the Zr-vacancy showed
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very similar properties in terms of geometrical and electronic structures (Zr belongs to the

same row of the periodic table as Hf).

The energy levels of the occupied and unoccupied doubly degenerate e states of these

defects were also computed with the G0W0@PBE method and the HSE06 functionals (see

Table 6.3) for validation purposes. We found that all three methods yielded consistent results

for the position of the levels, which are calculated to be about 1 eV above the valence band

edge in SiC.

We note that the same type of defect may also be considered for optically addressable

spin qubits in w-AlN as the electronegativities41 of Hf (1.3) and Zr (1.3) are smaller than

those of Al (1.6) and N (3.0) and their ionic radii are larger than that of Al [339]. Fig. 6.2a

shows the defect level diagram of a Hf-vacancy complex in w-AlN, in which substitutional

Hf is paired with a N vacancy along the [0001] direction. The metal ion passivates the N

2sp3 dangling bonds and transfers one electron to the nearest neighboring Al 3sp3 dangling

bonds in the C3v configuration. The defect level diagram is qualitatively the same as that

of the Hf-vacancy in 4H-SiC. Using the G0W0@PBE method and hybrid functionals, we

calculated the energy levels of the occupied e states to be about 3 eV below the conduction

band edge (See Table 6.3). As shown in Fig. 6.2b, the dominant contribution to the ground-

state spin density originates from the Al 3sp3 dangling bonds, but there are also significant

contributions from substitutional Hf and the nearby N atoms.

Similar defect complexes may be obtained with other LMIs, for example, La-vacancy and

Y-vacancy pairs. La and Y have large ionic radii [339] and small electronegativities [212],

but only three valence electrons. Hence, they may behave similar to the neutral Hf-vacancy

when negatively charged. The defect level diagrams of the negatively charged La-vacancy

and Y-vacancy pairs in 4H-SiC and w-AlN are reported in Fig. S3 and S4, respectively,

showing, as expected, the presence of localized e states similar to Fig. 6.1b and 2a. We now

turn to discuss the energetic stability of LMI-vacancy pairs in 4H-SiC and w-AlN.
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Figure 6.1: Hf-vacancy complex in 4H-SiC. (a) Proposed defect structure of a Hf-vacancy
complex in 4H-SiC with (hh) axial configuration and C3v symmetry: Hf substitutes Si at
an h-site and it pairs with a C vacancy at the nearest neighboring h-site. Only the nearest
neighboring Si and C atoms are shown for clarity. (b) The defect level diagram of the Hf-
vacancy complex calculated at the DFT- DDH hybrid level of theory. The totally symmetric
a state is located at -0.34 eV and -0.19 eV below the valence band edge in the spin-up and
the spin-down channel, respectively. (c) Side (up) and top (down) views of the ground-state
spin density of the Hf-vacancy defect calculated at the DDH level of theory.

Figure 6.2: Hf-vacancy complex in w-AlN. (a) The defect level diagram of an axial Hf-
vacancy in w-AlN calculated at the DDH level of theory. The symmetry of the state is 3A2.
In this study, we only consider the axial defect configuration in C3v symmetry. In principle,
however, a basal configuration in C1h symmetry is also possible. (b) Side (top) and top
(bottom) views of the ground-state spin density of the Hf-vacancy in w-AlN calculated at
the DDH level of theory.
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Table 6.3: Computed energy levels (eV) of the occupied spin-up (left number) and unoccu-
pied spin-down (right number) e-manifolds of the LMI-vacancy pairs in 4H -SiC and w-AlN
with respect to the valence band edge using the G0W0@PBE, the DDH functional, and the
HSE06 hybrid functional levels of theory. The experimental band gap (Eg) of the materials
are given. The computed band gaps are reported in Table 6.2.

Host crystals Defects G0W0
(eV)

DD-hybrid
(eV)

HSE06
(eV)

4H -SiC (Eg = 3.3 eV) Hf-vacancy 0.97 / 2.26 0.96 / 2.54 0.99 / 2.48
Zr-vacancy 1.05 / 2.35 0.93 / 2.54 0.97 / 2.50

w -AlN (Eg = 6.2 eV) Hf-vacancy 2.92 / 4.96 2.92 / 5.53 2.90 / 4.78
Zr-vacancy 3.01 / 5.12 2.83 / 5.56 2.82 / 4.82

Defect stability

We investigated the stability of the LMI-vacancy defects by (1) examining the stability of the

C3v S = 1 high-spin state against potential symmetry-lowering structural distortions; and

(2) investigating defect formation energies as a function of charge states. We then computed

the charge transition levels and the ionization energies of the defects, which we compared to

their optical zero-phonon lines (ZPLs).

In Table S1, we report the total energy differences between the S = 0 singlet state (C1h

structure) and the S = 1 state (C3v structure) of the LMI-vacancy defects in w-AlN and

4H-SiC calculated using the DDH-DFT. We found that in all cases, the S = 1 state is lower

in energy than the S = 0 state, e.g. by 205 (380) meV for the Hf-vacancy in 4H-SiC (w-

AlN). In addition, we tested the stability of the defect geometry against perturbation to

the metal ion position, to investigate whether other low-energy configurations of the defect

were accessible, with small or no energy barriers, close to the proposed S = 1 state. We

considered in- and out-of-plane displacements of the metal ion: the former would lower the

defect symmetry while the latter would lead to a different electronic structure due to a

different interaction between the metal ion and the Si or Al dangling bonds. We found that

the C3v structure shown in Fig. 6.1a is the lowest energy minimum structure of the defects

in 4H-SiC and w-AlN at T = 0 K, indicating the robustness of the S = 1 state against

structural distortions.
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Next, we examined additional charge states. Fig. 6.3a and 3b show the defect formation

energy of the LMI-vacancy pairs (Hf and Zr, and La, respectively) in 4H-SiC in the C-poor

limit. The results for the C-rich case and those of Y-related defects are reported in Fig. S5

and S6.

In all cases, we found that the formation energy of a LMI-vacancy complex is lower than

the sum of the formation energies of an isolated LMI impurity and an isolated C vacancy

across the entire Fermi level range, regardless of the charge state. As shown in Fig. 6.3a (Hf

and Zr in SiC), the energy gain by forming a LMI-vacancy complex is ∼1 eV near the valence

band maximum (VBM), and larger than ∼2 eV near the conduction band minimum (CBM).

For the La case, the energy gain is larger than for the Hf-vacancy: ∼2 eV and ∼ 3 eV near

the VBM and CBM, respectively. The energy differences are the same in the C-rich limit

as shown in Fig. S5. In addition, we found that the LMI-vacancy defect formation energies

are lower than that of the divacancy, which was shown to be a stable defect in SiC65. This

result strongly supports our hypothesis that the pairing of large metal ions with C vacancies

leads to the formation of stable defect complexes in SiC.

The results of Fig. 6.3 also show the relative stability of different charge states. We recall

that the slope of the defect formation energy as a function of the Fermi level represents the

charge state of a given defect: a neutral state and a negative state are stable in a Fermi

level range where the defect formation energy with slope of 0 and -1, respectively, has the

lowest energy. In particular, Fig. 6.3a shows that the neutral Hf- and Zr-vacancy pairs

with S = 1 are stable in the mid-gap region of 4H-SiC, with (+1/0) charge transition levels

(CTLs) of 1.84 eV and 1.87 eV, respectively, with respect to the CBM. This indicates that the

neutral Hf-vacancy and Zr-vacancy pairs may exist in highly insulating 4H-SiC crystals. The

negatively charged state of the La- and Y-vacancy, with S = 1 is stable near the conduction

band edge with the (0/-1) CTLs of 0.86 eV and 0.99 eV, respectively.

Our results for the formation energies of the LMI-vacancy pairs in w-AlN are similar

to those for SiC, as shown in Fig. 6.4. The Hf- and the La-vacancy are stable in neutral
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and negatively charged states, and the formation energy of the Zr-vacancy is similar to that

of the Hf-vacancy. The (+1/0) CTL of the Hf- and the Zr-vacancy are 2.76 eV and 2.84

eV, respectively, with respect to the CBM. The stability region for the neutral Hf- and

Zr-vacancies is shown in Fig. 6.4a as a grey shaded area, and it overlaps with that of the

neutral N vacancy, which has been previously detected in experiment66. Furthermore, the

defect formation energy of the neutral Hf-vacancy is smaller than the sum of an isolated Hf

impurity and an isolated N vacancy formation energies, indicating that realizing the S = 1

state of the Hf-vacancy complex is indeed possible. The same conclusion was obtained for

the Zr-vacancy. The negative charge state of the La-vacancy is stable near the CBM, with

the (0/-1) CTL position 1.43 eV below the CBM. We also found a significant energy gain

(1∼2 eV) upon formation of the La-vacancy complex from an isolated La impurity and an

isolated N vacancy across the entire band gap.

Zero-phonon lines of the LMI-vacancy pairs

The optical initialization and readout of the diamond NV center and the SiC divacancy relies

on the spin-conserving excitation to a 3E spin-triplet excited state and its spin-selective

decay [406, 166]. We found that the same spin-conserving excitation scheme may occur

in the LMI-vacancy pairs in 4H-SiC and w-AlN, as shown in Table 6.4, where we report

calculated ZPLs using total energy differences (∆SCF calculations) at the PBE, the DDH,

and the HSE06 levels of theory. We note that the DDH and HSE06 calculations yielded

similar results.

The calculated ZPLs are 1.7 eV (PBE) and 2.2 eV (Hybrids) for the diamond NV center

and 1.0 eV (PBE) and 1.3 eV (Hybrids) for the SiC (hh)-divacancy; our PBE results under-

estimate the experimental ZPLs (1.945 eV and 1.094 eV) and our hybrid functional results

consistently overestimate them by 0.2∼0.3 eV. We computed the ZPLs of the Hf-vacancy

and Zr-vacancy pairs in 4H-SiC to be ∼2.0 eV using the DDH and HSE06 functionals. These

calculations were not conducted at the PBE level of theory as the occupied a state is deep
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Figure 6.3: Defect formation energy of spin defects in 4H-SiC. (a,b) Defect formation energy
of Hf- and Zr-related defects in 4H-SiC (a), and that of La-related defects in 4H-SiC (b)
as a function of Fermi level referred to the valence band maximum (VBM). Calculations
were conducted at the DFT-DDH level of theory. The defect formation energy of the (hh)-
divacancy is included for comparison. For simplicity, the results of Y-related defects are
reported in Fig. S6. The dotted lines are the sum of the formation energies of substitu-
tional impurity (either HfSi, ZrSi, or LaSi) and C vacancy to be compared to that of the
corresponding LMI-vacancy defect complex. The grey shaded area in each plot indicates a
Fermi-level range, in which the LMI-vacancy pairs exhibit a stable 3A2 spin-triplet (S = 1)
ground state in 4H-SiC.

in the valence band due to the PBE band gap underestimation. We expect our hybrid func-

tional results to provide an upper bound to the measured ZPLs of the Hf- and Zr-vacancy

in 4H-SiC, similar to our diamond NV and SiC divacancy results; we would estimate the

measured ZPLs to be close to ∼1.7 eV. Similarly, we suggest that the measured ZPLs of

the Hf- and Zr-vacancy in w-AlN are between ∼2.3 eV (PBE, lower bound) and ∼3.0 eV

(hybrid, upper bound).

For the negatively charged La-vacancy, the corresponding computed ZPLs are 1.20 (1.57)

eV and 2.24 (2.82) eV in 4H-SiC and w-AlN, at the PBE (DDH) level of theory. However,

the (0/-1) CTLs of the La-vacancy in 4H-SiC and w-AlN were found to be 0.86 eV and

1.43 eV, respectively, with respect to the CBM. This indicates that the 3E excited state of

the negatively charged La-vacancy is above the conduction band edge in both 4H-SiC and
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Figure 6.4: Defect formation energy of spin defects in w-AlN. (a,b) Defect formation energy
of Hf- and Zr-related defects in w-AlN (a), and that of La-related defects in w-AlN (b) The
DDH-DFT was used. The formation energy of N vacancy, which is a common defect in w-
AlN, is included for comparison. The dotted lines are the sum of the formation energies of a
substitutional impurity (either HfAl or ZrAl) and a N vacancy to be compared to that of the
corresponding LMI-vacancy defect complex. The grey shaded area in each plot indicates a
Fermi-level range where the LMI-vacancy pairs have stable 3A2 spin-triplet (S = 1) ground
state in w-AlN.

w-AlN, which may lead to the ionization of the defect center. This turned to be also the

case for the negatively charged Y-vacancy as its (0/-1) CTL is very shallow. Therefore, in

what follows we do not further consider the negatively charged La-vacancy and Y-vacancy

pairs, and focus on the Hf-vacancy and the Zr-vacancy pairs for use as potential qubits in

4H-SiC and w-AlN.

Spin Hamiltonian parameters: Zero-field splitting and hyperfine interaction

Electron paramagnetic resonance (EPR) is a powerful technique to detect and characterize

paramagnetic defects in solids [331]. The zero-field splitting D tensor and the hyperfine A

tensor are key components of the spin Hamiltonian that determines the EPR spectrum (see

Eq. 6.5). For the Hf-vacancy and Zr-vacancy in SiC (AlN), we found D = 1.40 (2.96) GHz

and 1.10 (3.05) GHz, respectively, using the ONCV pseudopotentials, as reported in Table
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Table 6.4: Computed zero-phonon lines (eV) of the (hh)-divacancy and the LMI-vacancy
pairs (Hf and Zr only) in 4H -SiC and w -AlN using various levels of theory; the semi-local
PBE functional, the DDH functional, and the HSE06 hybrid functional. Spin-conserving
intra-defect excitation between the 3A2 ground state and the 3E excited state was considered.

Host
crystals

Defects PBE
(eV)

DD-hybrid
(eV)

HSE06
(eV)

Experiment (eV)

Diamond NV center 1.72 2.22 2.23 1.945 [76]
4H -SiC (hh)-

divacancy
1.03 1.30 1.33 1.094 [188]

Hf-vacancy n/a 2.04 2.13 n/a
Zr-vacancy n/a 1.96 2.05 n/a

w -AlN Hf-vacancy 2.46 3.07 2.88 n/a
Zr-vacancy 2.33 2.98 2.79 n/a

6.5. These values are comparable to those of the diamond NV and the SiC divacancy, which

were measured to be 2.9 GHz [166] and 1.3 GHz [85], respectively.

In order to study the coupling between defect spin qubits and lattice strain, we computed

D as a function of hydrostatic pressure, D(P ) [77]. In particular, we investigated the role

of different dangling bonds (e.g. C 2sp3 vs. Si 3sp3) and different type of host crystals (e.g.

diamond vs. SiC or AlN) in determining the coupling characteristic of spin to strain. We

considered hydrostatic pressure, which may yield an isotropic compressive strain around the

defect centers, thus preserving the C3v symmetry. Defect qubits under hydrostatic pressure

could also be easily accessible in diamond anvil cell experiments [77]. We first compare D(P )

of the diamond NV and the SiC divacancy, and then discuss D(P ) of the LMI-vacancy pairs.

Fig. 6.5a shows that in diamond, D(P ) is linear up to 100 GPa, while in SiC, D(P ) deviates

from a linear behavior already at 50 GPa (SiC is known to be stable under pressure up to

100 GPa [414]). The linear behavior found for the diamond NV is in good agreement with

previous experimental [77] and theoretical [162] results. We found a slope of 10.91 MHz/GPa,

compared to an experimental value of 14.58 MHz/GPa [77] and a previous theoretical value

of 9.52 MHz/GPa [162]. One may distinguish two contributions to the variation of D as a

function of P : purely geometrical changes around the defect center and the variation of the

defect’s spin density. The former may be described using the ‘compressed-orbital’ model,
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introduced by Ivady et al. [162], according to which D is scaled by a geometrical factor

(d/d0) determined by atomic relaxations under pressure, in proximity of the defect; d and d0

are neighbor distances under P and at equilibrium, respectively. As shown in Fig. 6.5a, the

compressed-orbital model describes well D(P ) in the case of diamond, showing a negligible

contribution of spin density changes.

