
THE UNIVERSITY OF CHICAGO

COMPUTATIONAL PREDICTIONS OF THE THERMAL CONDUCTIVITY OF

SOLIDS AND LIQUIDS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE PRITZKER SCHOOL OF MOLECULAR ENGINEERING

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

BY

MARCELLO PULIGHEDDU

CHICAGO, ILLINOIS

AUGUST 2020



Copyright c© 2020 by Marcello Puligheddu

All Rights Reserved



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 THEORETICAL BACKGROUND ON THE CALCULATION OF THE THERMAL
CONDUCTIVITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Calculation of Thermal Conductivity using Molecular Dynamics . . . . . . . 6

2.2.1 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Empirical Interatomic Potentials . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Ab Initio Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.5 Neural Network Potential . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.6 Green-Kubo relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Anharmonic Lattice Dynamics and Boltzmann Transport Equation . . . . . 21
2.3.1 Boltzmann Transport Equation . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Temperature-dependent Frequencies: Anharmonic Phonon Renormal-

ization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Comparison of Green-Kubo and Boltzmann Transport Equation based methods 31

3 A COMPARISON OF MOLECULAR DYNAMICS AND BOLTZMANN TRANS-
PORT APPROACHES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Model Systems and Interatomic Potentials . . . . . . . . . . . . . . . . . . . 35

3.2.1 Molecular Dynamics: computational details . . . . . . . . . . . . . . 36
3.2.2 Boltzmann Transport Equation: computational details . . . . . . . . 36

3.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Temperature-dependent phonon frequencies . . . . . . . . . . . . . . 39
3.3.2 Phonon lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.3 Calculations of the Thermal Conductivity . . . . . . . . . . . . . . . 48

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 THERMAL TRANSPORT IN NANO-POROUS SILICON BRIDGES . . . . . . . 52
4.1 Thermal Transport in Nano-porous Silicon Bridges . . . . . . . . . . . . . . 52
4.2 Sample creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Molecular Dynamics Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

iii



5 APPROACH TO EQUILIBRIUM METHOD . . . . . . . . . . . . . . . . . . . . 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Sinusoidal Approach to Equilibrium for Solids . . . . . . . . . . . . . . . . . 67
5.3 Finite Size Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Use of independent replicas . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5 Sinusoidal Approach to Equilibrium for Fluids . . . . . . . . . . . . . . . . . 77
5.6 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.7 Finite Size Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 FIRST-PRINCIPLES SIMULATIONS OF HEAT TRANSPORT . . . . . . . . . 82
6.1 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2 Lateral section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4 Nanocrystalline MgO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4.1 Data for nanocrystalline MgO . . . . . . . . . . . . . . . . . . . . . . 87
6.5 Experimental data and results of previous simulations . . . . . . . . . . . . . 88
6.6 Green Kubo and Non-Equilibrium molecular dynamics simulations for bulk

MgO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 ATOMISTIC SIMULATIONS OF THE THERMAL CONDUCTIVITY OF LIQ-
UIDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3 Water at extreme conditions using deepMD . . . . . . . . . . . . . . . . . . 103
7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8 SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 109

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

iv



LIST OF FIGURES

2.1 A schematic representation of the MD cycle . . . . . . . . . . . . . . . . . . . . 9
2.2 A schematic representation of three-phonon processes: (top) the splitting process

(ζ− : λ→ λ1+λ2) and the combination process (ζ+ : λ+λ1 → λ2); and (bottom)
four-phonon processes: combination (ζ++ : λ + λ1 + λ2 → λ3), redistribution
(ζ+−λ+ λ1 → λ2 + λ3), and splitting (ζ−− : λ→ λ1 + λ2 + λ3). . . . . . . . . 22

2.3 Constant volume heat capacity as a function of temperature for MgO. Blue dashed
lines display the results computed using Bose-Einstein (BE) statistics and black
solid lines denote equipartition (EQ) as demonstrated in MD simulations. The
dashed red lines indicate 500 K, 750 K and 1000 K. . . . . . . . . . . . . . . . 27

3.1 (a) Relative force prediction error by compressive sensing lattice dynamics as a
function of included maximum order of interactions. (b) Comparison between
predicted and Gulp-computed forces when interatomic force constants up to 6th-
order are included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Comparison of phonon dispersions for MgO and PbTe calculated using Phonopy
and compressive sensing lattice dynamics (CSLD). Temperature-dependent lat-
tice parameters were determined by MD simulations. . . . . . . . . . . . . . . . 39

3.3 Phonon density of states plots for MgO at 500K (a), 750K (b), 1000K (c) and for
PbTe at 100K (d), 150K (e) and 300K (f). DD (blue line) indicates the density
of state calculated from the direct diagonalization of the dynamical matrix; BTE
(orange) is the result of anharmonic lattice dynamics calculations and MD (green)
is the result of molecular dynamics simulations. . . . . . . . . . . . . . . . . . . 40

3.4 Phonon occupation per mode as a function of frequency for MgO at 500K (a),
750K (b) and 1000K (c) and PbTe at 100K (d), 150K (e) and 300K (f). For
all materials and temperature, we compare the energy distribution calculated in
our molecular dynamics (MD) simulations against three possible statistics: Bose-
Einstein (BE) (blue dot-dashed lines), equipartition (EQ) (solid black lines) and
Maxwell-Boltzmann (MB) (orange dashed lines). . . . . . . . . . . . . . . . . . 41

3.5 Mode-resolved frequency shift of MgO at finite temperatures [(a): 500 K; (b): 750
K; (c): 1000K] relative to the 0 K. Mode-resolved frequency shift of PbTe at finite
temperatures [(d): 100 K; (e): 150 K; (f): 300K] relative to the 0 K. The solid
magenta disks and empty blue circles denote results from molecular dynamics
simulations and anharmonic phonon renormalization, respectively. The frequency
shift from anharmonic phonon renormalization is computed using Bose-Einstein
statistics. We also find that replacing Bose-Einstein with classical statistics leads
to only very small changes in computed frequency shift (e.g, a relatively change
of 8% and 2% for MgO at 500 K and 1000 K, respectively). . . . . . . . . . . . 42

v



3.6 Mode-resolved frequency shift of MgO at finite temperatures [(a): 500 K; (b):
750 K; (c): 1000K] relative to the 0 K. Mode-resolved frequency shift of PbTe at
finite temperatures [(d): 100 K; (e): 150 K; (f): 300K] relative to the 0 K. The
solid magenta disks and empty blue circles denote results from molecular dynam-
ics simulations and anharmonic phonon renormalization, respectively. Different
from Fig.3.5, here the phonon frequency from molecular dynamics is obtained
combining Eq 2.52 and equipartition by taking the ratio ‖qλ‖2/‖q̇λ‖2. . . . . . . 43

3.7 Comparison of mode-resolved scattering rates of MgO between molecular dynam-
ics (MD) simulations and anharmonic lattice dynamics (ALD) calculations at (a)
500 K, (b) 750 K and (c) 1000 K. (d)-(f) the same as (a)-(c) but for PbTe at 100
K, 150 K and 300 K, respectively. Phonon populations were assumed to follow
equipartition in ALD calculations. . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 Comparison of mode-resolved scattering rates of MgO obtained by assuming Bose-
Einstein statistic (BE) and classical equipartition (EQ) in anharmonic lattice
dynamics (ALD) calculations at (a) 500 K, (b) 750 K and (c) 1000 K. (d)-(f) the
same as (a)-(c) but for PbTe at 100 K, 150 K and 300 K, respectively. . . . . . 45

3.9 Lifetimes computed from Molecular Dynamics using two different expressions.
The lifetimes calculated from Eq. 2.61 are plotted vs. those from Eq. 2.55. . . 46

3.10 Decomposed three- and four-phonon scattering rates for MgO at (a) 500 K, (b)
750 K and (c) 1000 K, and PbTe at (d) 100 K, (e) 150 K and (f) 300 K. . . . . 47

4.1 Fabrication steps of the porous silicon bridges. See text for description. Image
courtesy of Elizabeth Michiko Ashley. . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 SEM image of a real sample and of a snapshot from our simulations. Silicon
atoms are in yellow, Oxygen atoms in red. Top image courtesy of Elizabeth M.
Ashley. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Left: nomenclature used to describe the geometrical properties of the sample.
Not to scale. Right: schematic representation of the main phonon scattering
processes in a nanoporous silicon bridge. . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Thermal conductivity of nanoporous silicon bridge as a function of pitch and
porosity. When not visible, the error bars are occluded by the markers. Porosity
is calculated as a fraction of the total volume. Solid lines are calculated from a
single fit of Eq. 4.3 using all data. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Thermal conductivity of nanoporous silicon bridge as a function of the diameter
of the pores and porosity. The pore diameter is calculated using Eq. 4.1. Solid
lines are calculated from a single fit of Eq. 4.3 using all data. . . . . . . . . . . 63

4.6 Thermal conductivity of nanoporous silicon bridge as a function of neck length
and porosity. The neck length is calculated using Eq. 4.2. Solid lines are calcu-
lated from a single fit of Eq. 4.3 using all data. . . . . . . . . . . . . . . . . . . 64

4.7 Thermal conductivity of nanoporous silicon bridge as a function of the surface-
to-volume and porosity. Solid lines are calculated from a single fit of Eq. 4.3
using all data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vi



5.1 Top: Temperature profile along the heat transport direction z, averaged over
30 samples, for a classical molecular dynamics run performed at 1000K for MgO.
Smooth, continuous solid lines represent analytical solutions of the heat equation.
Note the rapid decay of the sinusoidal profile to zero over 10 ps (blue line).
Bottom: Difference in the average temperature (∆T (t)) between the hot and
cold side of a periodic slab representing MgO, as a function of time, during a
molecular dynamics run at constant volume and energy, carried out after the
application of a sinusoidal temperature profile (Eq.1). We show first principles
results (black line) obtained for a slab with 960 atoms at 500K, and classical
result (red line) for the same size slab, but averaged over 30 samples. Solid lines
are the results of a fit to Eq. 5.14. The rate of decay of ∆T is proportional to
the thermal conductivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Probability distribution and average value of the thermal conductivity calculated
over 100 replicas for two systems of the same length but containing 96 (red) or
2400 (blue) atoms. Solid lines are drawn as a guide to the eye; N ,x0 and t are fit-
ting parameters. Solid vertical lines are: (A) the thermal conductivity calculated
as the average of the thermal conductivity obtained from each simulation, for the
system with 96 atoms; (B) the thermal conductivity calculated from the average
of the temperature difference for the system with 96 atoms. Note the difference
with the A value; (C) and (C’) thermal conductivity calculated as the average of
the thermal conductivity obtained from each simulation and from the average of
the temperature difference. Note the similarity between the values of C and C’.
The simulations for the system with 2400 atoms exhibit clearly much less noise
than those for the 96 atom system. . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Low (right) and high (left) noise applied to the signal e−t/κ. The results for the
computed decay are show in Table 5.4. . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Energy (Q(t)) exchanged between the interior(blue) and exterior (red) partitions
of a simulation cell as a function of time, in a close to equilibrium molecular
dynamics simulation (SAEMD) of liquid water under pressure (see text). The
three panels show results obtained by averaging over 2, 8 and 20 replicas. The
shaded regions represent the uncertainty in the estimation of Q(t). The black
line is the total energy exchanged between the two regions. . . . . . . . . . . . . 79

6.1 Thermal conductivity (κ) of crystalline MgO computed at 500 (top panel) and
1000K (lower panel), as a function of the length of the periodic slab (L), us-
ing approach to equilibrium molecular dynamics (AEMD, red curves), sinusoidal
approach to equilibrium (SAEMD, black curves) and classical potentials. We
compare results obtained with the two methods using classical potentials and
we show (blue curve) first principles results obtained with the SAEMD method.
Solid and dotted lines represent a fit to Eq. 5.15, and 5.16, respectively. . . . . . 85

vii



6.2 Thermal conductivity (κ) of a periodic slab representing nanocrystalline MgO, as
a function of the slab length L, computed at 1000K using a classical potential. The
average radius of nanocrystalline grains is 2 nm. We compare simulation results
obtained with approach to equilibrium molecular dynamics (AEMD method, red
dots), sinusoidal approach to equilibrium molecular dynamics (SAEMD, black
dots) and equilibrium molecular dynamics using a Green Kubo (GK) formulation
(blue lines). The blue lines represent the results of converged GK simulations as
a function of size. Convergence was obtained for L ≈ 8nm with a cubic supercell;
the top and bottom blue lines represent the population standard deviation of the
samples used for GK calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Experimental data and results of previous simulation. Results from SAEMD
using classical MD are presented for the maximum lateral section available. Re-
sults from SAEMD using first principles MD use the correction factor αc. Since
Katsura1 only published results for thermal diffusivity, we used the density and
thermal capacity from Ref.2 to calculate the thermal conductivity. . . . . . . . . 88

6.4 Green Kubo (GK) simulations of the thermal conductivity of MgO at 500 K; each
of the simulations requires the calculation of an energy density and is performed
on cubic cells of side L. The 5 points above correspond to 23, 33, 43, 83 and
163 cells (see table 6.1 for exact values of κ). A posteriori one can see that
simulations with cells of size 43 (containing 512 atoms) appear to be converged.
The simulation time required for that size cell was approximately 48 ns. . . . . . 90

6.5 Non-equilibrium MD (NEMD) simulations of the thermal conductivity of MgO
at 500 K; Lz denotes the direction of heat transport. Black, red and blue curves
correspond to simulations carried out with lateral sections of (2x2), (3x3) and
(4x4), respectively. The extrapolated values of κ considering all points in the
figure are 40 ± 2.7, 34 ± 2.4 and 30 ± 1 W/mK, respectively. A posteriori we
can determine that by omitting the last point from the fit (Lz = 63 nm), in (2x2)
simulations we obtain a value of 40 ± 6. 0; in (3x3) simulations we obtain a value
of 36.1 ± 5.5. In 4x4 simulations, we included only points up to Lz = 38. Note
that the total time of the simulation of the largest size (similar to that of the
smaller sizes) for 2x2 later sections is 96 ns. At least five points are necessary,
hence the total time (encompassing different sizes) for the largest error bars shown
in the figure is 480 ns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.6 Close to equilibrium MD simulations of the thermal conductivity of MgO at 500
K; Lz denotes the direction of heat transport. We report SAEMD and AEMD
results with classical potentials and first principles MD results using the SAEMD
technique, labeled FPMD. The extrapolated values of κ considering all points in
the figure are 40 ± 1.0 (AEMD), 43 ± 1.1 (SAEMD) and 50 (FPMD) W/mK,
respectively. A posteriori we can determine that by omitting the last point from
the fit in classical simulations we obtain values that differ by less than 5% with
respect to the converged values. Note that the total time of the simulation to ob-
tain error bars similar to the one considered in the NEMD simulations is 30X55X5
ps = 8250 ps = 8.25 ns to be compared with the 480 ns. . . . . . . . . . . . . . 94

viii



7.1 Thermal conductivity (κ) of water at 300K as a function of the linear size (L) of
the cubic simulation cell and the number of water molecules. Results obtained
with Green Kubo (GK) and close to equilibrium molecular dynamics simulations
(SAEMD) are represented by red and black dots, respectively. Solid lines were
obtained by fitting the data with Eq.5.21. We also show a fit of SAEMD re-
sults using Eq.5.22 (dotted black line). All simulations were performed with the
TIP4P-2005f force field. GK results are slightly offset on the x axis to avoid
overlap with SAEMD results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 Thermal conductivity (κ) of water at 1000K and a density of 1.57 g/cm3 as a
function of the linear size (L) of the cubic simulation cell and the number of water
molecules. Results obtained with Green Kubo (GK) and close to equilibrium
molecular dynamics simulations (SAEMD) are represented by red and black dots,
respectively. Solid lines were obtained by fitting the data with Eq. 5.22. All
simulations were performed with the SPCE-Fl force field. GK results are slightly
offset on the x axis to avoid overlap with SAEMD results. . . . . . . . . . . . . 101