In contrast, D(P ) of the SiC divacancy is not well described by the compressed orbital

model. As expected from the bulk modulus of SiC, which is substantially smaller than

that of diamond, the divacancy defect structure relaxes significantly under pressure: d/d0

(P ) is 0.70 for P=100 GPa, compared to the value of 0.88 found for diamond NV under

the same conditions. This relaxation allows for significant hybridization between the diva-

cancy dangling bonds leading to large deviations of D(P ) from the values obtained with the

compressed-orbital model. The slope of D(P ) close to ambient pressure is 16.34 MHz/GPa

for the SiC divacancy.

Fig. 6.5b shows that the D(P ) of the Hf- and Zr-vacancy spins in 4H-SiC exhibits

a behavior different from that reported in Fig.4: D(P ) deviates significantly from that

predicted by a compressed orbital model, with a parabolic behavior and maxima around 70

GPa and 30 GPa for the Hf-vacancy and Zr-vacancy, respectively. In addition, close to P

= 0 GPa, the slope of D(P ) is about a factor of two smaller than that observed for the

divacancy: 7.637 (2.835) MHz/GPa for the Hf-(Zr)vacancy. We note that the structural

relaxation of the Hf- and the Zr-vacancy under pressure are relatively limited due to the

presence of the LMIs, compared to the divacancy relaxation. At 100 GPa, d/d0 is 0.84 for

both Hf- and Zr-vacancy, to be compared to 0.7 of the SiC divacancy.

Fig. 6.5c shows D(P ) for Hf- and Zr-vacancies in w-AlN up to 30 GPa (w-AlN is known

to undergo a structural phase transition above 20 GPa70). The figure indicates a greater

sensitivity of D(P ) with respect to the corresponding defects in SiC, with slopes of 19.24

MHz/GPa and 15.03 MHz/GPa for the Hf- and the Zr-vacancy, respectively, in w-AlN. Our

results show that the coupling characteristics of a defect spin qubit to lattice strain can vary
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over a wide range depending on its constituent electronic states (i.e. dangling bonds) and

its host crystal as well.

Finally, as a guide for future EPR-based defect detections and to support development of

the LMI-vacancy-based defects, we report computed hyperfine parameters (A) (see Eq. 6.1).

The Hf- and Zr-vacancy defects may have intrinsic nuclear spins by implanting different

isotopes: 177Hf (I = 7/2, 18.6%), 179Hf (I = 9/2, 13.62%), and 91Zr (I = 5/2, 11.2%).

The values of A are given in Table 6.6, for the 14N nuclear spin in diamond NV71 and

the LMI-vacancy defects. In 4H-SiC and w-AlN, there are also other intrinsic nuclear spins

associated with 29Si (I = 1/2, 4.7%), 13C (I = 1/2, 1.1%), 27Al (I = 5/2, 100%), and 14N

(I = 1, 99.63%). We report the hyperfine parameters for these intrinsic lattice nuclear spins

coupled with the Hf-vacancy and the Zr-vacancy in 4H-SiC and w-AlN in Table S2 and S3,

respectively.

Figure 6.5: Zero-field splitting (ZFS) of the spin defects in 4H-SiC and w-AlN. (a) ZFS
parameters (D) of the diamond NV and the SiC divacancy as a function of hydrostatic
pressure. (b, c) ZFS parameters (D) of the Hf-vacancy and the Zr-vacancy as a function
of hydrostatic pressure in 4H-SiC (b) and in w-AlN (c). For the defects in 4H-SiC, we also
show D of the divacancy for comparison. We considered a pressure range from -20 GPa
to 100 GPa, in which 4H-SiC is known to be stable. For defects in w-AlN under pressure,
we considered a pressure range from -20 to to 30 GPa as w-AlN is known to undergoes a
structural phase transition above 20 ∼ 30 GPa.
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Table 6.5: Computed Zero-field splitting parameters (D) of the diamond NV center, the
divacancy spins in 4H -SiC, and the Hf- and Zr-vacancy pairs in 4H -SiC and w -AlN. The
LMI-vacancy pairs considered in this study are the (hh) axial defects in C3v symmetry. The
single-particle wavefunctions for the defects were calculated using the Quantum Espresso
code with the ONCV [129, 324] and the PAW [34] pseudopotentials.

Host
crys-
tals

Defects Theory
(GHz)

(This work)
(QE +
ONCV)

Theory
(GHz)

(This work)
(QE + PAW)

Theory (GHz)
(Previous
work [86])

(VASP + PAW)

Exp. [166,
85]

(GHz)

Diamond NV center 3.03 2.90 2.854 2.88
4H -SiC (hh)-divacancy 1.682 1.387 1.358 1.336

(hk)-divacancy 1.580 1.306 1.320 1.222
(kh)-divacancy 1.641 1.356 1.376 1.334
(kk)-divacancy 1.635 1.349 1.321 1.305

Hf-vacancy 1.403 1.291 n/a n/a
Zr-vacancy 1.096 1.035 n/a n/a

w -AlN Hf-vacancy 2.962 2.896 n/a n/a
Zr-vacancy 3.053 2.925 n/a n/a

Table 6.6: Computed hyperfine parameters (MHz) for the Hf-vacancy and Zr-vacancy pairs
in 4H -SiC and w -AlN. For comparison, the computed hyperfine parameters of the diamond
NV center are also reported along with the experimental data [87] in parenthesis. Other
hyperfine parameters are reported in Table S2 and S3.

Host
crystals

Defects Nuclear spin Axx (MHz) Ayy (MHz) Azz

(MHz)

Diamond NV center 14N (I=1, 99.6%) -2.02 (-2.14) -2.02
(-2.14)

-2.15
(-2.70)

4H -SiC Hf-vacancy 177Hf (I=7/2,
18.6%)

7.58 7.91 -8.60

179Hf (I=9/2,
13.62%)

-4.76 -4.97 5.40

Zr-vacancy 91Zr (I=5/2,
11.2%)

1.92 1.70 17.57

w -AlN Hf-vacancy 177Hf (I=7/2,
18.6%)

26.05 26.20 10.53

179Hf (I=9/2,
13.62%)

-16.36 -16.46 -6.62

Zr-vacancy 91Zr (I=5/2,
11.2%)

6.21 6.12 15.59
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6.1.4 Conclusions

In this work, we proposed that large metal ion-vacancy pairs may be promising defect qubits

in 4H-SiC and w-AlN. In particular, we considered Hf, Zr, La, and Y as they have larger ionic

radii and smaller electronegativities than those of Si and Al. By using density functional

theory, we showed that, similar to the diamond NV center and the SiC divacancy, the

neutral Hf- and Zr-vacancy pairs are stable defects, with a 3A2 spin-triplet ground state and

an 3E excited state, both with energies in the band gap of 4H-SiC and w-AlN. In addition,

we found that the negatively charged La-vacancy and Y-vacancy pairs have a spin-triplet

ground state, similar to the diamond NV center. However, in either 4H-SiC or w-AlN, the

negative charge state of La- and Y-vacancy pairs is much shallower with respect to the CBM

than the corresponding ones for the Hf- and Zr-vacancies. As a result, the 3A2 - 3E zero-

phonon line excitation may ionize the La-vacancy defect center, making it unfavorable for

use as optically addressable spin qubit. In order to guide future experiments, we calculated

experimental observable of the Hf- and the Zr-vacancy in 4H-SiC and w-AlN, including

optical zero-phonon lines, hyperfine parameters, and the zero-field splitting parameters.

Recently, Varley, Janotti, and Van de Walle also investigated impurity-vacancy pairs in

w-AlN, including Ge, Sn, Ti, and Zr [379]. Using computational methods similar to those

employed here, they suggested that Zr- and Ti-vacancy pairs would be good candidates for

spin qubits in w-AlN. Their prediction on the Zr-vacancy is consistent with ours. In addition,

Varley et al. have shown that the Ge-vacancy and the Sn-vacancy do not favor the S = 1

state in w-AlN. We confirm this finding for 4H-SiC as well; our results show that in both

crystals the S = 1 state of the Ge-vacancy and the Sn-vacancy is much higher in energy than

their S = 0 state, which is stabilized by charge transfer from neighboring dangling bonds.

The proposed LMI-vacancy defects may provide new opportunities to defect-based quan-

tum technologies due to several unique features. For example, these defects may couple with

various types of lattice strain [209, 273, 86, 222, 77]: we showed that the Hf-vacancy in w-AlN

shows a large spin-pressure coupling which is about twice as large as that of the diamond
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NV, making it a good candidate for nano-scale pressure sensors [77]. Instead, the D param-

eter of the Zr-vacancy in 4H-SiC showed the smallest sensitivity to pressure, which may be

useful in applications requiring spin sub-level structure insensitive to pressure. Work is in

progress to explore spin responses to uniaxial strains, which may be useful in applications

ranging from nano-scale sensing [182] to creation of hybrid quantum systems [30, 329, 114].

Nuclear spins associated with different isotopes of Hf and Zr (177Hf (I = 7/2, 18.60%),

179Hf (I = 9/2, 13.62%), 91Zr (I = 5/2, 11.22%)) may also be used as quantum resources73.

For example, Klimov et al., demonstrated a coherent coupling between a divacancy-related

(PL5) spin and native nuclear spins associated with 13C and 29Si isotopes at room tem-

perature [183]. This study was a milestone towards developing SiC-based hybrid quantum

systems. However, it is still challenging to find 29Si and 13C nuclear spins strongly coupled

to a divacancy spin due to their natural abundances: 4.7% for 29Si and 1.1% for 13C. The

nuclear spins of Hf and Zr may resolve this issue and provide intrinsic nuclear spins at a

well-defined position of the LMI-vacancy pairs. Finally, the use of LMIs may be beneficial

for defect localization. For example, in the case of divacancy or Si vacancy in SiC, it is hard

to control the position of the defects as both C vacancies and Si vacancies are highly mobile.

The mobility of Hf and Zr in SiC would be much lower than that of the C vacancy and the

Si vacancy due to their large mass.

In summary, optically addressable spins bound to point defects in solids have a great po-

tential for quantum information processing, quantum communications, and hybrid quantum

systems. The defect complexes proposed here would provide alternative quantum systems in

heterogeneous materials such as 4H-SiC and w-AlN that could broaden the scope of defect-

based quantum technologies.
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6.2 First-principles study of strongly-correlated states for

spin-defects in diamond

Reprinted with permission from H. Ma, N. Sheng, M. Govoni, and G. Galli. Physical

Chemistry Chemical Physics. (2020). Copyright (2020) by the Royal Society of Chemistry.

https://doi.org/10.1039/D0CP04585C

Using a recently developed quantum embedding theory, we present first principles calcu-

lations of strongly correlated states of spin defects in diamond. Within this theory, effective

Hamiltonians are constructed, which can be solved by classical and quantum computers; the

latter promise a much more favorable scaling as a function of system size than the former.

In particular, we report a study of the neutral group-IV vacancy complexes in diamond, and

we discuss their strongly-correlated spin-singlet and spin-triplet excited states. Our results

provide valuable predictions for experiments aimed at optical manipulation of these defects

for quantum information technology applications.

6.2.1 Introduction

Electron spins in molecular and condensed systems are important resources for the storage

and process of quantum information [392]. In the past decades, several spin-defects in wide

band gap semiconductors and insulators have been widely studied, in particular in diamond

[76], silicon carbide [391, 59], and aluminum nitride [334, 335]. The prototype example

of spin-defects is the negatively-charged nitrogen-vacancy center (NV) center in diamond

[67, 308, 75, 242, 58, 112]. The NV center exhibits spin-triplet ground state with long spin

coherence time even at room temperature [17]. Different spin states of the electron spin can

be used to encode quantum information, and transitions between spin states can be driven by

microwave fields. To date, spin-defects have found many applications both in fundamental

science and cutting-edge quantum technologies. For instance, spin-defects have been used to

demonstrate fundamental principles of quantum mechanics such as the Berry phase [407] and

156



Bell inequality [137]. Spin-defects are also extensively used as quantum sensors due to their

sensitivity to external electric, magnetic and temperature fields [151, 92]. Furthermore, the

spin states of defects can be coupled with various optical [250] and mechanical [396] degrees of

freedom, making them important components in hybrid quantum architectures for quantum

communication and quantum computation.

First-principles simulations based on density functional theory (DFT) have been playing

an important role in the identification and characterization of spin-defects [334, 335]. For

instance, ground state DFT calculations can predict the formation energies of defects, thus

enabling, e.g. the identification of the atomistic structure and charge states of unknown

defects [160]. Using ground state DFT wavefunctions, several spin properties can be com-

puted that are critical for the prediction of qubit state splitting and coherence time, such as

the zero-field splitting and the hyperfine coupling [105, 218]. However accurate predictions

of excited states are challenging, when using DFT, especially in the case of strongly corre-

lated states which may not be approximated by a single Slater determinant of spin-electron

orbitals. Multi-reference electronic states have been an important subject of research in

quantum chemistry for decades [135]. Unfortunately, most ab initio multireference meth-

ods are computationally very demanding, preventing their straightforward application to

spin-defects in solids, whose description requires periodic supercells containing hundreds of

atoms.

In the past decades, quantum embedding theories emerged as promising approaches to

apply a high-level theory (such as multireference methods) to the description of strongly

correlated active regions of a solid or molecule, where the environment is treated with a

lower level of theory. Different quantum embedding schemes have been proposed[361], using,

e.g. the electron density [153, 152, 115, 164, 102, 395], density matrices [185, 401, 284]

or based on Green’s function approaches[205, 83, 420, 9, 10, 247, 159, 142, 143]. Spin-

defects in semiconductors can be viewed as atom-like systems embedded in bulk crystals,

and the states used to encode quantum information are usually localized around the defects.
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Therefore, spin-defects are promising systems for the application of quantum embedding

theories. For instance, Bochstedte and coworkers investigated strongly correlated excited

states of NV in diamond and divacancies in silicon carbide using the constrained random

phase approximation (cRPA) [39]. In the cRPA approach [9, 247, 143], the low-energy

excited states of the active site are obtained by solving an effective Hamiltonian that is

constructed from effective electron-electron interactions. The cRPA approach is based on

the random phase approximation (RPA), which neglects exchange-correlation effects in the

calculation of dielectric screening. Recently, we developed a quantum embedding theory

[219] similar to cRPA, albeit going beyond the RPA description of dielectric screening by

including exchange-correlation effects evaluated using a finite-field algorithm [220, 261]. In

addition, the quantum embedding theory of Ref.[219] has the important advantage that no

explicit summation over empty electronic orbitals is necessary [399, 260, 286, 117], making it

scalable to systems with hundreds of atoms. We demonstrated the efficiency and accuracy of

such a computational approach for spin-defects in diamond and silicon carbide, and carried

out calculations on both classical and quantum computers.

In this work, we apply the quantum embedding theory of Ref.[219] to several defects in

diamond (Fig. 6.6). In particular, we consider the group-IV vacancy complexes in diamond,

i.e. XV where X=Si, Ge, Sn, Pb, in addition to the NV center. These vacancy complexes

have attracted substantial interests recently due to their excellent optical properties [79, 98,

369, 119, 370, 419]. We performed quantum embedding calculations based on DFT results

obtained with different exchange-correlation functionals [279, 346] and demonstrated the

importance of using hybrid functionals to obtain accurate results. While the NV and SiV

centers were discussed in part in ref. [219], here we report the first to-date simulation of

the strongly-correlated excited states of the neutral GeV, SnV and PbV defects in both the

spin singlet and spin triplet manifold, which are both required to predict their operation as

optically-addressable qubits.
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Figure 6.6: Structures and spin polarization densities of spin-defects in diamond, including
the negatively-charged nitrogen-vacancy (NV) center, and the neutral group-IV vacancy
complexes XV (with X=Si, Ge, Sn, and Pb).

6.2.2 Methods

Quantum embedding theory

For a system of interacting electrons, the non-relativisitic Hamiltonian is given by

H =
∑
ij

tija
†
iaj +

1

2

∑
ijkl

vijkla
†
ia
†
jalak (6.6)

where a† and a are creation and annihilation operators acting on single-electron orbitals

i, j, k, l; the one-electron term t includes the kinetic energy and the electron-nuclei interac-

tion; the two-electron term v represents the bare Coulomb interaction between electrons.