7.3 Thermal conductivity (κ) of water at 1000K and a density of 1.57 g/cm3 computed
with a 512 molecules cell by close to equilibrium molecular dynamics simulations,
as a function of the total simulation time. All simulations were performed with
the SPCE-Fl force field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.4 Average relative error (σ) in the computed thermal conductivity of water at 1000K
and density of 1.57 g/cm3, as a function of the number of replicas. Simulations
were carried out with 512 molecules cells and the close to equilibrium approach,
using the SPCE-Fl force field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.5 Thermal conductivity of water computed with SAEMD and deepMD as a function
of temperature and density. Blue is 1000K, orange is 2000K. The black dot is the
thermal conductivity at STP (300K, 1atm). . . . . . . . . . . . . . . . . . . . . 105

7.6 Thermal conductivity of water computed with SAEMD and deepMD as a func-
tion of pressure. Blue is 1000K, orange is 2000K. The black dot is the thermal
conductivity at STP (300K, 1atm). Solid line is a fit with A

√
P . . . . . . . . . 105

ix



LIST OF TABLES

3.1 Computed thermal conductivity of MgO and PbTe using different expressions
for lifetimes (τ) and heat capacities (C). All thermal conductivity values are
in W/mK. The lifetimes τMD’s are obtained from MD simulations according
to Equation 2.55, τBE ’s are obtained from BTE according to phonons in a Bose
Einstein distribution, whereas τEQ’s are obtained from BTE according to phonon
population obeying equipartition. All BTE calculations include three- and four-
phonon processes. The heat capacities CEQ and CBE correspond to those ob-
tained from equipartition and Bose-Einstein statistics, respectively, as shown in
Fig. 2.3. Finally, the thermal conductivity obtained from Green-Kubo (GK) is
listed. The different approximations are labeled A1 to A7 in the first row. . . . 49

4.1 Thermal conductivity of porous silicon bridges, 100 nm thick, as a function of
porosity and pitch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Results for a simple model where the temperature decay is given by e−t/κ, with κ
chosen equal to 4 (a.u.), plus a white gaussian noise. We studied two cases of low
and high noise. By using this model, we show that method (i) would overestimate
κ in the case of high noise, while method (ii) gives the correct result in both low
and high noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Extrapolated values of the thermal conductivity (second column) and their sta-
tistical error (third column) obtained using non-equilibrium MD (NEMD), ap-
proach to equilibrium MD (AEMD) and Sinusoidal approach to equilibrium MD
(SAEMD), with lateral sections of 2x2, 3x3 and 4x4 MgO unit cells. . . . . . . . 76

6.1 Green Kubo simulations for nanocrystalline (NC) MgO. In all tables simulation
time only include the time used to calculate the thermal conductivity. The time
taken to create the grains does not depend on the calculation method . . . . . 87

6.2 SAEMD simulations for NC MgO. . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 AEMD simulations for NC MgO. . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4 Simulation results for Green-Kubo calculations of the thermal conductivity of

MgO. We used cubic systems for GK calculations. NL is the number of elementary
cells in each cartesian direction. There are 8 atoms for elementary cell. The error
in the thermal conductivity, when available, is the standard deviation of the mean. 92

x



6.5 Simulation results for NEMD calculations of the thermal conductivity of MgO
at 500 K. The error in the asymptotic value of the thermal conductivity is the
uncertainty in the fitting procedure. Nz denotes the number of elementary cells
in the direction of heat transport. The extrapolated values of κ considering all
points in the figure are 39.7 ± 2.7, 34.7 ± 1.1 and 30.9 ± 1.3 W/mK, respectively.
A posteriori we can determine that by omitting the last point from the fit (Lz =
63 nm), in (2x2) simulations we obtain a value of 40 ± 6.0; in (3x3) simulations
we obtain a value of 36.1 ± 5.5. In 4x4 simulations, we included only points up
to Lz = 38. Note that the total time of the simulation of the largest size (similar
to that of the smaller sizes) for 2x2 later sections is 96 ns. At least five points
are necessary, hence the total time (encompassing different sizes) for the largest
error bars shown in the figure is 480 ns. . . . . . . . . . . . . . . . . . . . . . . . 93

6.6 Simulation results for SAEMD calculations of the thermal conductivity. We used
a 2X2XNz simulation cell. The error in the asymptotic value of the thermal
conductivity is the uncertainty in the fitting procedure . . . . . . . . . . . . . . 95

6.7 Simulation results for SAEMD calculations of the thermal conductivity. We used
a 4X4XNz simulation cell. The error in the asymptotic value of the thermal
conductivity is the uncertainty in the fitting procedure . . . . . . . . . . . . . . 96

6.8 Simulation results for SAEMD calculations of the thermal conductivity for the
first principles simulations. We used a 2X2XNz simulation cell. . . . . . . . . . 96

7.1 Measured (Exp) and computed values of the thermal conductivity (κ (W/mK)) of
water at density of ' 1 g/cm3, obtained using different force fields (first column).
All computed values were obtained using molecular dynamics with the Green
Kubo (GK), non-equilibrium (NEMD) or close to equilibrium (SAEMD) approach
(see second column) at a temperature (T (K)) given in the third column. The
maximum number of molecules (Nmol) in the unit cell, the simulation time per
replica (ts) and the number of replicas (Nrep are given in column 5, 6 and 7,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Thermal conductivity of water at extreme temperature and pressure computed
using SAEMD and deepMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xi



ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisor Professor

Giulia Galli for her continuous support, patience and knowledge during and before my PhD.

Her unparalleled dedication to scientific research has always inspired me.

I own a debt of gratitude to all current and former members of the Galli group for their

support and stimulating discussion. In particular, I would like to thank Ryan L. McAvoy,

Dr. Federico Giberti, Dr. Nicholas Brawand, Dr. Alex Gaiduk, Dr. Jonathan Skone, Dr.

Marco Govoni, Dr. Cunzhi Zhang and Dr. Tommaso Francese.

I also want to thank Dr. Linfeng Zhang for helpful discussions and technical support, Elisa-

beth Ashley and Professors Francois Gygi, Juan J. de Pablo, Shrayesh Patel, Roberto Car,

David Cahill and Paul Nealey.

Finally, my deep gratitude to my family for their continuous love, help and support.

xii



CHAPTER 1

INTRODUCTION

The study of thermal transport in materials is of interest to a variety of disciplines, including

material science, aerospace engineering, geoscience, physics and chemistry3–5. Indeed, ther-

mal performance is an important metric for batteries6, thermoelectric materials7–9, solar

and photoelectrochemical cells10–12, thermal barrier coatings in turbines13, safe storage of

nuclear fuels and microelectronics devices14.

The thermal conductivity is a transport coefficient related to the ability of a material to

transport heat in the presence of a temperature gradient. Some applications require mate-

rials with low thermal conductivity. For example in the case of thermoelectric materials, in

order to maximize their figure of merit it is desirable to achieve low thermal conductivity

and high electrical conductivity and a high Seebeck coefficient at the same time15–17. A

thermoelectric material is used to convert a temperature gradient into an electric potential,

thus directly converting a temperature difference to electrical power. A promising path ex-

plored in the literature to design materials with the desired, low thermal conductivity is the

creation of nanostructured systems.

Some technological applications benefit instead from materials with a large thermal con-

ductivity, for example the cooling of electronic devices18,19. Thermal transport plays a

crucial role in the performance and reliability of semiconductor electronic devices. A large

share of all integrated circuit failures is related to thermal issues. The continuing decrease in

the characteristic lengths of the structures of electronic devices and the ever more aggressive

thermal conditions imposed upon them requires sophisticated understanding and control of

thermal transport at the nanoscale. The ever increasing miniaturization of electronic de-

vices has led to mean-free paths of heat carriers approaching few nanometers. Additionally,

the high density of interfaces impedes thermal transport and contributes significantly to the
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overall thermal resistance. Highly localized power densities, associated to large bottlenecks

to heat transport, ultimately dictate device operating frequencies, functionality, reliability,

and failure thresholds.