The exact solution of H is generally limited to small systems due to the high computational

cost.

For systems where important electronic excitations are restricted to an active space (A)

such as frontier orbitals of molecules or energy levels near the Fermi level of solids, it is
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desirable to construct an effective Hamiltonian that operates only on the active space

Heff =
A∑
ij

teff
ij a
†
iaj +

1

2

A∑
ijkl

veff
ijkla

†
ia
†
jalak. (6.7)

and the physical processes outside the active space are included through a renormalization

of t and v. The renormalized effective Hamiltonian parameters teff and veff should properly

incorporate dielectric screening and exchange-correlation effects outside the active space. In

the cRPA approach, the two-body term in the effective Hamiltonian veff is computed as a

partially screened Coulomb interaction

veff = v + vχE
rpav (6.8)

where χE
rpa = χE

0 + χE
0 vχ

E
rpa is the reducible polarizability of the environment within the

RPA; χE
0 = χ0 − χA

0 is the irreducible density response function for the environment (E),

with χA
0 being the projection of χ0 inside the active space.

The cRPA approach neglects the exchange-correlation effect in the calculation of the

dielectric screening. In Ref. [219], we proposed an expression for veff that properly accounts

for exchange and correlation interactions in the environment

veff = v + fχEf (6.9)

where the reducible density response function χE of the environment is evaluated beyond the

RPA as χE = χE0 +χE
0 fχ

E , with f = v+ fxc being the Hartree-exchange-correlation kernel.

The exchange-correlation kernel fxc, defined as the derivative of the exchange-correlation

potential with respect to the electron density, is evaluated with a finite-field algorithm de-

scribed in Ref. [220, 261]. By representing χE and f on a compact basis obtained from a

low-rank decomposition of the dielectric matrix [399, 117], one can avoid the evaluation and

summation over virtual electronic orbitals. Finally, the one-body term teff can be computed
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by properly subtracting from the Kohn-Sham Hamiltonian a term that accounts for Hartree

and exchange-correlation effects in the active space [219].

Computational setup

We first carried out spin-unrestricted DFT calculations to obtain the ground state geome-

tries of defects in their host materials. Using ground state geometries, we then performed

spin-restricted DFT calculations [346] to obtain their electronic structure (Fig. 6.7) at the

mean-field level, which serves as the starting point for the construction of the effective Hamil-

tonian described in the previous section. The spin restriction ensures that both spin channels

are treated on equal footing and the eigenstates of the resulting effective Hamiltonian are

eigenstates of S2. Once mean-field DFT single particle eigenvalues and wavefunction are

obtained, an effective Hamiltonian was constructed using the quantum embedding theory

described in Section 6.2.2. The active space is defined by a set of selected Kohn-Sham or-

bitals, that are chosen to include relevant defect levels in the band gap of the host material, as

well as resonance orbitals and orbitals close in energy to band edges. The choice of the active

space was tested to yield converged excitation energies (see Section 6.2.4). Full configuration-

interaction (FCI) calculations [186] were performed for the effective Hamiltonian to compute

low-energy eigenstates and vertical excitation energies.

We performed DFT calculations using the Quantum Espresso code [106]. We used a

plane-wave basis set with a kinetic energy cutoff of 50 Ry. Norm-conserving pseudopo-

tentials from the SG15 library [324] are used to represent electron-ion interactions; these

pseudopotentials include scalar relativistic effects. In the calculations of PbV including

spin-orbit coupling, we used the fully relativistic version of SG15 pseudopotentials [322].

Defects are modeled with 215-atom supercells of diamond with the Γ-point sampling of the

Brilliouin zone. Quantum embedding theory calculations are performed from two different

DFT starting points, obtained respectively with PBE [279] and a dielectric-dependent hybrid

functional (DDH) [346], using geometries optimized with the PBE functional. For selected
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cases we also tested the HSE06 functional [141, 197], which was found to yield results similar

to those of the DDH functional (see Section 6.2.4). Quantum embedding calculations were

carried out with the WEST code [117]. Density response functions were evaluated using a

basis set including the first 512 eigenvectors of χ0. In calculations beyond the RPA, the

exchange-correlation kernel fxc was computed with a finite-field algorithm using the WEST

code coupled to the Qbox code [124]. FCI calculations were carried out using the PySCF

code [360].

Figure 6.7: Mean-field electronic structure of spin-defects in diamond obtained with spin-
restricted DFT calculations using the dielectric-dependent hybrid functional (DDH)[346].
VB (CB) denotes the valence (conduction) band. The symmetry of important defect orbitals
is indicated following group theory notation.

6.2.3 Results

In Table 6.7 we summarize several vertical excitation energies of spin-defects obtained from

FCI calculations with the Hamiltonian defined in Section 6.2.2. Overall, the excitation ener-

gies obtained using the DFT@DDH energies and wavefunctions are significantly larger than

those obtained at the DFT@PBE level of theory, and DDH results are in better agreement
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with available reference values. Our findings highlight the importance of using DFT@DDH

as a starting point for embedding calculations.

The NV in diamond has a spin-triplet ground state of C3v symmetry. Fig. 6.8 shows its

vertical excitation energies computed within and beyond the RPA, using the PBE and DDH

functionals. In all cases, quantum embedding calculations predict the correct energy level

structure of 3A2, 1E, 1A1 and 3E, with 1E and 1A1 being strongly-correlated states that

cannot be directly computed by DFT. Results obtained beyond the RPA using the DDH

functional yield the best agreement with experimental values (Table 6.7).

Figure 6.8: Many-electron energy levels of negatively charged nitrogen-vacancy (NV) center
in diamond. Calculations are performed starting from PBE and dielectric-dependent hybrid
(DDH) functionals, with dielectric screening evaluated within (dashed lines) and beyond
(solid lines) the random phase approximation (RPA).

Group-IV vacancy centers (SiV, GeV, SnV and PbV) in diamond have spin-triplet ground

states with D3d symmetry. The spin-flip excitations within eg single-particle defect levels

in the band gap and the excitations from eu to eg orbitals yield a rich set of many-electron

excited states, many of which are strongly-correlated. Experimentally, it has been shown

that the lowest spin-triplet excitations of SiV lead to a 3A2u-3Eu manifold [119]. Much less

is known about spin singlet excited states. Here we provide the first predictions of the singlet
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states of GeV, SnV and PbV obtained with first-principles simulations.

Fig. 6.9 presents the vertical excitation energies of many-electron states of group-IV

vacancy centers. First, we note that the excitation energies from 3A2g state to 3Eu state

increase from SiV to PbV (1.594/2.105/2.091/2.493 eV for SiV/GeV/SnV/PbV), which is

consistent with the trend of increasing eu-eg energy level splitting in their mean-field de-

scriptions (Fig. 6.7). In the spin singlet manifold, the positions of 1Eg,
1A1g and 1A1u

are also increasing in energy from SiV to PbV. These singlet states originate from spin-flip

transitions of eg defect orbitals located in the band gap of diamond, and thus their excitation

energies strongly depend on the Coulomb repulsion of electrons in eg orbitals. The increasing

excitation energies indicate an increase in strength of the effective Coulomb interactions, as

the element becomes heavier (the bond length between impurity atom and nearest neighbor

carbon atom is 1.99/2.03/2.10/2.13 Å for SiV/GeV/SnV/PbV, respectively).

In the case of PbV, we investigated the influence of spin-orbit coupling by performing

fully relativistic DFT calculations with noncollinear spin. We found that the effect of spin-

orbit coupling (SOC) on the position and splitting of defect levels (see Section 6.2.4) is

negligible. For instance, the eg orbitals of PbV in the band gap of diamond are split by

less than 0.02 eV due to the SOC effect. We further carried out projected density of states

calculations (see Section 6.2.4), which indicate that defect orbitals are hybrid orbitals with

a major component coming from the host carbon atoms instead of the impurity atom. This

prominent carbon character of the orbitals is responsible for the small SOC splitting observed

in the PbV case. Therefore, we concluded that spin-orbit coupling could be neglected in our

quantum embedding calculations.

Comparing results obtained with PBE and DDH functionals, we again found that the

DDH functional yields larger excitation energies and is in closer agreement with experiments

than those obtained with PBE. Beyond-RPA calculations yield larger singlet excitation ener-

gies than those obtained with RPA, similar to our findings for NV. Unlike singlet excitation

energies, triplet excitation energies of group-IV vacancy centers are found to be insensitive
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to the description of dielectric screening and mainly depend on the mean-field starting point.

Experimentally, it has been challenging to realize optical spin polarization for the neutral

SiV; however important progress in that direction has been recently reported by Zhang et

al. [419], who performed optically detected magnetic resonance measurements enabled by

optical spin polarization via higher-lying excited states. Our results for SiV indicate that the

experimental difficulties may arise from the position of the 1A1u state being slightly higher

in energy than that of the 3A2u-3Eu manifold, thus making the intersystem crossing (ISC)

from triplet to singlet manifolds energetically unfavorable [219]. However, when moving

from SiV to PbV in group IV, the the 1A1u state becomes slightly lower in energy than the

3A2u-3Eu manifold, suggesting that the ISC may become energetically more favorable for

heavier defects, such as the PbV.
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Figure 6.9: Many-electron energy levels of the neutral silicon-vacancy (SiV), germanium-
vacancy (GeV), tin-vacancy (SnV) and lead-vacancy (PbV) center in diamond. Calculations
are performed starting from PBE (top) and dielectric-dependent hybrid (DDH) (bottom)
functionals, with dielectric screening evaluated within (dashed lines) and beyond (solid lines)
the random phase approximation (RPA).
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Table 6.7: Vertical excitation energies (eV) of spin-defects including the negatively charged
nitrogen-vacancy (NV) and neutral silicon-vacancy (SiV), germanium-vacancy (GeV), tin-
vacancy (SnV), and lead-vacancy (PbV) center in diamond. Calculations are performed
using PBE and DDH functionals to obtain mean-field energy levels, and dielectric screening
is evaluated within and beyond the random phase approximation (RPA). Reference vertical
excitation energies are computed from experimental zero-phonon lines (ZPL) when Stokes
energies are available. Reference experimental values for ZPLs are shown in brackets in the
Ref column.

PBE DDH Ref
RPA Beyond-RPA RPA Beyond-RPA

System Excitation

NV 3E ↔ 3A2 1.395 1.458 1.921 2.001 2.180 [67] (1.945 [67])
1A1 ↔ 3A2 1.211 1.437 1.376 1.759
1E ↔ 3A2 0.396 0.444 0.476 0.561
1A1 ↔ 1E 0.815 0.993 0.900 1.198 (1.190 [308])
3E ↔ 1A1 0.184 0.020 0.545 0.243 (0.344-0.430 [112])

SiV 3Eu ↔ 3A2g 1.247 1.258 1.590 1.594 1.568 [370] (1.31 [119])
3A1u ↔ 3A2g 1.386 1.416 1.741 1.792
1Eg ↔ 3A2g 0.232 0.281 0.261 0.336
1A1g ↔ 3A2g 0.404 0.478 0.466 0.583
1A1u ↔ 3A2g 1.262 1.277 1.608 1.623
3Eu ↔ 3A2u -0.000 0.002 0.003 0.011 (0.007 [119])

GeV 3Eu ↔ 3A2g 1.595 1.619 2.076 2.105
3A1u ↔ 3A2g 1.689 1.726 2.173 2.231
1Eg ↔ 3A2g 0.288 0.355 0.329 0.434
1A1g ↔ 3A2g 0.529 0.639 0.617 0.797
1A1u ↔ 3A2g 1.595 1.621 2.076 2.110
3Eu ↔ 3A2u -0.012 -0.011 -0.012 -0.009

SnV 3Eu ↔ 3A2g 1.579 1.599 2.069 2.091
3A1u ↔ 3A2g 1.667 1.696 2.160 2.207
1Eg ↔ 3A2g 0.302 0.368 0.341 0.444
1A1g ↔ 3A2g 0.565 0.678 0.649 0.830
1A1u ↔ 3A2g 1.570 1.591 2.060 2.086
3Eu ↔ 3A2u -0.017 -0.017 -0.017 -0.014

PbV 3Eu ↔ 3A2g 1.910 1.934 2.464 2.493
3A1u ↔ 3A2g 1.980 2.008 2.533 2.574
1Eg ↔ 3A2g 0.321 0.396 0.360 0.476
1A1g ↔ 3A2g 0.615 0.750 0.697 0.910
1A1u ↔ 3A2g 1.894 1.916 2.446 2.476
3Eu ↔ 3A2u -0.023 -0.024 -0.025 -0.025

167



6.2.4 Technical details

Convergence tests of active space

A minimum model of 9 defect orbitals and 16 electrons can be constructed for group-IV

vacancy centers. The 9 defect orbitals for SiV are visualized in Fig. 6.10; the corresponding

orbitals for GeV, SnV, and PbV are similar in shape.

Figure 6.10: Shape of orbitals in the minimum model of SiV. a2u, eu and eg are defect
orbitals localized around the Si atom, e′u and e′g are resonance orbitals.

Active spaces that are larger than the minimum model are obtained by including in

the active space valence and conduction orbitals. In the following figures, active spaces

are denoted by a tuple of electron number and orbital number, and the minimum model
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is marked with dashed lines. Following each figure a precise definition of active spaces

with band indices is given. All results shown in this section are obtained with the dielectric

dependent hybrid (DDH) functional. In all cases, FCI eigenvalues are found to be insensitive

to the choice of active spaces.

Figure 6.11: Convergence of vertical excitation energies of SiV in diamond as a function of
active space size.

(16e,9o): minimal model including band indices 412, 415-416, 425-428, 430-431

(16e,10o): minimal model + index 450

(20e,11o): minimal model + indices 413-414

(30e,16o): minimal model + indices 378-382, 413-414

(106e,54o): indices 378-431
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Figure 6.12: Convergence of vertical excitation energies of GeV in diamond as a function of
active space size.

(16e,9o): minimal model including band indices 417, 420-421, 430-433, 435-436

(16e,11o): minimal model + indices 443, 455

(16e,10o): minimal model + index 443

(20e,11o): minimal model + indices 418-419

(30e,16o): minimal model + indices 383-387, 418-419

(106e,54o): indices 383-436
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Figure 6.13: Convergence of vertical excitation energies of SnV in diamond as a function of
active space size.

(16e,9o): minimal model including band indices 419-421, 430-433, 435-436

(16e,10o): minimal model + index 458

(20e,11o): minimal model + indices 417-418

(30e,16o): minimal model + indices 383-387, 417-418

(106e,54o): indices 383-436
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Figure 6.14: Convergence of vertical excitation energies of PbV in diamond as a function of
active space size.

(16e,9o): minimal model including band indices 419-420, 422, 430-433, 435-436

(16e,11o): minimal model + indices 443, 455

(16e,10o): minimal model + index 443

(20e,11o): minimal model + indices 417-418

(30e,16o): minimal model + indices 383-387, 418-419

(106e,54o): indices 383-436
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Results using HSE functional

Table 6.8: Vertical excitation energies (eV) of the negatively charged nitrogen vacancy (NV)
in diamond (64-atom supercell), obtained using different DFT starting points.

PBE HSE DDH
RPA Beyond-RPA RPA Beyond-RPA RPA Beyond-RPA

Excitation
3E ↔ 3A2 1.512 1.655 1.941 2.162 2.057 2.281
1A1 ↔ 3A2 1.222 1.590 1.371 1.933 1.367 1.941
1E ↔ 3A2 0.452 0.552 0.520 0.677 0.530 0.695
1A1 ↔ 1E 0.770 1.038 0.850 1.256 0.837 1.247
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Projected density of states

The following figures show the projected density of states (PDOS) of SiV, GeV, SnV and

PbV obtained with spin-unrestricted DFT calculations using the PBE functional. The eg

defect orbitals in the band gap of diamond are dominated by C character.

Figure 6.15: Projected density of states of SiV in diamond.

Figure 6.16: Projected density of states of GeV in diamond.
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Figure 6.17: Projected density of states of SnV in diamond.

Figure 6.18: Projected density of states of PbV in diamond.
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Fully relativistic calculations of PbV

Figure 6.19: Kohn-Sham eigenvalues for important defect levels of PbV obtained by (un-
restricted) collinear-spin DFT calculation (left) and fully relativistic noncollinear-spin DFT
calculations (right). The split of degenerate eg orbitals in the band gap induced by spin-orbit
coupling is less than 0.02 eV.

6.2.5 Conclusion

In summary, we presented a study of strongly-correlated electronic states of several spin-

defects in diamond using the quantum embedding theory described in Ref [219]. We reported

the first prediction of strongly-correlated electronic states of neutral GeV, SnV and PbV

defects based on first-principles calculations. In addition, we compared results obtained

starting from different functionals and with different approximations in the treatment of the

dielectric screening, and we showed the importance of using hybrid functional starting points

and beyond-RPA dielectric screening for the construction of effective models of spin-defects.

Our results indicate that optical spin polarization may be easier to realize in neutral vacancy

complexes with elements heavier than Si, e.g. Pb, due to a more energetically favorable ISC.

Finally we note that the quantum embedding results obtained in this work are based on the

exact diagonalization of effective Hamiltonians, which can be effectively performed on near-

term quantum computers with a relatively small number of qubits, as shown in Ref [219].
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6.3 Microscopic theory for spin-phonon interactions in silicon

carbide

Adapted with permission from S. J. Whiteley, G. Wolfowicz, C. P. Anderson, A. Bourassa,

H. Ma, M. Ye, G. Koolstra, K. J. Satzinger, M. V. Holt, F. J. Heremans, A. N. Cleland, D.

I. Schuster, G. Galli, and D. D. Awschalom. Nature Physics. (2019). Copyright (2019) by

Springer Nature. https://doi.org/10.1038/s41567-019-0420-0

Hybrid spin-mechanical systems provide a platform for integrating quantum registers

and transducers. Efficient creation and control of such systems require a comprehensive

understanding of the individual spin and mechanical components as well as their mutual

interactions. Point defects in silicon carbide (SiC) offer long-lived, optically addressable spin

registers in a wafer-scale material with low acoustic losses, making them natural candidates

for integration with high quality factor mechanical resonators. Here, we show Gaussian focus-

ing of a surface acoustic wave in SiC, characterized by a novel stroboscopic X-ray diffraction

imaging technique, which delivers direct, strain amplitude information at nanoscale spatial

resolution. Using ab initio calculations, we provide a more complete picture of spin-strain

coupling for various defects in SiC with C3v symmetry. This reveals the importance of shear

for future device engineering and enhanced spin-mechanical coupling. We demonstrate all-

optical detection of acoustic paramagnetic resonance without microwave magnetic fields,

relevant to sensing applications. Finally, we show mechanically driven Autler-Townes split-

tings and magnetically forbidden Rabi oscillations. These results offer a basis for full strain

control of three-level spin systems.

6.3.1 Introduction

Hybrid quantum systems [201] leverage the strengths of various modalities of represent-

ing quantum information, including optical photons for sending quantum states across long

distances, spins for information storage, and microwave superconducting circuits for com-
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putation, with the potential of using nanomechanics as an intermediary quantum bus. For

instance, coherently exchanging quantum information between optically active defect spins

and mechanical resonators [209] provides a route to couple optical photons to microwave

frequency phonons in a hybrid quantum system. Optically active defect spins in SiC, such

as the neutral divacancy [188], have recently been shown to support long-lived spin states

[59, 398, 334] a variety of quantum controls [138], and spin-photon interfaces [60] compatible

with quantum entanglement protocols. Importantly, SiC is a piezoelectric material and sup-

ports mature fabrication processes for production of high quality micro-electromechanical

systems (MEMS). Although progress has been made coupling spins to mechanics in similar

defect systems, including the NV center in diamond with coherent sensing using single spins

[192, 148], strain tuning[368, 273], and mechanical driving [224, 20, 223, 19] defects in SiC

are well positioned to solve the materials challenges of coherently manipulating spins with

strain and strong coupling of spins with phonons.

While static strain will generate shifts in ground state (s = 1) energy sublevels, resonant

a.c. strain can coherently drive electron spin transitions. Large in-plane dynamic strains can

be generated by surface acoustic wave (SAW) devices, which are well developed for radio

frequency filters and offer simple engineering approaches for fabricating low loss resonators.

SAW devices have also been proposed as hybrid quantum transducers [328] and used to

demonstrate coupling to superconducting qubits [228, 248, 319] along with optomechanical

interactions involving defect excited states [114, 113].

Here, we demonstrate acoustically driven ∆ms = ±1 spin transitions, where ms = 0,±1

is the spin projection, on divacancy spin ensembles in 4H-SiC. We further demonstrate

∆ms = ±2 spin transitions through the Autler-Townes effect, mechanical Rabi oscillations,

and comparing the relative coupling strengths of inequivalent divacancy defects. These

results are well described by our theoretical model developed from a combination of direct

experimental observations and Density Functional Theory (DFT) calculations of anisotropic

spin-strain coupling coefficients. We find that uniaxial strain and shear drive divacancy spins
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with coupling strengths of similar magnitude, but with generally different relative phase and

selection rules. These experiments utilize a patterned Gaussian SAW phonon resonator that

focuses strain and reduces resonator mode volumes in analogy to Gaussian optics. To image

the mechanical modes of our Gaussian SAW devices, we use a unique nanoscale scanning X-

ray diffraction technique that directly measures acoustic lattice perturbations. In addition,

spatial responses of Autler-Townes splittings are well explained by ensemble averaging shear

and uniaxial strain from the SAW mode. Shear provides an important way of controlling

three-level spins (qutrits) with phonons and opens avenues for coupling spins with MEMS.

6.3.2 Experimental control of divacancy spins using surface accoustic

waves

Gaussian SAW Devices for Spin Manipulation

We first describe device design and characterization with a nanoscale X-ray diffraction imag-

ing method, followed by spin manipulation. To amplify the piezoelectric response of the SiC

substrate, we use a thin, sputtered aluminum nitride (AlN) layer on the SiC surface before

fabricating a SAW resonator to create radio frequency mechanical strain. Standard planar

SAW resonator designs span wide apertures, often greater than 100 acoustic wavelengths

(λ), distributing the strain across large crystal areas. Since AlN and 4H-SiC have isotropic

in-plane Rayleigh wave velocities [363] (5790 and 6830 m/s, respectively), we fabricate sim-

ple Gaussian geometries, inspired by Gaussian optics, to focus strain while also suppressing

acoustic diffraction losses (Fig. 6.20a,b). A patterned aluminum interdigitated transducer

transmits SAWs (λ = 12 µm), while grooves in AlN form Bragg gratings that act as SAW

cavity mirrors to support a resonator frequency ωm/2π ≈ 560 MHz and loaded quality fac-

tor of ∼ 16, 000 (Fig. 6.20c) at 30 K. The Gaussian SAW resonator internal quality factor

(Qi ≈ 22, 400 at 30 K) is likely limited by the polycrystalline AlN layer at low temperatures.

In our experiments the Gaussian geometries for enhanced strain focusing and reduced res-
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onator mode volumes facilitate larger strains for fast coherent manipulation of electron spin

states.

Figure 6.20: Strain focusing with a Gaussian SAW resonator. a. Schematic of the
SAW device geometry fabricated on sputtered AlN on a 4H-SiC substrate. Microwaves
drive spin transitions mechanically through the SAW resonator (cyan) and magnetically
from the backside coplanar waveguide (orange). b. Optical micrograph of the Gaussian
SAW resonator’s acoustic focus (λ = 12 µm, w0 = 2λ) with red lines illustrating the wave’s
out-of-plane displacement (uz). c. Magnitude (blue) and phase (red) measurements of the
1-port reflection of the Gaussian SAW resonator used in spin experiments.

To directly visualize the Gaussian mechanical mode, we use stroboscopic scanning X-

ray diffraction microscopy (s-SXDM) to image the phonons with nanoscale resolution. This

technique utilizes coherent X-rays from a synchrotron radiation light source, generated at

8.00 keV and focused to a 25 nm spot size (3σ), and Bragg diffraction contrast to enable local

measurements of lattice curvature and strain along a particular crystal orientation [147, 150].

We frequency match the radio frequency excitation to a Gaussian interdigitated transducer

with the timing structure of the synchrotron storage ring in order to measure the peak-to-

peak amplitude of the acoustic standing wave. Due to the frequency matching requirements

for s-SXDM, we use a SAW transducer without a cavity, which is designed to produce a
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spatial strain mode similar to resonators used in spin experiments. Scanning the nano-

focused X-ray beam in real space clearly shows the SAW profile (Fig. 6.21a) is consistent

with the fabricated geometry and approximately nanometer Rayleigh wave displacements.

The dynamic transverse lattice slope (Fig. 6.21b), caused by a local lattice plane tilt towards

the ±y direction, is expected from a Gaussian focus and SAW confinement. These X-ray

measurements confirm that the SAW out-of-plane displacement (in phase with the in-plane

uniaxial strain required for spin driving) is maximized at the resonator’s precise center and

demonstrate the value of using X-ray diffraction microscopy for studying quantum devices

[276] and materials.

Figure 6.21: Nanoscale X-ray imaging of the Gaussian acoustic mode. Mechanical
mode from a similar Gaussian SAW device (λ = 19 µm, w0 = 1.25λ), directly measured
with s-SXDM using the 4H-SiC [0004] Bragg peak. This quantifies the SAW peak-to-peak
longitudinal (a) and transverse (b) lattice slopes at the acoustic beam waist. The image is
skewed vertically due to sample drift during measurements.

Optically Detected Acoustic Paramagnetic Resonance

Electron spin ground state sublevels of divacancy defects are typically measured using opti-

cally detected magnetic resonance (ODMR) with ∆ms = ±1 transitions magnetically driven

by microwave fields. Due to the defect’s intersystem crossing, ODMR probes the spin pro-
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jections of |±1〉 versus |0〉 through changes in photoluminescence. The ground state spin

Hamiltonian neglecting hyperfine interactions takes the form, z z

H/h = γB · S + S ·D · S (6.10)

where h is the Planck constant, γ is the electron gyromagnetic ratio (µB ≈ 2.8 MHz/G), B

is the external magnetic field vector, and D is the zero-field splitting tensor (also referred

to as Dij). In the absence of lattice strain, the divacancy spin-spin interaction simplifies

to D0S
2
z where D0 ≈ 1.336 and 1.305 GHz, depicted in Fig. 6.22a, for c-axis oriented

defect configurations [85] hh and kk, respectively. The zero-field splitting Hamiltonian is

sensitive to local lattice perturbations [86] such as thermal disorder, an applied electric field,

or strain. When the lattice is perturbed by a small strain, characterized by a tensor εkl,

the zero-field splitting tensor is generally modified by ∆Dij = Gijklεkl, where Gijkl is the

spin-strain coupling tensor. The symmetry of the spin-strain coupling tensor is determined

by the local C3v symmetry of the hh and kk configurations for divacancy and also applies

to the NV center in diamond [375]. We utilize off-diagonal Hamiltonian elements containing

∆Dij to drive resonant spin transitions with phonons, and consider both ∆ms = ±1 and

±2 transitions for full ground state s = 1 spin control.

We first demonstrate mechanical driving of ∆ms = ±1 spin transitions with the Gaussian

SAW resonator. The point group symmetries of the divacancy in SiC allow for non-zero spin-

strain coupling coefficients for zero-field splitting terms that contain the anticommutators

{Sx, Sz} and
{
Sy, Sz

}
. In order to probe acoustic paramagnetic resonance, we tune the axial

magnetic field (B0) such that the spin |0〉 to |−1〉 transition frequency is matched with the

SAW resonator (Fig. 6.22a). It is critical to design an experimental measurement sequence

insensitive to stray magnetic fields from electrical currents in the interdigitated transducer.

To disentangle these effects, we use an interlaced pump/laser probe sequence as well as lock-in

amplification to measure the difference in luminescence when the spin resonance frequency is

shifted away from the cavity resonance via modulation of B0 with a small coil. Spin rotations
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are primarily driven and detected during the SAW cavity ring down period without radio

frequency driving, although the spin ensemble will also encounter some residual magnetic

resonance when the drive is turned back on due to lingering optical-spin polarization. We

detect higher photoluminescence contrast when the radio frequency drive is matched to our

SAW cavity resonance (Fig. 6.22b), whereas smaller, residual contrast is detected when the

drive is far off the SAW resonance. When the photoluminescence contrast is normalized

by ODMR experiments from magnetic driving, the kk/hh mechanical drive rate ratio is

0.89 ± 0.10, which agrees with our theoretical model and DFT calculations (ratio ∼ 1.0)

where shear couples more strongly to ∆ms = ±1 transitions than does uniaxial strain. The

transverse spatial dependence (Fig. 6.22c) confirms that the photoluminescence contrast we

measure on resonance matches our Gaussian resonator’s mechanical mode shape. Magnetic

field driving from the transducer, on the other hand, results in a flat profile. The long

cavity ring up time prevents us from performing pulsed Rabi oscillations, though this could

be solved using fast B0 pulses to tune the spin resonance frequency. Our demonstration

of ∆ms = ±1 transitions by phonons enables direct photoluminescence contrast (optical

detection) of resonant spin-strain coupling for sensing applications without electromagnetic

microwaves.

Coherent Magnetically Forbidden Spin Transitions

To complement ∆ms = ±1 spin driving, we further use the strain coupling terms S2
x − S2

y

and
{
Sx, Sy

}
in the zero-field splitting Hamiltonian to show ∆ms = ±2 spin transitions. For

these transitions, photoluminescence contrast from ODMR cannot directly measure resonant

strain without extra electromagnetically driven spin resonance because photoluminescence

contrast is insensitive to differences between |+1〉 and |−1〉 states. The mechanical transition

rate (Ωm) is instead measured using Autler-Townes (AC Stark) splittings, where in the

dressed basis, the new eigenstates are split in energy by Ωm. This splitting can be observed

in the ODMR spectrum. We use a continuous magnetic microwave pump (Rabi frequency
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Figure 6.22: Optically detected acoustic paramagnetic resonance in silicon car-
bide. a. Energy level diagram showing the SAW frequency on resonance with the spin
transition between the |0〉 and |−1〉 states. b. (Top) Interlaced pump-probe sequence dur-
ing magnetic field-modulation. (Bottom) Photoluminescence (PL) contrast at 30 K when
electrical excitation is on and off cavity resonance (ωm/2π = 559.6 MHz). Radio frequency
power is 32 mW at sample, and ∆B0 is in reference to the drive frequency. c. Integrated
photoluminescence contrast from kk resonance (evaluated at ∆B0 = 0) as a function of
the SAW resonator transverse position. Driving on-resonance (“Ωm”) uses the interlaced
sequence from (b), whereas off-resonance data (“ΩB”) uses a continuous, non-interlaced se-
quence. The radio frequency power is 200 mW at the sample, and the beam waist model is
exp[−y2/(w2

0)], using fabrication parameters and a scaled amplitude. All error bars are 95%
confidence intervals.

ΩB : ±1 ∼ MHz) for |0〉 to |±1〉 transitions while the SAW is driven at a constant frequency

ωm/2π (Fig. 6.23a). Dressed state level anti-crossings are most clearly seen when the |±1〉

spin sublevels are tuned to the SAW resonance frequency. The dressed spin eigenstate

energies observed for a 400 mW drive power on the Gaussian SAW resonator closely match

predictions for Ωm/2π ≈ 4 MHz (Fig. 6.23b). Additionally, the Autler-Townes splitting

scales linearly with square-root of radio frequency drive power delivered to the SAW, which

is expected as Ωm is linearly proportional to strain (Fig. 6.23c). The resolved Autler-Townes

splitting shows that the mechanical drive rate is faster than the ensemble spin inhomogeneous

linewidth (decoherence rate), allowing for measurement of coherent Rabi oscillations.