To improve our fundamental understanding of thermal transport and in general materi-

als design, the accurate prediction of thermal transport coefficients is critical20,21. Thermal

transport may have conduction, convection and radiation components. Conduction is the

transport of energy due to atomic and electronic motion across a temperature gradient, and

in solids it can be described by measuring the thermal conductivity of the system, namely

the ratio between the heat current and the temperature gradient. Convection is the heat

transfer due to the motion of particles inside a fluid, a liquid or gas. Convection is absent

in solids, due the absence of diffusion. Radiation is the transport of heat from the surface

of a material by photons. In this thesis we focus on thermal transport by conduction, and

in particular on the calculation of the thermal conductivity.

To date, most calculations of the thermal conductivity at the atomistic level, especially

those requiring the use of large samples, have been carried out using empirical interatomic

potentials (EIP), that are available only for some classes of materials and often have limited

predictive power. Only recently accurate ab initio predictions of the thermal conductivity of

simple crystals and fluids have been made possible due to advances in theory and increase in

computational power22. Nonetheless, these ab initio calculations are still limited to systems

with tens of atoms, at most several hundreds.

Neural networks (NN) trained on ab initio data23 offer a promising avenue to bridge the

gap between empirical potentials and straightforward ab initio simulations, and may allow

for the calculation of the thermal conductivity of complex materials with the accuracy of

first principle calculations.
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On the experimental side, progress has been made in the measurement of the thermal

conductivity thank to the development of the 3ω method24, and of time or frequency domain

thermo-reflectance (TDTR and FDTR) methods25,26.

In this thesis we discuss methods to compute the thermal conductivity of solids and

liquids and in particular we present an approach developed to address the need for an ef-

ficient and general quantum simulation framework for thermal properties of materials27,28.

The method developed here can be used to efficiently compute the thermal conductivity

using either classical, first principle or neural-network molecular dynamics (MD), and using

only atomic trajectories and forces as input. We show applications of the approach to the

calculations of the thermal conductivity of crystalline and nanocrystalline MgO and liquid

water. We used first principles simulations and deep MD for MgO and water, respectively,

and empirical potentials for large samples of nanocrystalline MgO. In addition, we compared

MD based approaches to compute thermal conductivity of solids with techniques based on

the Boltzmann Transport Equation.

The thesis is organized as follows: in chapter 2 we define the thermal conductivity and

describe two of the methods commonly used for its computation. In chapter 3 we present

a detailed comparison of the two methods. In chapter 4 we report our study of thermal

transport in nano-porous silicon, highlighting the role of nanostructuring and morphology

on the thermal conductivity of the system. In chapter 5 we describe a method for the efficient

calculation of the thermal conductivity of solid and fluids that only requires atomic trajec-

tories and forces as input. In chapter 6 and 7 we show the application of this approach to

the thermal conductivity of crystalline and nanostructured MgO, including ab initio results,

and of liquid water, including our neural-network based calculations.

Parts of Chapter 3, 5, 6 and 7 were adapted from the following papers:

• Computational prediction of lattice thermal conductivity: A comparison of molecular
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dynamics and Boltzmann transport approaches. M. Puligheddu, Y. Xia, M. Chan, G.

Galli Physical Review Materials 3, 085401

• First-principles simulations of heat transport. M. Puligheddu, F. Gygi, G. Galli Phys-

ical Review Materials 1 (6), 060802

• Atomistic simulations of the thermal conductivity of liquids. M. Puligheddu, G. Galli

Physical Review Materials 4 (5), 053801
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CHAPTER 2

THEORETICAL BACKGROUND ON THE CALCULATION OF

THE THERMAL CONDUCTIVITY

2.1 Introduction

The thermal conductivity (κ) is the capacity of a material to transport energy in the form

of heat in the presence of a temperature difference. The thermal conductivity tensor (καβ)

is defined by the Fourier Equation: Jα = −καβ∇βT , where Jα is the heat flux in the α

direction, ∇βT is the gradient of the temperature in the β direction. In simpler terms,

the thermal conductivity describes the ratio between the response of the system (the heat

flux) and the perturbation which caused the response (the temperature gradient). The full

tensor description of the thermal conductivity is only necessary in anisotropic media, in

isotropic material the thermal conductivity is a scalar, measured in W/(m K) (Watt over

meter Kelvin).

The combination of two processes contributes to the thermal conductivity: heat transported

by electrons and heat transported by to the motions of atoms. The first process yields the

electronic thermal conductivity, it is dominant in metals and absent in insulating solid and

liquids. The second process yields the so-called lattice thermal conductivity. In this thesis we

only study dielectric solids and insulating liquids, where the contribution of the electronic

thermal conductivity is negligible, thus unless otherwise stated, we use the term thermal

conductivity to indicate the second process.

Thermal conductivity values may be very different, depending on the material and on al-

lotropes of the same element: diamond for example has a thermal conductivity of 2200W/mK,

graphite of 25 W/mK in the cross-plane direction and 470 W/mK in the in-plane directions,

at ambient conditions.

A multitude of methodologies have been introduced to calculate the thermal conductivity. Of

particular significance are two categories of methods, based either on considering atomic mo-
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tion (Molecular Dynamics, MD) or collective vibrational excitations, i.e. phonons in solids

(Anharmonic Lattice Dynamics, ALD). In this chapter we briefly describe Molecular Dy-

namics (MD), introduce the Green-Kubo formalism, one of the methods we used to compute

the thermal conductivity using MD, and discuss anharmonic lattice dynamics, an alternative

method used to compute the thermal conductivity. Finally, we discuss the relative merits

and weakness of each method.

2.2 Calculation of Thermal Conductivity using Molecular

Dynamics

Une intelligence qui, pour un instant donné, connâıtrait toutes les forces dont la nature est

animée et la situation respective des êtres qui la composent, si d’ailleurs elle êtait assez

vaste pour soumeitre ces données â l’Analyse, embrasserait dans la même formule les

mouvements des plus grands corps de l’univers et ceux du plus léger atome: rien ne serait

incertain pour elle, et l’avenir, comme le passé, serait présent â ses yeux.

An overconfident Pierre-Simon Laplace, Essai philosophiques sur les probabilités,

Courcier, 1814

2.2.1 Molecular Dynamics

Molecular Dynamics (MD)29,30 is a computational technique to obtain trajectories of a solid

or a liquid obeying classical dynamics. In Fig. 2.1 we show the basic steps of a MD simula-

tion: from given initial positions ri of the atoms, we can compute the total force Fi acting

on each atom as the negative gradient of the potential energy with respect to its position

Fi = −∇riE . From the forces we compute the accelerations ai = Fi/mi of each atom and

update the velocity vi of the atoms. Finally, we update the positions of all atoms and restart

the cycle by computing the new forces from the updated positions.

The initial positions are chosen based on the knowledge of the system, including available
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experimental data and previous studies. The initial velocities may be randomly sampled

from a normal distribution. They then may be rescaled so that the total momentum of

the system is zero and the temperature, computed as T = 1
3kBN

∑
imi|vi|2 is equal to the

desired one. In the previous equation kB is the Boltzmann constant, N is the number of

atoms and mi is the mass of the i-th atom.

A derivation of the previous equation is available in any book about thermodynamics31,

however, we would like to note how we already made a connection between a macroscopic

property (the temperature) and a microscopic one (the velocities of the atoms). The fun-

damental tenet of MD is that macroscopic and measurable properties of a material e.g.

transport, mechanical and optical properties, can be understood and predicted, sometimes

accurately, by studying the motion of its components.

Going back to the MD cycle, the update of the velocities and positions cannot be done

analytically, due to the complicated dependence of the total energy on the position of the

atoms. The simulation is carried out by integrating numerically the Newton equations of

motion, using a discreet time interval, called the timestep (dt). The choice of timestep is an

important decision in any MD simulation: a dt too large may results in unacceptable nu-

merical errors and incorrect results, while a dt too small results in increased computational

cost for no additional results; for simulations of atoms, the timestep is usually in the order

of magnitude of femtoseconds (10−15 seconds).