We mechanically drive coherent Rabi oscillations of kk electron spins using the pulse

sequence in Fig. 6.23d to differentiate between populations transferred to |+1〉 versus |−1〉

spin states. The spin ensemble inhomogeneous linewidth (∼ 1 MHz) and relatively long
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cavity ring up time (2Qi/ωm ≈ 16µs) prevent fast mechanical pulsing, so we keep the

mechanical drive on continuously. A pair of magnetic microwave π pulses defines the effective

mechanical pulse time τ seen by the spin ensemble (Fig. 6.23d). Using this pulse sequence

and positive ODMR contrast of kk defects, normalized photoluminescence values of ±1

can be interpreted as |∓1〉 spin populations, respectively, before the second magnetic π

pulse. We find that three-level system dynamics are necessary to explain the observed

mechanical Rabi oscillations shown in Fig. 6.23e, in particular the ensemble population at

τ = 0. Specifically, during each magnetic π pulse, the simultaneous mechanics Ωm drives

some unintended population transfer between the |+1〉 and |−1〉 spin states, which leads to

a modified initial projection of the population at τ = 0.

The observed Rabi oscillations qualitatively agree with spin simulations predicted using

a physical model consisting of spin-strain coupling parameters from DFT calculations and

experimental knowledge, including (i) the ensemble spin resonance spectrum from ODMR,

(ii) spin-mechanical drive amplitudes from fitted Autler-Townes splittings, (iii) spatial distri-

bution of spins in the SiC bulk and implanted layer, (iv) finite element analysis of strain and

shear distributions from Rayleigh waves, and (v) optical point spread function. Our physical

model reproduces the mechanically driven Rabi oscillation rates, asymmetric decay shape,

higher frequency features from hyperfine detuned spins, and initial spin population at τ = 0.

This demonstrates we can mechanically drive ∆ms = ±2 transitions with a Rabi frequency

about four times greater than the ensemble ODMR linewidth. During Rabi oscillations with

400 mW radio frequency power, we estimate from input-output theory applied on a SAW

model that the mechanical field strength is approximately 10−3 strain order of magnitude,

in agreement with DFT simulation results. Short Rabi decay times are primarily explained

by SAW strain inhomogeneity across the ensemble, though another source of damping may

be present in the experiments. Manipulation of single divacancies [59, 60] will offer the op-

portunity to extend coherent Rabi oscillations up to or beyond the spin T∗2. Coherent Rabi

oscillations in ensembles for quantum phononics applications could be improved by using
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Figure 6.23: Coherent mechanical driving of kk spin ensembles. a. Divacancy
ground state illustration with magnetic (ΩB:±1) and electromechanical (Ωm) drives shown.
b. Autler-Townes measurement on a kk ensemble at 30 K; dressed for N phonons (black) and
undressed (white) spin transitions. The mechanically dressed eigenstates and corresponding
transitions are split by Ωm. c. Mechanical transition rates obtained from Autler-Townes
splittings agree with a linear fit to the square-root of drive power. Error bars are 95%
confidence intervals from fits. Inset shows an Autler-Townes splitting measurement (black)
at B0 ≈ 100 G, with Gaussian fits (red) to the divacancy electron spin and weakly cou-
pled nearby nuclear spins. d. Pulse sequence for mechanically driven Rabi oscillations. e.
Mechanically driven Rabi oscillations at ∼400, 100, and 25 mW, respectively, and typical
error bars are 95% confidence intervals. The photoluminescence signal for each Rabi oscilla-
tion is normalized by a global factor, and simulations are ensemble average predictions with
inhomogeneous strain distributions from finite element modeling.

higher quality material and controlled aperture implantations [372] for more homogeneous

strain distributions.

Quantum Sensing of Gaussian Acoustics

We spatially map the Gaussian SAW mode in order to show that ∆ms = ±2 transitions

occur due to the mechanical driving and not due to any stray electromagnetic fields [182].

We map changes in the Autler-Townes splitting, shown in Fig. 6.24a, at a constant mag-
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netic field while sweeping the laser position across the SAW beam waist. In the resonator’s

transverse direction, a clear Autler-Townes splitting maximum, and therefore resonant strain

amplitude, is observed at the Gaussian acoustic focus. Ωm as a function of transverse po-

sition is well described by a model Gaussian beam waist of the fundamental mode in the

device geometry (FWHM = 3.3λ) and not due to predicted stray electric fields. Scanning

the laser spot longitudinally (Fig. 6.24b), along the SAW propagation, reveals oscillations in

the Autler-Townes splitting at the resonator’s acoustic half wavelength. Surprisingly, in con-

flict with assumptions of a simple sinusoidal standing wave containing uniaxial strain nodes

(Fig. 6.21a,b), we observe the mechanical drive rate oscillations are less than 5% peak-to-

peak. This is contrary to expectations from previous theoretical work [74] neglecting the

full strain tensor, so we interpret our experimental results using a spin Hamiltonian under

anisotropic strains also including shear.

Figure 6.24: Spatially mapping mechanical spin drive rates. a. Autler-Townes split-
ting of kk |−1〉 sublevel as a function of transverse position (left) at x = 0 and the analyzed
mechanical transition rates (right). The beam waist model only uses fabrication parameters
with a scaled amplitude. b. Mechanical transition rate (left) as a function of longitudinal
position at y = 0, plotted with a line through the experimental data. FFT (right) shows a
peak and Gaussian fit in red at the expected acoustic periodicity λ/2 (6µm). c. Strain εxx
and εxz of the SAW modeled with COMSOL Multiphysics.

The spatial mapping results can be understood by employing a combination of finite-

element simulations in conjunction with DFT calculations of spin-strain interactions. The

{1120} mirror plane symmetry in 4H-SiC is broken by shears εxz and εxy, which drive the

spin out-of-phase with εxx− εyy, εyz (mirror symmetry preserving). In our experiments, the
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Gaussian SAW beamwaist is oriented to propagate in the {1100} plane (defined as the xz-

plane). The mechanical transition rate is Ωm = 1
2(G11−G12)εxx−2iG14εxz corresponding to

∆ms = ±2 transitions, where the spin-strain coupling tensor G is written in Voigt notation.

In Fig. 6.24c we show finite element simulation results for uniaxial strain εxx and shear εxz

for a Rayleigh wave propagating along the x direction. We model the experimental results

by converting the strain maps to Ωm using G calculated from DFT, which is then convolved

with both an optical point-spread function and estimated spatial distribution of the spins.

In our model, spatial averaging causes the spin ensemble to experience similar transition rate

magnitude |Ωm| from (G11 − G12)εxx and G14εxz contributions at their respective spatial

maxima. These uniaxial strain and shear components, which are spatially offset, do not

interfere destructively since Ωm is proportional to a linear combination of εxx(S2
x − S2

y) and

εxz(SxSy + SySx). Consequently, in qualitative agreement with our calculations, we always

experimentally measure a non-zero Autler-Townes splitting in Fig. 6.24b. Furthermore,

our model explains the relative Ωm amplitudes between kk and hh (4.0 : 1.1) observed

in Fig. 6.25, and the results for ∆ms = ±2 transitions are well described by the zero-

field splitting tensor when the full strain tensor is taken into account. Lastly, we measure

mechanical-spin driving on the PL6 defect species in SiC, previously used to demonstrate

electron-nuclear spin entanglement in ambient conditions [183]. We find that PL6 experiences

similar mechanical transition rates compared to hh and kk (Fig. 6.25); therefore, mechanical

control of SiC spin ensembles should be possible at room temperature.

6.3.3 First-principles theory of spin-strain coupling

In this section we discuss symmetry properties of the spin-strain coupling tensor and present

its values predicted by density functional theory (DFT). We mainly focus on the experimen-

tally relevant divacancies (hh, kk)-VV in 4H-SiC. To validate the computational protocol of

our DFT calculations, we also report the spin-strain coupling tensor for the NV center in

diamond and compare with existing literature values.
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Figure 6.25: Divacancy defect comparisons of mechanical drive rates. Autler-Townes
splitting measurements (black points) for kk, hh, and PL6 with Ωm ∼4.0, 1.1, 3.4 MHz,
respectively, under the same conditions. The fits (red lines) are from simultaneously fitting
the data with ODMR spectra to common Gaussian distributions. All error bars are 95%
confidence intervals from fitting and measurements are performed at 30 K.

In the following discussion we define the Cartesian frame for 4H-SiC to be x : [1̄1̄20],

y : [11̄00], z : [0001], in consistence with the SAW experiment. The Cartesian frame for

diamond is defined as x : [1̄10], y : [1̄1̄2], z : [111]. Under this convention, there is a mirror

plane perpendicular to the x axis for both 4H-SiC and diamond. The structures of (hh,

kk)-VV and NV in their respective frames are shown in Fig 6.26.

Figure 6.26: The structures of (hh, kk)-VV in 4H-SiC (left) and NV in diamond (right).
Lattices are slightly rotated around z axis to show more details.

In the basis of {|mS = 1〉 , |mS = 0〉 , |mS = −1〉}, the zero-field splitting (ZFS) Hamil-
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tonian as a 3× 3 matrix is

HZFS = S ·D · S (6.11a)

=


1
2(Dxx +Dyy) +Dzz

1√
2
(Dxz − iDyz) 1

2(Dxx −Dyy)− iDxy
1√
2
(Dxz + iDyz) Dxx +Dyy

1√
2
(−Dxz + iDyz)

1
2(Dxx −Dyy) + iDxy

1√
2
(−Dxz − iDyz) 1

2(Dxx +Dyy) +Dzz

 (6.11b)

=


1
3D

−2
3D

1
3D

 . (6.11c)

The last expression applies to defects with C3v symmetry where the D tensor has only one

independent component, and we used the conventional notation D = 3
2Dzz. Off-diagonal

elements of HZFS are zero by symmetry. If a strain is applied to the system, the C3v

symmetry may be broken, leading to non-zero off-diagonal elements and transitions between

states with different mS .

The relation between strain and D is characterized by the spin-strain coupling tensor of

the defect, which we denote as G. G is defined as the derivative of D with respect to the

strain tensor ε

Gabcd =
∂Dab
∂εcd

(6.12)

where a, b, c, d represent the Cartesian coordinates x, y, z. The strain is defined as εab =

1
2(uaxb

+ ub
xa

). In this convention, compressive strains are negative.

In Voigt notation, both D and ε are written as 6-dimensional vectors in the order of

(xx, yy, zz, yz, xz, xy), and G is represented by a 6 × 6 matrix. Within the linear response
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regime, the change of D induced by strains are given by



∆Dxx

∆Dyy

∆Dzz

∆Dyz

∆Dxz

∆Dxy


=



G11 G12 G13 G14 G15 G16

G21 G22 G23 G24 G25 G26

G31 G32 G33 G34 G35 G36

G41 G42 G43 G44 G45 G46

G51 G52 G53 G54 G55 G56

G61 G62 G63 G64 G65 G66





εxx

εyy

εzz

2εyz

2εxz

2εxy


. (6.13)

Under C3v symmetry, G only has 6 independent components. In the reference frame

defined in Fig 6.26, G has the following form

G =



G11 G12 G13 G14

G12 G11 G13 −G14

−G11 −G12 −G11 −G12 −2G13

G41 −G41 G44

G44 G41

G14 (G11 −G12)/2


(6.14)

where independent components are chosen to be G11, G12, G13, G14, G41 and G44. Combin-

ing the above equation with Eq. 6.11b, one can see that strains can induce both ∆mS = ±1

and ∆mS = ±2 transitions.

To compute the numerical values of G components, we assume that the zero-field splitting

effects for VV and NV are dominated by the magnetic dipole-dipole interaction, and we

neglect the spin-orbit coupling effect. The magnetic dipole-dipole interaction between the

two unpaired electrons in the defect ground state is given by

Hdd =
µ0

4π
(γe~)2 r2s1 · s2 − 3(s1 · r)(s2 · r)

r5
(6.15)
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where µ0 is the vacuum magnetic permeability, γe is the electron gyromagnetic ratio, ~ is the

reduced Planck constant, s1 and s2 are spin-1/2 operators for the two unpaired electrons,

r and r are the relative coordinate between two electrons and its norm. The D tensor is

computed as the expectation value of the dipole-dipole interaction on the ground state from

Kohn-Sham DFT calculations

Dab =
1

2

1

S(2S − 1)

µ0

4π
(γe~)2

occ.∑
i≤j

χij 〈Ψij |
r2δab − 3rarb

r5
|Ψij〉 (6.16)

where S is the effective electron spin (S = 1 for triplet defects like VV or NV). The sum-

mation runs over all pairs of occupied Kohn-Sham orbitals, and χij = ±1 for parallel and

anti-parallel electrons respectively. Ψij ’s are 2 × 2 Slater determinants of occupied Kohn-

Sham orbitals, and expectation values of dipole-dipole interaction are evaluated following

the recipe in Ref [298].

We performed DFT calculations for (hh, kk)-VV in 4H-SiC and NV in diamond with

the PBE exchange-correlation functional[279]. The Projector Augmented Wave (PAW)

method[34] with datasets compiled in the PSL1.0 library[64] are used to represent electron-

ion interactions. When evaluating the expectation values in Eq. 6.16, we used normalized

pseudo-wavefunctions[162][86][335]. We used 55 Ry kinetic energy cutoff and Γ-point sam-

pling of the Brillioun zone. Structures are relaxed until forces on atoms are smaller than

5 × 10−4 eV · Å−1
. All DFT calculations are performed with the Quantum ESPRESSO

code[106].

To simulate isolated defects, we create defects in large supercells built by periodic replica-

tion of hexagonal unit cells of 4H-SiC or diamond. The following figure shows the convergence

of D value with respect to supercell size: For all results reported in the following, 7× 2× 2

supercells are adopted, which contain 782 and 588 atoms for pristine 4H-SiC and diamond,

respectively.

With the computational formalism described above, the D values obtained for (hh, kk)-
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Figure 6.27: D value (1
2(Dxx+Dyy)−Dzz) for VV in 4H-SiC (left) and NV in diamond (right)

as functions of supercell sizes. Calculations are done without strain and thus all defects have
C3v symmetry. E values (1

2(Dxx −Dyy)) are smaller than 2 MHz for all calculations.

VV in 4H-SiC and NV in diamond agree very well with experimental results[166][85].

Table 6.9: D values for (hh, kk)-VV in 4H-SiC and NV in diamond (GHz).
This work (DFT) Ref (Exp.)[166][85]

hh-VV 1.41 1.34
kk-VV 1.36 1.31
NV 2.92 2.88

To compute spin-strain coupling tensor G, D tensor is computed for defects in strained

lattices with 0.0%, ± 0.25%, ± 0.5%, ± 0.75%, ± 1.0% amount of strain in each direction

(xx, yy, zz, yz, xz, xy). Then a linear fitting for each D component and strain component is

performed to extract the corresponding G component. Due to numerical noises, G tensors

predicted by DFT do not exactly obey the symmetric form in Eq. 6.14. We symmetrized

G tensors by projecting them onto the A1 irreducible representation of the C3v group.

Table 6.10 presents the 6 independent components of symmetrized G tensors. For all values

reported, the standard deviation of linear fitting are smaller than 0.1 GHz/strain.

To validate the computational protocol, we compared the results for the NV center in

diamond with the work by Udvarhelyi et al. [375] and Barson et al. [23]. Udvarhelyi et al.
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Table 6.10: Independent components of spin-strain coupling tensors for hh(kk)-VV in 4H-SiC
and NV in diamond (GHz/strain).

hh-VV kk-VV NV
G11 −3.99 −3.35 −4.63
G12 −0.42 −0.93 −1.67
G13 1.74 1.26 1.23
G14 0.34 1.93 −4.68
G41 0.30 −0.10 0.48
G44 0.46 0.47 0.80

computed the spin-strain and spin-stress coupling coefficients of NV centers by DFT. Barson

et al. measured the coupling strength between spin and stress for NV centers in a diamond

nanomechanical structure. To make direct comparison, we converted the 6 spin-strain cou-

pling coefficients for NV centers in Table 6.10 into the 6 spin-stress coupling coefficients a1,

a2, b, c, d, e as defined in their work [375][23]. In the conversion we used the compliance

tensor of diamond in Ref [177]. Table 6.11 shows the comparison of spin-stress coupling co-

efficients from different works. Note that Ref [23] used a different sign convention for strain,

and therefore their results are multiplied by a negative sign in the table.

Table 6.11: Spin-stress coupling coefficients for NV in diamond (MHz/GPa).
This work (DFT) Ref (DFT)[375] Ref (Exp.)[23]

a1 -3.82 -2.65 -4.4
a2 3.80 2.52 3.7
b 1.80 1.94 2.3
c -2.77 -2.84 -3.5
d -0.23 -0.12
e 0.60 0.67

From Table 6.11 we find that our results match well with both references. The agreement

is a validation for the computational setup we used for the calculations of G.

Finally, we remark that the response of D to strain (2nd rank tensor) is different from

its response to applied electric field (1st rank tensor). Similar to spin-strain coupling tensor,

194



we can define tensor F as the coupling between D and the electric field

Fabc =
∂Dab
∂Ec

. (6.17)

In Voigt notation, the response of D to an applied electric field E is given by



∆Dxx

∆Dyy

∆Dzz

∆Dyz

∆Dxz

∆Dxy


=



F11 F12 F13

F21 F22 F23

F31 F32 F33

F41 F42 F43

F51 F52 F53

F61 F62 F63




Ex

Ey

Ez

 =



F12 F13

−F12 F13

−2F13

F42

F42

F12




Ex

Ey

Ez

 (6.18)

where C3v symmetry was considered in the last equality. Combining the above equation

with Eq. 6.11b, one can see that an applied electric field can drive ∆ms = ±1 and ∆ms =

±2 transitions, similar to the case of applying a strain. However, an electric field and a

strain enters the Hamiltonian by different response tensors with different dimensions. F

is 6 × 3 matrix while G is 6 × 6 matrix in Voigt notation. For C3v defects, F has only

3 independent components while G has 6 independent components; F also has completely

different symmetric form as G even if only the first 3 columns of G (corresponding to normal

strains εxx, εyy, εzz) are considered.

6.3.4 Conclusions

In summary, we established a Gaussian surface acoustic wave platform for ground state spin

control and imaged the phononic modes using a novel nanoscale X-ray imaging technique.

Local defect symmetries are critical to understanding spin-phonon interactions in a general

model of anisotropic lattice perturbations that we developed based on ab initio calcula-

tions. Surprisingly, shear and uniaxial strain couple to the ground state spin with equivalent
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magnitudes and different relative phases depending on the strain tensor component. This

property could be used to engineer material and device designs that capitalize on mechanical

interactions. Since a complete model of spin-strain coupling with C3v symmetry requires six

independent coupling parameters, strain cannot necessarily be treated as an equivalent elec-

tric field vector. Even so, the zero-field splitting tensor is also affected by electric fields with

three independent coupling parameters and can be used for both ∆ms = ±1 and ∆ms = ±2

spin transitions. In order to further enhance defect-phonon interaction strengths for hybrid

quantum systems, defect excited state electronic orbitals [210, 54] and spins [225] could be

utilized as opposed to ground state spins [23], and strain effects on defect hyperfine couplings

have not been well explored. In addition, new defects [13] with greater spin-spin or spin-

orbit coupling, with minimal cost to their spin coherence, may greatly improve spin-phonon

coupling strengths and be advantageous for quantum control of phonons with optically ad-

dressable spins. Our combined theoretical understanding and demonstrations of spin-strain

coupling with SiC divacancies provide a basis for quantum sensing with MEMS [374] as well

as engineering strong interactions with single phonons for quantum transduction [201], spin

squeezing [30], and phonon cooling [178] applications.
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6.4 Quantum dynamics simulation of spin-defects

Coherence time is one of the most important properties for spin-defects. Theoretical pre-

diction of coherence times for spin-defects involves the solution of the central spin problem,

where a central electron spin is embedded in an environment consisting of external fields

and other spins (e.g. nuclear spins or electron spins from other paramagnetic defects). This

section discusses the simulation of the central spin problem using the cluster correlation

expansion (CCE) method [411, 334, 413].

For a system consisting of a central electron spin with spin-1 and bath nuclear spins in

external magnetic field, the Hamiltonian is given by

H = He +Hb +Heb (6.19)

where He, Hb and Heb denotes the electron Hamiltonian, bath Hamiltonian and the coupling

between electron and bath

He = −γeB · S + S ·D · S (6.20)

Hb = −
∑
i

γiB · Ii +
∑
i6=j

Ii · Pij · Ij (6.21)

Heb =
∑
i

S ·A · Ii (6.22)

where B is the external magnetic field; γe and γi are gyromagnetic ratios of the electron

spin and the i-th nuclear spin, respectively; S and Ii denote electron and the i-th nuclear

spin operators, respectively; D is the zero-field splitting tensor; Pij is the magnetic dipole-

dipole coupling tensor between bath spins i and j; Ai is the hyperfine coupling tensor that

couples the electron spin with the i-th nuclear spin. The zero-field splitting and hyperfine

coupling can be predicted through first-principles electronic structure calculations, as shown
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in Chapter 5.

The quantum coherence of the central electron spin is characterized by the time evolution

of the reduced density matrix of the electron spin governed by the Hamiltonian in Eq.

6.19. For pure dephasing processes, the diagonal elements of the reduced density matrix

are unchanged during the time evolution, and the entire Hamiltonian in Eq. 6.19 can be

decomposed into different components corresponding to different qubit states

H =
∑
ms

|ms〉 〈ms| ⊗Hms (6.23)

where |ms〉 denotes ms spin state of the electron spin, Hms denotes the Hamiltonian acting

on the bath spins when the electron spin is in |ms〉 state. For instance, H0 and H1 governs

the time evolution of bath spins when the electron spin is in ms = 0 and ms = 1 state,

respectively.

The dephasing of electron spin is characterized by the decay of the coherence function

L(t), which is defined as

L(t) =
Tr
{
ρ(t)S+

}
Tr{ρ(0)S+}

(6.24)

where ρ(t) denotes the reduced density matrix of the central electron spin.

If the qubit is prepared in initial state 1√
2
(|0〉 + |1〉), the coherence function can be

expressed in terms of time evolution of bath spins under under H0 and H1

L(t) = Tr
{
ρbU0U

†
1

}
(6.25)

where ρb is the density matrix for bath spins; U0 and U1 are propogators for bath spins under

electron spin states ms = 0 and ms = 1, respectively. The exact form of U0 and U1 depends

on the experimental setup for the measurement of coherence time. For free induction decay

(T ∗2 measurement),
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U0 = exp{−iH0t} (6.26)

U1 = exp{−iH1t} (6.27)

For Hahn-Echo experiment (T2 measurement),

U0 = exp{−iH0t/2} exp{−iH1t/2} (6.28)

U1 = exp{−iH1t/2} exp{−iH0t/2} (6.29)

Higher-order dynamical decoupling schemes correspond to more sophisticated forms of U0

and U1.

The exact calculation of L(t) is computationally very demanding the number of bath spins

is large. In the CCE method, the coherence function L(t) is approximated as a product of

cluster contributions

L(t) ≈
∏
C

L̃C(t) (6.30)

where L̃C(t) is the irreducible contribution from cluster C. CCE calculations are normally

performed up to a certain order, which defines the size of clusters considered for the evalu-

ation of L(t). For instance, a first-order CCE calculation considers only contributions from

isolated nuclear spins; a second-order CCE calculation considers contributions from all clus-

ters with up to 2 nuclear spins. The irreducible contribution L̃C(t) is defined recursively

as

L̃C(t) =
LC(t)∏
C ′ L̃

′
C(t)

(6.31)

where LC(t) denotes the coherence function computed with only contributions from cluster

C included; C ′ denotes clusters with sizes smaller than or equal to that of C.
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Using the CCE method and its generalizations, we investigated the quantum coherence

of divacancy electron spins in silicon carbide and predicted the coherence time of divacancy

spins in the environment of nuclear spins and other paramagnetic defects [42, 272].
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CHAPTER 7

CONCLUSION

In this dissertation, we presented research projects that fall within two interwoven themes:

(1) the development of method and algorithms for quantum mechanical simulation of molecules

and materials; (2) first-principles studies of the electronic structure and quantum dynamics

of spin-defects in semiconductors for quantum information science.

In terms of method development, we first presented a finite-field approach to compute

density response functions for molecules and materials. The approach is non-perturbative

and can be used in a straightforward manner with both semilocal and orbital-dependent func-

tionals. The finite-field approach allows us to explicitly compute the exchange-correlation

kernel of a physical system and to perform GW and Bethe-Salpeter equation calculations

beyond the random phase approximation. These developments enabled accurate and effi-

cient many-body perturbation theory (MBPT) calculations of charged and neutral excitation

energies of molecules and materials.

Based on the finite-field approach, we developed a quantum embedding theory for the

study of strongly-correlated electronic states in condensed systems. The quantum embedding

theory is capable of constructing effective models for a selected part of the physical system,

with the environment acting as a dielectric screening media described at the density func-

tional theory (DFT) level. The effective models can be solved by classical algorithms such

as exact diagonalization, or by quantum algorithms such as variational quantum eigensolver.

The quantum embedding theory presented here is a powerful tool to reduce a complex ma-

terials science problem into a simpler one, and is highly valuable for first-principles studies

of strongly-correlated electronic states in condensed and molecular systems.

In addition to electronic properties, we presented a novel approach to compute certain

spin properties (e.g. the hyperfine coupling) for paramagnetic systems. Calculations of spin

properties such as hyperfine coupling require an accurate description of electronic wavefunc-

tion near nuclei, which is a challenging task for common basis sets such as plane waves
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or Gaussian orbitals. We presented a novel approach to predict such spin properties from

all-electron DFT calculations using finite element basis sets, and we demonstrated that the

results can be systematically converged as a function of the basis set size. This development

enabled robust all-electron calculations of spin properties for paramagnetic molecules and

materials.

In terms of application, we presented a number of first-principles predictions for spin-

defects in semiconductors, encompassing properties such as thermodynamics, excited states,

spin-phonon coupling and quantum coherence. In particular, we applied DFT and MBPT

to study the stability and excitation energies of several novel spin-defects in silicon carbide

and aluminum nitride; we applied the quantum embedding theory to study the strongly-

correlated excited states of group-4 vacancy centers in diamond; we applied DFT and group

theory to construct a complete microscopic theory of spin-phonon coupling for divacancy

spins in silicon carbide; we applied cluster correlation expansion method to simulate the

quantum coherence dynamics of spin-defects in the environment of other electron spins and

nuclear spins. These studies greatly expand our understanding of various physical proper-

ties of existing spin-defects as well as novel ones, and provided important guidance for the

experimental realization and manipulation of these spin-defects as solid-state qubits.

The research presented in this dissertation heavily focused on solving real-world chemical

and materials problems, which usually involve large, heterogeneous systems. For instance,

an accurate description of spin-defects often requires a periodic cell including hundreds or

even thousands of atoms. First-principles calculations of such systems require not only

sophisticated theories but also robust and scalable software implementations that can harness

the computational power of modern high-performance computing architectures. Theories

and methods presented in this dissertation are implemented with a strong emphasis on

efficiency and scalability, and are made available to the community through several open-

source software (summarized in Appendix B).

Overall, this dissertation highlighted several advancements in quantum mechanical sim-
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ulations of molecules and materials. It is my hope that the theories, algorithms and applica-

tions presented in this dissertation will benefit the greater chemistry and materials science

community in large-scale, first-principles simulations of molecular and condensed systems.
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APPENDIX B

SOFTWARE

List of software and contribution:

1. WEST code (west-code.org, contributor)

• Finite-field algorithm

• Quantum embedding theory

2. Qbox code (qboxcode.org, contributor)

• DFT calculations under arbitrary finite electric field

3. PyZFS code (github.com/hema-ted/pyzfs, main developer)

4. PyCDFT code (github.com/hema-ted/pycdft, main developer)

Details of the PyZFS code and the PyCDFT code are discussed in Appendix B.1 and B.2,

respectively.
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B.1 PyZFS: A Python package for first-principles calculations of

zero-field splitting tensors

This subsection presents PyZFS, a Python package for first-principles calculations of zero-field

splitting tensors in plane-wave basis.

Reprinted from H. Ma, M. Govoni, and G. Galli. Journal of Open Source Software.

5(47), 2160 (2020). https://doi.org/10.21105/joss.02160

Electron spins in molecules and materials may be manipulated and used to store in-

formation, and hence they are interesting resources for quantum technologies. A way to

understand the physical properties of electron spins is to probe their interactions with elec-

tromagnetic fields. Such interactions can be described by using a so-called spin Hamiltonian,

with parameters derived from either experiments or calculations. For a single electron spin

(e.g. associated to a point-defect in a semiconductor or insulator), the leading terms in the

spin Hamiltonian are

H = µBB · g · S + S ·D · S (B.1)

where µB is the Bohr magneton, S is the electron spin operator, B is an external magnetic

field, g and D are rank-2 tensors that characterize the strength of the Zeeman interaction, and

the zero-field splitting (ZFS), respectively. Experimentally, the spin Hamiltonian parameters

g and D may be obtained by electron paramagnetic resonance (EPR). The ZFS tensor

describes the lifting of degeneracy of spin sublevels in the absence of external magnetic fields,

and is an important property of open-shell molecules and spin defects in semiconductors

with spin quantum number S ≥ 1. The ZFS tensor can be predicted from first-principles

calculations, thus complementing experiments and providing valuable insight into the design

of novel molecules and materials with desired spin properties. Furthermore, the comparison

of computed and measured ZFS tensors may provide important information on the atomistic

structure and charge state of defects in solids, thus helping to identify the defect configuration

present in experimental samples. Therefore, the development of robust methods for the
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calculation of the ZFS tensor is an interesting topic in molecular chemistry and materials

science.

In this work we describe the code PyZFS for the calculation of the ZFS tensor D of

molecules and solids, based on wave-functions obtained from density functional theory (DFT)

calculations. For systems without heavy elements, i.e. where spin-orbit coupling is negligible,

magnetic spin-spin interactions are the dominant ones in the determination of the ZFS tensor.

For molecules and materials with magnetic permeability close to the vacuum permeability

µ0, the spin-spin ZFS tensor evaluated using the DFT Kohn-Sham wavefunctions, is given

by:

Dab =
1

2S(2S − 1)

µ0

4π
(γe~)2

occ.∑
i<j

χij〈Φij |
r2δab − 3rarb

r5
|Φij〉 (B.2)

where a, b = x, y, z are Cartesian indices; γe is the gyromagnetic ratio of electrons; the

summation runs over all pairs of occupied Kohn-Sham orbitals; χij = ±1 for parallel and

antiparallel spins, respectively; Φij(r, r
′) are 2 × 2 determinants formed from Kohn-Sham

orbitals φi and φj , Φij(r, r
′) = 1√

2

[
φi(r)φj(r

′)− φi(r′)φj(r)
]
.

Several quantum chemistry codes (for example ORCA [257]) include the implementation

of ZFS tensor calculations for molecules, where electronic wavefunctions are represented

using Gaussian basis sets. However, few open-source codes are available to compute ZFS

tensors using plane-wave basis sets, which are usually the basis sets of choice to study

condensed systems. In PyZFS we implement the evaluation of spin-spin ZFS tensors using

plane-wave basis sets. The double integration in real space is reduced to a single summation

over reciprocal lattice vectors through the use of Fast Fourier Transforms [298].

We note that a large-scale DFT calculations can yield wavefunction files occupying tens

of GB. Therefore, proper distribution and management of data is critical. In PyZFS, the

summation over pairs of Kohn-Sham orbitals is distributed into a square grid of processors

through the use of the Message Passing Interface (MPI), which significantly reduces the CPU

time and memory cost per processor.

PyZFS can use wavefunctions generated by various plane-wave DFT codes as input. For
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instance, it can directly read wavefunctions from Quantum Espresso [106] in the HDF5

format and from Qbox [124] in the XML format. The standard cube file format is also

supported. PyZFS features a modular design and utilizes abstract classes for extensibility.