A direct integration scheme:

compute a(t) from r(t)

ri(t+ dt) = ri(t) + vi(t)dt+
1

2
ai(t)dt

2

vi(t+ dt) = vi(t) + ai(t)dt

while correct, suffers from large numerical errors for a given timestep when compared to

Velocity Verlet (vV), the commonly used integration method. The vV method include a
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predictor and a corrector stage, leading to a half-timestep update for the velocities:

compute a(t) from r(t)

ri(t+ dt) = ri(t) + vi(t)dt+
1

2
ai(t)dt

2

vi(t+ dt/2) = vi(t) + ai(t)dt/2

compute a(t+dt) from r(t+dt)

vi(t+ dt) = vi(t+ dt/2) + ai(t+ dt)dt/2

The vV method achieves a greater accuracy than the direct method, for a negligible increase

in computational cost. There are more elaborate (and costly) integration schemes, such

as Runge-Kutta32, Beeman33, Respa34, but they are seldom worth the trade-off. All our

simulations used the velocity Verlet integrator.

2.2.2 Empirical Interatomic Potentials

The forces needed in MD to evolve the simulations are computed from the gradient of the

potential energy. The potential energy is a complicated function of the position of all atoms

in the system, and the evaluation of its gradient with respect to the position of each atom is

the dominant computational cost in the vast majority of cases. To limit this computational

cost, various choices need to be made, balancing accuracy and efficiency.

The various methods used to approximate the potential energy function range from simple

ansatz about the shape and parameter of this function (Empirical Interatomic Potentials

EIP), to complicated functions with hundreds of parameters, and finally to calculations with

no empirical parameters, but explicitly solving the Schrödinger equation for the electrons

and including the wavefunctions of the electrons. For a simulation with the same number of

atoms, carried out for the same number of steps, the difference in computational cost between
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Figure 2.1: A schematic representation of the MD cycle
.

different choices for the potential energy can easily span several orders of magnitude. The

increase in computational cost with respect to the number of atoms depends on the potential

chosen, varying from a linear increase in the simpler cases to a cubic dependence on the

number of atoms in the case of Density Functional Theory (DFT) derived forces. Needless

to say, these latter simulations are less widespread and only include a limited number of

atoms.

The simplest practical EIP is the Lennard-Jones (LJ) potential. This potential is very

limited in the type of atoms it can simulate with any accuracy, although it is often a good

approximation for noble gases. The potential energy is the sum of pairwise interactions

between atoms, and the potential energy of a pair of atoms is a function of their distance,

repulsive for close atoms and attractive between distant atoms:

EP =
1

2

∑
i

∑
j 6=i

EP (rij) =
1

2

∑
i

∑
j 6=i

A

r1
ij2
− B

r6
ij

(2.1)
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The r6 term represents an approximation of the van der Waals forces between neutral atoms.

The short-distance repulsive r12 term is used to approximate the Pauli repulsion between

electron shells, although its analytical dependence is not fully justified, but was instead

chosen because of computational simplicity. This potential has two parameters, A and B,

whose value depends on the elements one wish to simulate. More generally, the parameters

for an EIP are usually obtained by adjusting their value until the results of a simulation is as

close as possible to a limited set of experimental outcomes, such as a certain phase diagram,

the density or some vibrational frequencies of a material. This procedure of finding the

most accurate value for a given potential is called fitting, in analogy with the least-square

minimization used in regression analysis for fitting a function to a set of values.

There are classes of potentials specialize for a given system. For example, in the case of

water, a commonly used potential is TIP4P35, a potential specialized for liquid water at

standard conditions (300K, 1 atm). The potential is composed of two parts: a LJ term

describing the repulsion between molecules and a Coulomb term describing the interaction

between the partially charged O and H atoms. In the original formulation of the potential

the water molecule is rigid: the relative positions of the atoms in a molecule cannot change.

The LJ term is centered on the oxygen atom of each molecule, the charge terms are centered

on the two hydrogen atoms and in a charge center localized roughly in the middle of the

molecule. The total energy is again the sum of pairwise interaction between water molecules:

EP =
1

2

∑
i

∑
j 6=i

A

r12
OO

− B

r6
OO

+
∑
a

∑
b

qaqb
rab

(2.2)

where rOO is the distance between the oxygen atoms and a(b) indicates the charge centers in

molecule i (j). The A and B parameters, the value of the charges q and the exact position of

the charge center are all fitting parameters. There are several sets of parameters available for

TIP4P, including one specifically made for ice simulations, and many variations in the form

of the potential, for example releasing the rigidity constrain on the molecule, thus making it
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flexible, or adding a 4th and 5th charge center to better approximate the charge distribution

of the real water molecule36.

EIP potentials are a powerful tool for computational physics. Despite their advantages,

they face serious limitations. For examples, in TIP4P the charges are static parameters

independent of the presence or orientation of nearby water molecules, and therefore elec-

tronic polarization effects are not included. In addition, EIP generally assume that the type

of bonds among the atoms are fixed and, therefore, cannot describe chemical reactions or

changes in the intramolecular bonds. Finally, EIP are usually limited in the portion of the

phase diagram they can accurately simulate.

2.2.3 Ab Initio Molecular Dynamics

When more flexibility and precision is needed or an EIP cannot be built, the forces can be

obtained from first principle, without any assumption regarding the form of the potential

energy function nor the value of the parameters in this function. The potential energy,

and the forces, can be obtained by using a quantum mechanical method, such as density

functional theory37,38. This method is called Ab Initio Molecular Dynamics (AIMD) or

alternatively First Principle Molecular Dynamics (FPMD).

Consider a system of N nuclei and Ne electrons. The nuclei have charge ZI and mass MI .

The Hamiltonian is a function of the nuclear coordinates RI and of the electronic coordinates

ri. Ignoring spin, the non-relativistic Hamiltonian is:

−
∑
I

∇2
RI

2MI
−
∑
i

∇2
ri

2me
+

1

2

∑
I

∑
J 6=I

ZIZJe
2

‖RI −RJ‖
+

1

2

∑
i

∑
j 6=i

e2

‖ri − rj‖
− 1

2

∑
i

∑
I

ZIe
2

‖ri − rI‖
(2.3)
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The many body wavefunction Ψ describing the system is given by the solution of the time-

independent Schrödinger equation:

H |Ψ〉 = ε(R) |Ψ〉 (2.4)

An exact solution of this problem is not feasible, and approximations need to be made. The

first one is the Born–Oppenheimer approximation: since the electrons are lighter than the

nuclei by approximately three orders of magnitude, it is possible to separate the timescales of

the electronic and nuclear motion. Under the Born-Oppenheimer approximation, the atomic

nuclei and electrons in a molecule can be treated separately. The wavefunction is separated

in an electronic and nuclear part, then the nuclei are treated classically. The electronic

Hamiltonian is a function of the electronic coordinates r and depends parametrically on the

position of the nuclei R. The Schrödinger equation for the electronic wavefunction Φ(r;R)

reads

[−
∑
i

∇2
ri

2me
+

1

2

∑
i

∑
j 6=i

e2

‖ri − rj‖
−1

2

∑
i

∑
I

ZIe
2

‖ri − rI‖
] |Φ(r;R)〉 = He |Φ(r;R)〉 = ε(R) |Φ(r;R)〉

(2.5)

where the energy ε is a function of the position of the nuclei

ε(R) = E −
∑
I

PI
2MI

− 1

2

∑
I

∑
J 6=I

ZIZJe
2

‖RI −RJ‖
(2.6)

where PI is the momentum of the I-th nucleus. Equation 2.5 is an eigenvalue problem. Its

solutions are a set of wavefunctions Φn(r;R) and energies εn(R); Since He is Hermitian

its eigenvalues are all real. The lowest eigenvalue is called the ground state energy, while

the others describe excited states of the system. We neglect non-adiabatic effects, and only
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consider the electronic ground state Φ0 of the system:

[−
∑
i

∇2
ri

2me
+

1

2

∑
i

∑
j 6=i

e2

‖ri − rj‖
− 1

2

∑
i

∑
I

ZIe
2

‖ri − rI‖
] |Φ0(r;R)〉 = ε0(R) |Φ0(r;R)〉 (2.7)

To compute the classical trajectories of the nuclei we solve the Newton equations:

ṘI = VI =
PI
MI

(2.8)

V̇I =
FI
MI

= −∇RIE0 (2.9)

(2.10)

where V and F are velocities and forces. The gradient of the potential energy is:

∇RIE0 = ∇RI ε0(R)−∇RI
∑
J 6=I

ZIZJe
2

‖RI −RJ‖
(2.11)

The first term in the force is the gradient of the ground state eigenvalue of the electronic

eigenvalue problem 2.7. Using the Hellman–Feynman theorem39, it can be calculated as

∇RI ε0(R) = 〈Φ0| |∇RIH(R)| |Φ0〉 (2.12)

The problem described in equation 2.7 is still too complicated to be solved numerically for a

practical number of atoms. The problem of finding the minimum energy ε0 and its associated

wavefunction Φ0 grows exponentially with the number of electrons, seriously reducing the

size of the systems that can be practically solved.

2.2.4 Density Functional Theory

Density Functional Theory (DFT) is a way to significantly reduce the computational cost

of AIMD, at the cost of introducing approximations. First, let us introduce the electronic
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density for the ground state:

n(r) =

∫
|Φ(r, r2, r2, ..., rNe)|

2dr2dr3...drNe (2.13)

We note that while the wavefunction is a function of 3N variables, the density is a function

of the 3 spatial variables. As proven by the Hohenberg–Kohn37 theorems, the energy E0,

in principle a function of the full electronic wavefunction Φ, is completely determined by

the electronic density, and so is the energy of the ground state. In mathematical term, the

ground state energy is a functional of the electronic density:

E0 = E[n0(r)] (2.14)

As proved by Hohenberg and Kohn the functional E is unique and universal for a given

number of electrons. Unfortunately, it is also unknown, and the HK theorems by themselves

are of little practical use. A common way to transform the HK problem, and by far the most

popular, is due to Kohn and Sham40. The fundamental ansatz leading to the Kohn-Sham

(KS) equations is that the true electronic density can be written as the electronic density

of as auxiliary system composed of Ne single electron wavefunctions φi(r). Equation 2.7

can then be rewritten in terms of the φi(r) and of the electronic density. Computationally,

the advantage of KS equations comes from the fact that the solution of the Ne Schrödinger

equations recast in term of the single electron wavefunctions is much less expensive than the

solution of a single problem with the many body wavefunction Φ.

Following Kohn and Sham, the energy functional in equation 2.14 can be rewritten in a

series of know terms, such as the kinetic and potential energies of the single electron wave-

functions, and an additional term called the exchange-correlation functional. The latter, like

the energy functional, it is a functional of the density, it is unique and universal, and also

unknown. However, it can be approximated more easily than the energy functional. The

number and complexity of exchange-correlation functionals is staggering and continuously
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growing41. In an interesting parallel with EIP, some functionals are known to describe some

materials better than others, or better describe the same material in a given region of the

phase diagram, or better describe some properties of a material at a given condition.

2.2.5 Neural Network Potential

An alternative approach to solving the Kohn=Sham equations at each MD step consists

in using a Deep Neural Network (DNN) to compute the potential energy. This approach

was only recently made practical by advances in the theory and computational tools of

machine learning42,43. It promises to combine the best of EIP and AIMD, leading to the

development of an expression for the potential energy with the accuracy and generality of

AIMD at a computational cost comparable to EIP.

The field of Deep Neural Network is continuously growing, and we do not intend to provide

a general or through description, limiting ourselves to its application to MD, in particular

we briefly describe the flavor of deep learning (DeepMD44) that we used in our simulations.

As in the case of EIP and AIMD, when using a DNN one computes the potential energy E,

the forces Fi and the virial V from the position of the atoms. In the DeepMD method the

energy is decomposed as the sum of the potential energy of each atom Ei, with:

E =
∑
i

Ei (2.15)

Each atomic energy Ei is a function of the position and type of the i-th atom and of its

neighbors:

Ei = E(Ri, ti, {Rj}i, {sj}i) (2.16)

where Ri is the position of the i-th atom, of type si and the curly brackets indicate the

list of neighbors of the i-th atom. Two atoms are neighbors if they are closer than a cutoff

distance Rc, so that |Ri − Rj | < Rc. The atomic potential energy Ei is symmetric with
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respect to rigid translations, rotations and permutations of atoms of the same type. In

DeepMD this symmetry is achieved by first subtracting the position of atom i from the

positions of the neighbors, then building a local frame of reference for the shifted positions,

to guarantee rotational invariance, and finally sorting the neighboring atoms first by type and

then by distance. This final step guarantees permutation invariance. The final result of this

transformation is a vector Di containing information about atom i and its neighbors, which

like the potential energy is invariant under rigid translations, rotations and permutations of

atoms of the same type. These transformations from real space coordinates to the D vectors

are not strictly necessary, but they significantly increase the performance of the model.

The atomic potential energy Ei is a function of this vector Di. In the DeepMD framework,

this function is the composition of a series of Nh transformations L connecting Nh+ 1 layers

Dh
i , with the first layer D0

i being the input data, and the last one D
Nh
i being the output

layer:

D
Nh
i = L

Nh
si (L

Nh−1
si (...L1

si(D
0
i )...)), (2.17)

where we use the superscript to indicate the depth of the layer, while the subscript s(i) used

for the transformations L indicates that they depend on the type s(i) of the i-th atom. The

transformation Lhsi connecting the layers Dh
i and Dh−1

i is:

Lhsi(D
h−1
i ) = tanh

(
Wh
si ·D

h−1
i + bhsi

)
(2.18)

where L is the composition of two functions: the first one is a general linear function com-

posed of the product with the weight matrix W followed by a sum with the bias vector b, and

the second one is a non linear element-wise hyperbolic tangent, called the activation func-

tion. The final transformation L
Nh
si constitutes an exception, where the activation function

is omitted. The weight matrices Wh
si and bias vectors bhsi are unknown. They are learned by

the neural network in the training process.

The objective of the training process is to build a network capable of performing accurately
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on new, unseen atomic configurations after having been trained on a learning data set. The

data set consist of a large number of atomic configurations, spanning a large region of the

phase diagram, and the associated total energy, forces and virial. In the case of water, the

model used here and developed by Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, and

Weinan E44 was trained on ab initio simulations spanning from 0 to 2500K and from 0 to 100

GPa, thus including most of the solid and liquid phase region of water. The energy, forces

and virial were calculated using DFT, with the SCAN45 exchange-correlation functional.

During the learning process, the coefficients of the weight matrices W and of the bias vectors

b are iteratively evolved to minimize the loss function L, defined as the sum of the mean

square errors of the DNN predictions against the known values for the same configurations:

L(pε, pf , pv) = pε
‖∆E‖
N

+ pf
‖∆F‖

3N
+ pv

‖∆V ‖
9N

(2.19)

where N is the number of atoms. The errors in the DNN predictions are large at the start

and decrease during the learning process, as the DNN is trained on more and more configu-

rations. The prefactors pε, pf , pv, which roughly describe the learning rate of the DNN, also

decrease during the learning process.

In the simulations reported in this thesis we used all classes of potentials described in this

chapter: in the case of ionic crystals, we used an EIP and, at a later stage, DFT calcula-

tions. For water, we started with TIP4P-2005/f and SPCE-f, then we used a Neural Network

(DeepMD) potential, trained on DFT calculations.