Support for new wavefunction format may be easily implemented by defining subclasses of

the relevant abstract class and overriding corresponding abstract methods.

Since its development, PyZFS has been adopted to predict ZFS tensors for spin defects in

semiconductors, and facilitated the discovery of novel spin defects [335] and the study of spin-

phonon interactions in solids [396]. PyZFS has also been adopted to generate benchmark data

for the development of methods to compute the ZFS tensor using all electron calculations

on finite element basis sets [105]. Thanks to the parallel design of the code, PyZFS can

perform calculations for defects embedded in large supercells. For example, the calculations

performed in [396] used supercells that contain more than 3000 valence electrons, and are

among the largest first-principles calculations of ZFS tensors reported so far.
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B.2 PyCDFT: A Python package for constrained density

functional theory

Reprinted with permission from H. Ma, W. Wang, S. Kim, M. Cheng, M. Govoni, and G.

Galli. Journal of Computational Chemistry. 41, 1859–1867 (2020). Copyright (2020) by

Wiley. https://doi.org/10.1002/jcc.26354

This subsection presents PyCDFT, a Python package to compute diabatic states using

constrained density functional theory (CDFT). PyCDFT provides an object-oriented, cus-

tomizable implementation of CDFT, and allows for both single-point self-consistent-field

calculations and geometry optimizations. PyCDFT is designed to interface with existing den-

sity functional theory (DFT) codes to perform CDFT calculations where constraint poten-

tials are added to the Kohn-Sham Hamiltonian. Here we demonstrate the use of PyCDFT by

performing calculations with a massively parallel first-principles molecular dynamics code,

Qbox, and we benchmark its accuracy by computing the electronic coupling between dia-

batic states for a set of organic molecules. We show that PyCDFT yields results in agreement

with existing implementations and is a robust and flexible package for performing CDFT

calculations.

B.2.1 Introduction

The transfer of electronic charges plays a central role in many physical and chemical processes

[241], such as those for cellular activity in biological processes [36] and catalytic activity in

condensed phases [259]. In addition, the rate of charge transfer in a material directly impacts

its carrier mobility and hence its use in e.g., electronic devices [167, 168].

Theoretical and computational modeling provides invaluable insights into the micro-

scopic mechanism of charge transfer, and is playing an important role in the develop-

ment of novel drugs, catalysts, and electronic materials. In the past few decades, many

research efforts have been dedicated to the development of robust theoretical methods
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and simulation strategies to describe charge transfer processes in molecules and materials

[149, 169, 418, 107, 408, 326, 265]. Charge transfer can take place through a wide spectrum

of mechanisms, with two important regimes being the band-like regime (where transport

occurs through delocalized electronic states) and the hopping regime (where transport oc-

curs through localized electronic states) [341, 24]. Here we focus on the hopping transfer,

which is the dominant charge transfer mechanism in many organic crystals and conducting

polymers, and in several metal oxides in the solid state, as well as in many nanoparticle

solids [206, 364, 123, 415].

The classic theory of charge transfer in the hopping regime is Marcus theory [229, 230],

which has seen many generalizations through the years [207, 417, 213, 254]. For a charge

transfer between two sites A and B (e.g., a donor-acceptor pair consisting of two molecules

or two fragments of the same molecular unit), Marcus theory predicts the charge transfer

rate to be

k =
2π

~
|Hab|2

√
1

4kBTπλ
exp

[
−(∆G+ λ)2

4λkBT

]
, (B.3)

where the diabatic electronic coupling Hab between A and B is one of the central quantities

that determines transfer rates; kB and T are the Boltzmann constant and temperature; ∆G

is the free energy difference between states A and B, and λ is the reorganization energy.

As shown in Fig. B.1, within Marcus theory the charge transfer process can be described

using the free energy surfaces of two diabatic states as functions of a chosen reaction coordi-

nate. Diabatic states are defined as a set of states among which the nonadiabatic derivative

couplings vanish. Diabatic states have the property that their physical characters (such as

charge localization) do not change along the reaction coordinate. For instance, the two dia-

batic states (Ψa/Ψb) involved in the charge transfer depicted in Fig. B.1 are constructed to

have the charge localized on site A/B, and this charge localization character does not change

as the reaction occurs.

In contrast to adiabatic states, which are the eigenstates of the electronic Hamiltonian

within the Born-Oppenheimer approximation, diabatic states are not eigenstates of the elec-
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Figure B.1: Free energy curves for two diabatic states Ψa and Ψb with free energy Ga and
Gb associated to a reaction where a charge (electron or hole) is transferred from site A to
site B. The charge is localized on site A for Ψa and site B for Ψb, and the charge localization
characters of Ψa and Ψb do not change as the reaction occurs. The charge transfer rate
can be written as a function of the free energy difference ∆G, reorganization energy λ, and
electronic coupling Hab.

tronic Hamiltonian of the whole system, and therefore are not directly accessible from stan-

dard electronic structure calculations. Constrained density functional theory (CDFT) pro-

vides a powerful and robust framework for constructing diabatic states from first principles

and predicting their electronic coupling [172, 110], including instances where hybrid func-

tionals may fail to produce a localized state [246] and where time-dependent DFT may fail

to produce the correct spatial decay of the electronic coupling [80]. In CDFT, additional

constraint potentials are added to the Kohn-Sham Hamiltonian, and their strengths are op-

timized so as to obtain a desired localized charge on a given site. To obtain the electronic

coupling Hab, one first performs two separate CDFT calculations in which one localizes the

charge on the initial and final sites. Then, one constructs the electronic Hamiltonian ma-

trix on the basis composed of the two diabatic states, and finally the Hab is given by the

off-diagonal elements of the Hamiltonian matrix.

A CDFT formulation was originally proposed by Dederichs in 1984 [70] to study excita-
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tions of Ce impurities in metals. Wu, van Voorhis and co-workers established the modern

formulation of CDFT in the mid-2000s [405, 404]. Since then it has been implemented in

several DFT codes using localized basis sets, such as Siesta [354], NWChem [404], Q-CHEM

[402] and ADF [367].

Implementations of CDFT using plane-wave basis sets appeared more recently, for in-

stance in CPMD [262, 263], VASP [221] and CP2K (dual basis) [155]. These plane-wave im-

plementations enabled CDFT calculations for condensed systems, and facilitated the study

of important problems such as redox couples in aqueous solution [38, 262, 262], charge trans-

fer in biological molecules and proteins [264], in quantum dots [44] and doped nanoparticles

[383], electron tunneling between defects [37] and polaron transport [336, 388] in oxides,

molecular solids [264], and organic photovoltaic polymers [111] (see Ref. 172 and Ref. 36

for extensive reviews). In existing implementations, DFT and CDFT are developed and

maintained in the same code, thus requiring direct modifications of core DFT routines to

support CDFT functionalities.

In recent years, an emerging trend in scientific simulation software is the development of

light-weight code, with focus on specific tasks, which can be interfaced with other codes to

perform complex tasks. This strategy is well aligned with the modular programming coding

practice, which enables maintainability, re-usability, and simplicity of codes. Compared to

conventional strategies integrating a wide range of functionalities into one single code, this

design strategy decouples the development cycle of different functionalities and leads to inter-

operable codes that are easier to modify and maintain, facilitating rapid developments and

release of new features. Some notable codes for chemical and materials simulations that have

adopted this strategy include Qbox [124], WEST [117, 220], and SSAGES [342, 337].

In this work we present PyCDFT, a Python package that performs single-point self-consistent-

field (SCF) and geometry optimization calculations using CDFT. PyCDFT can be interfaced

with existing DFT codes to perform DFT calculations with constraint potentials. Compared

to existing implementations of CDFT, the novelty of the PyCDFT code is twofold:

212



• PyCDFT is a light-weight, interoperable code. The operations specific to CDFT calcu-

lations are decoupled from those carried out by existing DFT codes (DFT engines).

Communications between PyCDFT and the DFT engine are handled by client-server

interfaces (see Sec. B.2.3). Hence, the development of PyCDFT and of the DFT engine

may occur independently. This is advantageous for maintainability and reusability,

and PyCDFT may be interfaced with multiple DFT engines.

• PyCDFT features an object-oriented design that is user-friendly and extensible. Extra

functionalities can be easily added to PyCDFT thanks to the extensive use of abstract

classes. Furthermore, PyCDFT supports being used within Jupyter notebooks or Python

terminals, thus allowing users to perform and analyze CDFT calculations in a flexible

and interactive manner.

We note that Python has become increasingly popular as a high-level programming language

for scientific computing due to its ease of use and wide applicability. The development

of PyCDFT echos this trend and contributes to the rapidly expanding open-source Python

ecosystem for the molecular and materials science fields, where some widely-used packages

include Atomic Simulation Environment (ASE) [145], pymatgen [270], and PySCF [360].

To demonstrate the use of PyCDFT, we coupled it with the massively parallel first-

principles molecular dynamics code Qbox [124], which features efficient DFT calculations

using plane-wave basis sets and pseudopotentials. We computed diabatic electronic coupling

for a set of organic molecules in the HAB18 data set [199, 198] and compared our results

with those of existing implementations. The results obtained with PyCDFT(Qbox) are in

good agreement with those of other plane-wave implementations of CDFT, thus verifying

the correctness and robustness of PyCDFT.
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Figure B.2: Workflow for self-consistent-field (SCF) and geometry optimization calculations
performed by PyCDFT. In SCF calculations, the free energy functional W is minimized with
respect to the electron density n (equivalent to a standard DFT calculation under constraint
potentials) and maximized with respect to Lagrange multipliers Vk. For geometry optimiza-
tion calculations, W is further minimized with respect to nuclear coordinates R. PyCDFT is
designed to implement CDFT-specific algorithms and to be interfaced with external DFT
codes (drivers).

B.2.2 Computational methodology

Constrained Density Functional Theory

We briefly outline the CDFT methodology adopted here and we refer the reader to Refs.

172, 263, 403, 404, 246 for further details. The core of the CDFT method is the iterative

calculation of the stationary point of a free energy functional W defined as

W [n, Vk] = E[n] +
∑
k

Vk

(∫
wk(r)n(r)dr−N0

k

)
, (B.4)

where n is the electron density; E[n] is the DFT total energy functional; the second term

on the right-hand side of Eq. B.4 represents the sum of constraint potentials applied to the

system to ensure that the desired number of electrons N0
k is localized on given parts of the
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system (e.g., chosen atomic site, molecule, or structural fragment). More than one constraint

can be applied to the system, if needed. The strength of the kth constraint potential is

controlled by the scalar Lagrange multiplier Vk, and its shape is determined by a weight

function wk(r). CDFT calculations are performed by self-consistently minimizing W with

respect to n and maximizing W with respect to Vk. The minimization of W with respect

to n is equivalent to performing a DFT calculation with additional constraint potentials∑
k Vkwk(r) added to the Kohn-Sham Hamiltonian. Upon convergence of the SCF cycle,

the number of electrons localized on a given site Nk =
∫
drwk(r)n(r) is equal to the desired

value N0
k . In geometry optimization calculations, the free energy W is further minimized

with respect to nuclear coordinates, as shown in the outermost cycle in Fig. B.2.

Calculation of weight functions

The weight function allows one to partition the total electron density into contributions from

different fragments of the whole system. Several different partitioning schemes have been

proposed, such as Mulliken [253], Becke [27], and Hirshfeld partitioning [144]. In PyCDFT we

implemented the Hirshfeld partitioning, which is widely used in plane-wave implementations

of CDFT [199, 198, 110]. The Hirshfeld weight function w is defined as the ratio between

the pseudoatomic densities belonging to a given site and the total pseudoatomic density

w(r) =

∑
I∈F ρI(r−RI)∑
I ρI(r−RI)

, (B.5)

where I denotes atoms and I ∈ F denotes atoms belonging to a fragment F to which the

constraint is applied; RI is the coordinate of atom I; ρI denotes the electron density of

the isolated I-th atom and should not be confused with the electron density n of the whole

system.

Alternatively, to enforce constraints on the electron number difference between a donor
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site D and an acceptor site A, one can define the weight function as:

w(r) =

∑
I∈D ρI(r−RI)−

∑
I∈A ρI(r−RI)∑

I ρI(r−RI)
. (B.6)

Both definitions of Hirshfeld weights are implemented in PyCDFT. For charge transfer

processes where the whole system consists of only two fragments (donor and acceptor), the

above two definitions of Hirshfeld weights are equivalent. For more complex processes where

multiple parts of the system are involved, one can use a combination of the two definitions

to enforce complex charge constraints.

In Eqs. B.5 and Eq. B.6, the real-space electron density of an atom located at RI is

computed as:

ρI(r−RI) = 4πF−1
[
e−iG·RI

∫ ∞
0

ρI(r)
r sin(Gr)

G
dr

]
, (B.7)

where F−1 denotes an inverse Fourier transform; G is a reciprocal lattice vector with normG;

ρI(r) is the radial electron density of atom I. For a given atomic species, ρI(r) can be easily

obtained by performing DFT calculations for isolated atoms. PyCDFT is distributed with pre-

computed spherically-averaged electron densities obtained with the SG15 pseudopotentials

[129, 324] for all species in the periodic table before bismuth (excluding the lanthanides).

Calculation of Forces

In order to perform geometry optimizations or molecular dynamics simulations on a diabatic

potential energy surface, the force on each nucleus due to the applied constraints must be

evaluated. Forces on the diabatic potential energy surface are the sum of the DFT forces

FDFT and the constraint force F c arising from the derivative of the constraint potential with

respect to nuclear coordinates.

For a system subject to constraints, the α component (α ∈ {x, y, z}) of the constraint

force F c on the Ith atom is given by:
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F c
Iα = −

∑
k

Vk

∫
dr ρ(r)

∂wk(r)

∂RIα

= −
∑
k

Vk

∫
dr ρ(r)

δ − wk(r)∑
J ρJ (r−RJ )

∂ρI(r−RI)

∂RIα
,

(B.8)

where δ = δI∈F for constraints on absolute electron numbers (Eq. B.5) and δ = δI∈D−δI∈A

for constraints on electron number differences (Eq. B.6). The term
∂ρI(r−RI)
∂RIα

is evaluated

as:

∂ρI(r−RI)

∂RIα
= F−1

{
−iGαe−iG·RIF [ρI(r)]

}
, (B.9)

where F and F−1 denote forward and backward Fourier transforms, respectively.

Diabatic electronic coupling

To compute the electronic coupling Hab[405], we consider the Hamiltonian matrix on the

diabatic basis composed of two diabatic states Ψa and Ψb, each obtained from a converged

CDFT calculation with PyCDFT. Here we consider the case of a single constraint. Denoting

the value of the Lagrange multiplier for the two CDFT calculations as Va and Vb, respectively,

the Hamiltonian on the diabatic basis is:

H =

Haa Hab

Hba Hbb

 , (B.10)

where the diagonal elements Haa and Hbb correspond to the DFT total energies of diabatic

states Ψa and Ψb, respectively. Then, denoting the overlap matrix S between the two diabatic

states as

S =

 1 Sab

Sba 1

 , (B.11)
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where Sab = 〈Ψa|Ψb〉 and Sab = S∗ba, the off-diagonal Hamiltonian elements can be written

as [263]:

Hab = FbSab − VbWab (B.12)

Hba = FaSba − VaWba (B.13)

where Fa and Fb are the CDFT total energies including the contribution of constraint po-

tentials; the weight function matrix elements Wab = W ∗ba are given by Wab = 〈Ψa|w(r)|Ψb〉.

After H is evaluated in the diabatic basis, we follow Ref. 263 and average the off-diagonal

elements of H to ensure its Hermiticity. Finally, we perform a Löwdin orthogonalization [217]

for H using the overlap matrix S

H̃ = S−1/2HS−1/2 (B.14)

and the off-diagonal matrix element of H̃ corresponds to the electronic coupling Hab.

B.2.3 Software

Implementation

PyCDFT features an object-oriented design and extensive use of abstract classes and abstract

methods to facilitate future extensions of functionalities. Here we list the major classes

defined in the PyCDFT package.

• Sample: a container class to organize relevant information about the physical system.

A Sample instance is constructed by specifying the positions of the atoms within the

periodic cell. The Sample class utilizes the ASE [145] package to parse atomic structures

from geometry files (e.g., cif files).

• Fragment: a container class to represent a part of the whole system to which constraints

are applied. A Fragment instance is constructed by specifying a list of atoms belonging
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to the fragment.

• Constraint: an abstract class representing a constraint applied to the system. A

Constraint instance keeps track of physical quantities relevant to the constraint,

such as N0
k , Nk, Vk, and wk(r) (see Eq. B.4). Except for the parameter N0

k , which

is defined upon the construction of the instance, other quantities are updated self-

consistently as the CDFT calculation proceeds. Currently, two types of constraints

based on Hirshfeld partitioning are implemented: ChargeConstraint (Eq. B.5) and

ChargeTransferConstraint (Eq. B.6).

• DFTDriver: an abstract class that controls how PyCDFT interacts with an external DFT

code. It specifies how PyCDFT communicates the constraint potentials and constraint

forces to the DFT code and how to fetch the charge densities and other relevant quan-

tities from the DFT code. Currently, a subclass QboxDriver is implemented, which

allows PyCDFT to interact with the Qbox code. The implementation of the QboxDriver

class leverages the client-server interface of Qbox, which allows Qbox to interactively

respond to commands provided by a user or an external code [220, 261] (PyCDFT in

this case).

• CDFTSolver: the core class of PyCDFT that executes a CDFT calculations. CDFTSolver

provides a solve method, which is used to perform a CDFT self-consistent or geometry

optimization calculation. Optimization of the Lagrange multipliers is performed within

the solve method, which utilizes the scipy package.

In addition to the above classes, PyCDFT contains a compute elcoupling function, which

takes two CDFTSolver instances as input and computes the electronic coupling Hab between

two diabatic states (see Sec. B.2.2). To enable the calculation of electronic coupling, PyCDFT

implements an auxiliary Wavefunction class that stores and manipulates the Kohn-Sham

orbitals from CDFT calculations.
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Extensibility

Thanks to the use of abstract classes, PyCDFT can be easily extended to provide new func-

tionalities. For instance, support for additional weight functions (such as spin-dependent

weight functions) can be easily implemented by defining subclasses of Constraint and over-

riding its abstract methods. Similarly, one can extend PyCDFT to support other DFT codes

by overriding the abstract methods in the DFTDriver class. In addition to the C++ code

Qbox used here, several Python implementations of DFT (e.g., PySCF) may be called as a

DFT driver in an interactive manner; therefore they may be used as DFT drivers of PyCDFT

once the corresponding DFTDriver subclass is implemented. Currently, the calculation of

electronic coupling in PyCDFT is compatible with DFT drivers that use a plane-wave basis

set. PyCDFT may be extended to be compatible with other types of basis sets.

PyCDFT may also be readily integrated with existing Python-based interfaces for gener-

ating, executing, and analyzing electronic structure calculations using software such as ASE

[145] and Atomate [240].

Installation and usage

Installation of PyCDFT follows the standard procedure using the setup.py file included in

the distribution. Currently, it depends on a few readily available Python packages including

ASE, scipy, pyFFTW, and lxml.

In Fig. B.3 we present an example script that utilizes PyCDFT to compute the diabatic

electronic coupling for the helium dimer He+
2 . This and other examples are included in the

distribution of PyCDFT.

B.2.4 Verification

We now turn to the verification of our implementation of CDFT in PyCDFT, focusing on

the calculation of electronic couplings. We compare results obtained with PyCDFT(Qbox),
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Figure B.3: An example Python script to perform CDFT calculations for He+
2 . Two

CDFTSolver instances are created for the calculation of two diabatic states with different
charge localization, then the compute elcoupling function is called to compute the elec-
tronic coupling Hab between the two diabatic states.

CPMD [199, 198, 263]), CP2K, and the implementation of CDFT in Quantum Espresso

[106] originally contributed by Goldey et al. [110]. We note that all codes utilized for this

comparison use plane-wave basis sets, with the exception of CP2K, which uses a mixed
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Gaussian and plane-wave basis set. As the values obtained for the electronic coupling have

been shown to be sensitive to the choice of weight partitioning schemes [263], we compare

with only results obtained with the Hirshfeld partitioning scheme.

Our results, PyCDFT(Qbox), are obtained by performing DFT calculations with the Qbox

[124] code. We used optimized norm-conserving Vanderbilt pseudopotentials (ONCV) [129,

324], and an energy cutoff of 40 Ry for all molecules; we tested up to a 90 Ry energy cutoff

and found changes of 1-2% in the electronic coupling compared to calculations using a 40 Ry

cutoff. We used a convergence threshold of 5× 10−5 for |N −N0|. The electronic couplings

were converged to within less than 0.5% with respect to cell size, in order to minimize

interactions with periodic images. When using CP2K, we adopted the TZV2P basis set with

GTH pseudopotentials [109]. Results obtained with Quantum Espresso (QE) and CPMD

have been previously reported in Ref. 110 and Refs. 199, 198, respectively. In all cases the

DFT electronic structure problem was solved using the generalized gradient approximation

of Perdew, Burke, and Ernzerhof (PBE) [279].

We first discuss results for the electronic coupling of the He+
2 dimer. Fig. B.4 com-

pares the decay in Hab with distance for hole transfer in the He-He+ dimer obtained with

PyCDFT(Qbox) and other codes. We find excellent agreement between our computed elec-

tronic couplings and those from Oberhofer and Blumberger [263] obtained using CPMD

and the results of Goldey et al. [110] obtained using QE. As wavefunctions decay ex-

ponentially, the variation of the electronic coupling with separation may be expressed as

H ∝ exp(−βR/2), and we can compare the decay behaviors obtained here and in the litera-

ture by using the decay rate β, which is found to be 4.64, 4.98, 4.13 1/Å with PyCDFT(Qbox),

CPMD, and Quantum Espresso (QE), respectively.

We now turn to bench-marking results for molecular dimers in the HAB18 dataset, which

combines the HAB11 [199] and HAB7 [198] data sets, and consists of π-stacked organic homo-

dimers. The molecules in the HAB11 data set contain members with different number of

π-bonds and atomic species; the HAB7 dataset contains larger molecules. The combined
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Figure B.4: Comparison of diabatic electronic coupling Hab of the He-He+ dimer as a
function of distance R, calculated with constrained density functional theory, and using
PyCDFT interfaced with the Qbox code (PyCDFT(Qbox)), the implementation of CDFT
in CPMD from Oberhofer and Blumberger [263], and the implementation in Quantum
Espresso (QE) from Goldey et al [110]. In all implementations, the Hirshfeld partitioning
[144] scheme is used. The calculated β decay rates are 4.64, 4.98, and 4.13 1/Å respectively.

Figure B.5: Diabatic electronic coupling Hab of the stacked thiophene dimer at a separation
of 5 Å as a function of the relative rotation of the two units, calculated with constrained
density functional theory as implemented in this work (PyCDFT(Qbox)) and in Kubas et al
in CPMD [199]. Carbon atoms are shown in brown, sulfur in yellow, and hydrogen in beige.

HAB18 data set has been previously used for other implementations of CDFT [110]. The

first molecule we consider here is one where imperfect π-stacking is present, due to one of

the monomers being rotated relative to the other. Fig. B.5 compares our calculated electron
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coupling for this configuration of the thiophene dimer with that of Kubas et al as implemented

in CPMD [199]. We find excellent agreement between the two results, thus demonstrating

the accuracy and robustness of PyCDFT(Qbox) for off-symmetry configurations.

2 × 101 5 × 101 102 5 × 102

Ref. Hab (meV)
2 × 101
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) Ref.
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QE
PyCDFT(Qbox)

Figure B.6: Log-log plot of computed diabatic electronic couplings for molecular dimers
in the HAB18 data set [199, 198] at various inter-molecular distances using PyCDFT(Qbox)
(blue circles), CP2K (purple stars), CPMD (green squares), and Quantum Espresso (QE,
yellow triangles). Reference values (black line) are based on multi-reference configuration
interaction (MRCI+Q)[199] and single-determinant spin-component-scaled coupled cluster
(SCS-CC2)[198] level of theory.

We compare our computed electronic couplings of molecular dimers in the HAB18 data

set at varying intermolecular distances using PyCDFT(Qbox) with those obtained with CP2K,

CPMD, and QE. These are plotted in Fig. B.6 on a log-log scale. In general, there is good

agreement among the various codes. There is a systematic deviation of all DFT results

from those based on multi-reference configuration interaction (MRCI+Q)[199] and single-

determinant spin-component-scaled coupled cluster (SCS-CC2)[198] calculations. This sys-

tematic deviation arises from the well-known delocalization error of the semi-local func-

tional used here (PBE) and from its shortcoming to properly describe long-range dispersion

interactions. Using more accurate functionals would improve the accuracy of CDFT, as
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previously reported in the literature [198]. Nevertheless, inspection of Fig. B.6 shows that

PyCDFT(Qbox) generally yields electronic couplings and decay constants within the range of

values obtained from previous implementations. Finally, we emphasize that PyCDFT(Qbox)

captures the physically relevant exponential decay of the electronic coupling with intermolec-

ular distance.

B.2.5 Conclusions

In this work we presented PyCDFT, a Python module for performing calculations based on con-

strained density function theory (CDFT). PyCDFT allows for SCF and geometry optimization

calculations of diabatic states, as well as calculations of diabatic electronic couplings. The

implementation of CDFT in PyCDFT is flexible and modular, and enables ease of use, main-

tenance, and effective dissemination of the code. Using molecules from the HAB18 data

set [199, 198] as benchmarks, we demonstrated that PyCDFT(Qbox) yields results in good

agreement with those of existing CDFT implementations using plane-wave basis sets and

pseudopotentials. As a robust implementation for CDFT calculations, PyCDFT is well-suited

for first-principles studies of charge transfer processes.
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Gonzales, S. Dague, M. Dartiailh, A. R. Davila, D. Ding, E. Dumitrescu, K. Dumon,
I. Duran, P. Eendebak, D. Egger, M. Everitt, P. M. Fernández, A. Frisch, A. Fuhrer,
I. GOULD, J. Gacon, Gadi, B. G. Gago, J. M. Gambetta, L. Garcia, S. Garion,
Gawel-Kus, J. Gomez-Mosquera, S. de la Puente González, D. Greenberg, J. A. Gun-
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terson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K. S. Thygesen, T. Vegge,
L. Vilhelmsen, M. Walter, Z. Zeng, and K. W. Jacobsen. The atomic simulation en-
vironment—a Python library for working with atoms. Journal of Physics: Condensed
Matter, 29(27):273002, 2017.

[146] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136(3B):B864–
B871, 1964.

[147] M. Holt, R. Harder, R. Winarski, and V. Rose. Nanoscale hard x-ray microscopy
methods for materials studies. Annual Review of Materials Research, 43:183–211,
2013.

[148] S. Hong, M. S. Grinolds, P. Maletinsky, R. L. Walsworth, M. D. Lukin, and A. Yacoby.
Coherent, mechanical control of a single electronic spin. Nano Letters, 12(8):3920–3924,
2012.

[149] J. J. Hopfield. Electron Transfer Between Biological Molecules by Thermally Activated
Tunneling. Proceedings of the National Academy of Sciences, 71(9):3640–3644, 1974.

[150] S. O. Hruszkewycz, M. Allain, M. V. Holt, C. E. Murray, J. R. Holt, P. H. Fuoss, and
V. Chamard. High-resolution three-dimensional structural microscopy by single-angle
Bragg ptychography. Nature Materials, 16:244–251, 2017.

237



[151] S. Hsieh, P. Bhattacharyya, C. Zu, T. Mittiga, T. Smart, F. Machado, B. Kobrin,
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[174] A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo, J. M. Chow, and J. M. Gam-
betta. Error mitigation extends the computational reach of a noisy quantum processor.
Nature, 567(7749):491, 2019.

[175] B. Kanungo and V. Gavini. Large-scale all-electron density functional theory calcula-
tions using an enriched finite-element basis. Phys. Rev. B, 95:035112, 2017.

[176] H. Kataura, N. Irie, N. Kobayashi, Y. Achiba, K. Kikuchi, T. Hanyu, and S. Ya-
maguchi. Optical absorption of gas phase c 60 and c 70. Jpn. J. Appl. Phys.,
32(11B):L1667, 1993.

[177] E. Kaxiras. Atomic and Electronic Structure of Solids. Cambridge University Press,
2003.

239



[178] K. V. Kepesidis, S. D. Bennett, S. Portolan, M. D. Lukin, and P. Rabl. Phonon cooling
and lasing with nitrogen-vacancy centers in diamond. Physical Review B, 88:064105,
2013.

[179] G. D. Kerr, R. N. Hamm, M. W. Williams, R. D. Birkhoff, and L. R. Painter. Optical
and dielectric properties of water in the vacuum ultraviolet. Phys. Rev. A, 5:2523–2527,
1972.

[180] C. Kittel, P. McEuen, and P. McEuen. Introduction to solid state physics, volume 8.
Wiley New York, 1996.

[181] I. D. Kivlichan, J. McClean, N. Wiebe, C. Gidney, A. Aspuru-Guzik, G. K.-L. Chan,
and R. Babbush. Quantum simulation of electronic structure with linear depth and
connectivity. Phys. Rev. Lett., 120:110501, 2018.

[182] P. V. Klimov, A. L. Falk, B. B. Buckley, and D. D. Awschalom. Electrically driven
spin resonance in silicon carbide color centers. Physical Review Letters, 112:087601,
2014.

[183] P. V. Klimov, A. L. Falk, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom.
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensem-
ble. Science Advances, 1(10):e1501015, 2015.

[184] L. Knight Jr and W. Weltner Jr. Esr and optical spectroscopy of the alo molecule at
4 k; observation of an al complex and its interaction with krypton. J. Chem. Phys.,
55(10):5066–5077, 1971.

[185] G. Knizia and G. K.-L. Chan. Density matrix embedding: A simple alternative to
dynamical mean-field theory. Phys. Rev. Lett., 109(18):186404, 2012.

[186] P. Knowles and N. Handy. A new determinant-based full configuration interaction
method. Chem. Phys. Lett., 111(4-5):315–321, 1984.

[187] K. Kobayashi. Optical spectra and electronic structure of ice. J. Chem. Phys.,
87(21):4317–4321, 1983.

[188] W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom.
Room temperature coherent control of defect spin qubits in silicon carbide. Nature,
479(7371):84–87, 2011.

[189] W. F. Koehl, B. Diler, S. J. Whiteley, A. Bourassa, N. T. Son, E. Janzén, and D. D.
Awschalom. Resonant optical spectroscopy and coherent control of Cr4+ spin ensem-
bles in sic and gan. Phys. Rev. B, 95:035207, 2017.

[190] W. F. Koehl, H. Seo, G. Galli, and D. D. Awschalom. Designing defect spins for
wafer-scale quantum technologies. MRS Bull., 40(12):1146–1153, 2015.

[191] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation
effects. Phys. Rev., 140(4A):A1133–A1138, 1965.

240



[192] S. Kolkowitz, A. C. Bleszynski Jayich, Q. P. Unterreithmeier, S. D. Bennett, P. Rabl,
J. G. E. Harris, and M. D. Lukin. Coherent sensing of a mechanical resonator with a
single-spin qubit. Science, 335(6076):1603–1606, 2012.

[193] S. Kossmann, B. Kirchner, and F. Neese. Performance of modern density functional
theory for the prediction of hyperfine structure: meta-gga and double hybrid function-
als. Mol. Phys., 105(15-16):2049–2071, 2007.

[194] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Mari-
anetti. Electronic structure calculations with dynamical mean-field theory. Rev. Mod.
Phys., 78(3):865–951, 2006.

[195] K. Krause, M. E. Harding, and W. Klopper. Coupled-cluster reference values for the
gw27 and gw100 test sets for the assessment of gw methods. Mol. Phys., 113(13-
14):1952–1960, 2015.
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