2.2.6 Green-Kubo relations

Over the years, several MD-based approaches have been developed to compute the thermal

conductivity of bulk crystalline and amorphous materials, nanostructures, and fluids. Using

the Green-Kubo (GK) relations, based on the fluctuation-dissipation theorem, the thermal
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conductivity is calculated from the fluctuations of the heat correlation function during an

equilibrium MD simulation, in the NVE ensemble. The so called Green-Kubo method is

built on the theory of linear response46–49, applied to the Navier-Stokes equations for the

densities of conserved extensive variables50,51 such as energy, momentum and the number

of molecules.

In what follows we provide a summary of the GK method to compute thermal conductivity;

a more detailed discussion can be found in Ref.52.

When an extensive quantity a, such as the total energy, is locally conserved, it is possible to

write a continuity equation:

∂a(r, t)

∂t
= −∇ ·~j(~r, t) (2.20)

where ~j is the associated current density. Consider a system with a non constant temperature

T (r) = T + ∆T (r), with ∆T (r) << T . The probability P of the system to be in the

microstate Γ is:

P (Γ) = e
−E0(Γ)+V ′(Γ)

kBT /Z (2.21)

where E0 is the energy of the unperturbed system and V ′ the change in energy due to the

perturbation ∆T (r). Let us suppose V ′ is such that:

V ′(Γ) = − 1

T

∫
∆T (r)e(r; Γ)dr +O(∆T 2) (2.22)

where e(r; Γ) is an energy density such that
∫
e(r; Γ)dr = E0(Γ), and the O(∆T 2) symbol

indicates a contribution proportional to the square of the perturbation, which is ignored.

The definition of the energy density is not unique, although it must obey the constrains

of extensivity and conservation of the total energy E0. As showed in a seminal study by

Marcolongo et al.22 this non-uniqueness has significant consequences in the ab initio calcu-

lation of the thermal conductivity. The linear response of the current ji, associated to the

i-th conserved quantity can be expressed as a sum over all correlations with all currents jl

associated with conserved quantities (including ji itself) and the gradient of the density vl
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of the associated perturbation V l 47,49:

jiα =
1

kBT

∑
l

∫ t

∞
dt′
∫
dr′〈jiα(r,Γt)j

l
β(r′,Γt′)〉

∂

∂r′β
vl(r′, t′) (2.23)

Where α and β are the cartesian directions. Limiting ourselves to the case of thermal

transport, by integrating the previous equation over all space and using the Fourier law:

J = −κ∇T (2.24)

one can recover a general expression for the thermal conductivity κ, reading:

καβ =
1

V T 2kB

∫ ∞
0
〈Jα(t)Jβ(0)〉dt (2.25)

where the heat flux Jα is:

Jα(t) =

∫
ė(r, t)r dr (2.26)

In MD simulations, the application of the GK relations can be separated in two problems:

(1) the calculation of the integral with respect to time of the autocorrelation of Jα(t) and

(2) the calculation of Jα(t) itself. The former problem requires the use of long uninterrupted

simulations, much longer than the autocorrelation time of the heat current, although recent

developments53,54 promise a significant reduction in the simulation time needed. The latter

problem, i.e. the calculation of the heat flux, in principle requires a definition for the energy

density and of its derivatives. This is trivial in EIP, but it is significantly more complicated

in AIMD. Until recently, it was indeed thought to be impossible; a derivation of the heat

current in Kohn-Sham DFT can be found in22.
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In Classical Molecular Dynamics, the heat flux in equation 2.26 can be rewritten as:

Jα(t) =

∫
ė(r, t)r dr (2.27)

=

∫ [∑
m

(∂e(r, t)
∂Rm

· Vm +
∂e(r, t)

∂Pm
· Fm

)]
r dr (2.28)

where Rm, Vm, Pm, Fm are respectively the position, velocity, momentum, and force of the

atom n. In the case of classical EIPs the energy density can be separated into atomic

contributions:

e(r, t) =
∑
n

δ(r −Rn)en(t) (2.29)

en(t) =
P 2
n

2Mn
+ vn({R}) (2.30)

where we used δ for the Dirac delta function and the curly brackets {R} indicate the set

of all atomic positions. The total potential energy is partitioned into single atom atomic

energies vn({R}). By substituting equation 2.30 in equation 2.26 the heat flux can also be

decomposed into single atom contributions:

J(t) =

∫ ∑
m

∂
∑
n δ(r −Rn)(

P 2
n

2Mn
+ vn({R}))

∂Rm
· Vm +

∂
∑
n δ(r −Rn)(

P 2
n

2Mn
+ vn({R}))

∂Pm
· Fm dr

=
∑
n

enVn +Rn(Vn · Fn) +Rn
∑
m

(
∂vn
∂Rm

· Vm)

In the case of a two body potential, where the potential energy is the sum of pairwise

contributions between pairs of atoms, the energy can be decomposed by assigning to each

atom in a pair half of the potential energy. A similar, but more complicated, partition can
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be made for potentials which also include contributions from triplets of atoms (three body

potentials) and for general many body potentials55.

2.3 Anharmonic Lattice Dynamics and Boltzmann Transport

Equation

2.3.1 Boltzmann Transport Equation

The Boltzmann transport equation (BTE) can be used to describe the time evolution of the

positions and momenta of a system of (quasi)-particles, e.g. phonons. According to the BTE,

at equilibrium the evolution of the occupation probability nλ of a specific phonon mode λ

due to diffusion, scattering, and the presence of an external heat current must balance:

∂nλ
∂t

(r) =
∂nλ
∂t

(r)diff +
∂nλ
∂t

(r)scatt +
∂nλ
∂t

(r)ext = 0. (2.31)

Under the relaxation time approximation (RTA), the scattering term can be expressed as

−∂nλ
∂t

(r)scatt =
nλ − n0

λ

τλ
, (2.32)

where n0
λ and τλ denote the equilibrium occupation probability and relaxation time, respec-

tively. Under an external temperature gradient ∆T , the deviation of the occupation number

from its equilibrium value λ is given by

nλ − n0
λ = vλ

∂nλ
∂T
∇Tτλ, (2.33)

where vλ is the phonon group velocity vector. In the linear regime, the lattice thermal

conductivity tensor is defined by

Jα = −
∑
β

κ
αβ
l (∇T )β , (2.34)
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where Jα is the heat current along α direction and can be obtained as

Jα =
∑
λ

∫
nλ~ωλvαλ

dk

(2π)3
, (2.35)

where k denotes the phonon wave vector. The resulting lattice thermal conductivity tensor

within the RTA is

κ
αβ
l =

1

NV kBT
2

∑
λ

n0
λ(n0

λ + 1)(~ωλ)2vαλv
β
λτλ, (2.36)

where kB is the Boltzmann constant, V is the volume of unit cell, N is the total number

of phonon wave vectors included in the summation, ωλ and vλ are the frequency and group

velocity of phonon mode λ, with Cartesian coordinates indexed by α and β. Typically, ωλ and

vλ are extracted from phonon dispersion relations in the harmonic approximation, assuming

small atomic displacements, by computing second-derivatives of the potential energy with

respect to atomic displacements. Within the framework of anharmonic lattice dynamics, τλ

is assumed to arise primarily from intrinsic phonon-phonon scattering events56, with the

lowest-order contribution being three-phonon processes.

Anharmonic Lattice Dynamics

Figure 2.2: A schematic representation of three-phonon processes: (top) the splitting process
(ζ− : λ → λ1 + λ2) and the combination process (ζ+ : λ + λ1 → λ2); and (bottom) four-
phonon processes: combination (ζ++ : λ + λ1 + λ2 → λ3), redistribution (ζ+−λ + λ1 →
λ2 + λ3), and splitting (ζ−− : λ→ λ1 + λ2 + λ3).

.
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Recently, Feng and Ruan57–59 performed rigorous calculations of four-phonon scattering

rates in the Anharmonic Lattice Dynamics (ALD-BTE) framework including fourth order

Interatomic Force Constants (IFC) by extending the derivation of Maradudin et al.60. Their

studies reveal that even for diamond, silicon, and germanium, which are generally considered

low-anharmonicity materials, the contribution of four-phonon scattering rates is comparable

to that of three-phonon scattering rates near/above the Debye temperature. Following their

derivation based on Fermi’s golden rule (FGR)57, the scattering rates (τ−1
3,λ and τ−1

4,λ) associ-

ated with three- and four-phonon processes (see Fig. 2.2) in the single mode relaxation time

approximation (SMRTA) are given by

τ−1
3,λ =

∑
λ1λ2

{
1

2

(
1 + n0

λ1
+ n0

λ2

)
ζ− +

(
n0
λ1
− n0

λ2

)
ζ+

}
, (2.37)

τ−1
4,λ =

∑
λ1λ2λ3

1

6

n0
λ1
n0
λ2
n0
λ3

n0
λ

ζ−− +
1

2

(
1 + n0

λ1

)
n0
λ2
n0
λ3

n0
λ

ζ+− +
1

2

(
1 + n0

λ1

)(
1 + n0

λ2

)
n0
λ3

n0
λ

ζ++

 ,

(2.38)

with

ζ± =
π~
4N
|V (3)
± |

2∆±
δ(ωλ ± ωλ1

− ωλ2
)

ωλωλ1
ωλ2

, (2.39)

ζ±± =
π~2

8N2
|V (4)
±±|

2∆±±
δ(ωλ ± ωλ1

± ωλ2
− ωλ3

)

ωλωλ1
ωλ2

ωλ3

, (2.40)
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where V
(3)
± and V

(4)
±± are in turn given by

V
(3)
± =

∑
b,l1b1,l2b2

∑
αα1α2

Φαα1α2
0b,l1b1,l2b2

eλαbe
±λ1
α1b1

e−λ2
α2b2√

mbmb1mb2

e±ik1·rl1e−ik2·rl2 , (2.41)

V
(4)
±± =

∑
b,l1b1,l2b2,l3b3

∑
αα1α2α3

Φαα1α2α3
0b,l1b1,l2b2,l3b3

eλαbe
±λ1
α1b1

e±λ2
α2b2

e−λ3
α3b3√

mbmb1mb2mb3

e±ik1·rl1e±ik2·rl2e−ik3·rl3 .

(2.42)

In the above equations, l, b, and α are indexes of primitive cells, basis atoms, and

cartesian coordinates, respectively; m is the atomic mass, and r is the lattice vector of the

primitive cell; k, n0
λ, ωλ, and eλ are phonon wave vector, equilibrium occupation number,

frequency, and eigenvector, respectively; Φαα1α2
0b,l1b1,l2b2

and Φαα1α2α3
0b,l1b1,l2b2,l3b3

are the third and

fourth order IFCs, respectively. In the three-phonon processes, ζ− represents the splitting

process (λ→ λ1 + λ2) and ζ+ indicates the combination process (λ + λ1 → λ2). Similarly,

ζ−−, ζ+− and ζ++ represent the splitting (λ → λ1 + λ2 + λ3), redistribution (λ + λ1 →

λ2 +λ3), and combination (λ+λ1 +λ2 → λ3) in the four-phonon processes57. In both three-

and four-phonon processes, momentum conservation is strictly enforced as indicated by ∆±

and ∆±±, and energy conservation is enforced by δ functions, which are approximated by

adaptive and regular Gaussian smearing61,62 in computing τ−1
3,λ and τ−1

4,λ , respectively.

Iterative and non-iterative solutions of BTE

Phonon BTE under RTA can be linearized; when solved non-self-consistently, their solutions

are within the single mode relaxation approximation (SMRTA) and when solved iteratively,

they are within the relaxation time approximation, respectively. Within the SMRTA, scat-

tering rates arise from both normal (N) and Umklapp (U) processes, which lead to under-

estimation of κl since N processes do not introduce thermal resistance directly. For systems
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with significant N processes, an iterative solution to the linearized BTE should be pursued

by accounting for non-equilibrium phonon distribution through iteratively refining phonon

populations63–65. In chapter 3, we calculate three-phonon scattering rates by solving the

phonon BTE in an iterative manner. Considering the extremely high computational cost

of including additional four-phonon scattering in the iterative solver, we treat four-phonon

scattering non-iteratively, and combine them with three-phonon scattering rates based on

Matthiessen’s rule to give the total scattering rates. We found that this strategy leads to

reasonably accurate lattice thermal conductivity for compounds which are dominated by U

processes, such as PbTe, as discussed in detail in an earlier study66.

2.3.2 Temperature-dependent Frequencies: Anharmonic Phonon

Renormalization

Several first-principles phonon renormalization (PRN) schemes based either on real or recip-

rocal space formalism have been introduced to treat strong anharmonicity effects on phonon

frequencies67–71. In chapter 3, we utilized the real space based PRN scheme introduced

in Ref.72 to compute temperature-dependent phonon frequencies and eigenvectors66. The

temperature effects are taken into account by constructing temperature-dependent effective

harmonic potential coefficients73 which include the temperature-dependent corrections from

higher-order IFCs on top of harmonic IFCs66. We refer the reader to Refs.66,74 for detailed

discussions.

Assuming that a crystal structure stays in a local equilibrium position, the force Fa expe-

rienced by atom a can be expressed as a Taylor expansion in terms of atomic displacements

and IFCs

Fa = −Φ
(2)
abub −

1

2!
Φ

(3)
abcubuc −

1

3!
Φ

(4)
abcdubucud, (2.43)

where ua ≡ ua,α is the displacement of atom a in the Cartesian direction α, and Φ(n) is the
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nth-order IFCs. One can further write it in a compact form

F =

[
A(2) A(3) A(4)

] [
Φ(2) Φ(3) Φ(4)

]>
, (2.44)

where A(n) is a matrix formed by the products of the atomic displacements, and for example,

A(4) = − 1

3!


u1

bu
1
cu

1
d · · ·

· · ·

uLbu
L
c u

L
d · · ·

 , (2.45)

where the superscripts represent different atomic configurations for a given supercell. If one

assumes that there is a set of effective harmonic IFCs Φ(2)′ that best represent the forces

experienced by atoms, i.e.,

F = A(2)Φ(2)′, (2.46)

Φ(2)′ can be obtained by adding corrections from higher-order IFCs to Φ(2)

Φ(2)′ = Φ(2) + A(2)−1A(3)Φ(3) + A(2)−1A(4)Φ(4). (2.47)

To solve Eq. (2.47), one needs to extract accurate high-order IFCs from first-principles

calculations, which in Chapter 3 are obtained using the recently developed compressive

sensing lattice dynamics (CSLD).75 To compute A(n), we generate temperature-dependent

atomic displacements according to a quantum covariance matrix Σua,ub
68,71 for atoms in a

given supercell

Σua,ub =
~

2
√
mamb

∑
λ

(
1 + 2n0

λ

)
ωλ

eλae
λ∗
b , (2.48)

where n0
λ and ωλ are Bose-Einstein distribution function and vibrational frequency of phonon

mode λ. ma and eλa are atomic mass and phonon eigenvector projected on atom a, respec-

tively. For a given temperature, Eq. (2.47) and (2.48) can be iterated to refine Φ(2)′, the

convergence of which can be controlled by monitoring phonon frequency and vibrational free

26



energy. To speed up the calculation, we further explore the linear constraint from space group

symmetry and translational symmetry on Φ(n) to reduce its dimension. Numerical bench-

marks on strongly anharmonic systems including PbTe and SrTiO3 showed good agreement

with other PRN schemes and experimental results70

2.3.3 Statistics
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Figure 2.3: Constant volume heat capacity as a function of temperature for MgO. Blue
dashed lines display the results computed using Bose-Einstein (BE) statistics and black
solid lines denote equipartition (EQ) as demonstrated in MD simulations. The dashed red
lines indicate 500 K, 750 K and 1000 K.

.

In the expression of the thermal conductivity obtained from the BTE (Eq. 2.36), the

phonon statistics enter both the definition of the heat capacity and that of the scattering

rates (inverse of relaxation time). According to Bose-Einstein (BE) statistics, the phonon

population of mode λ in equilibrium is

n0
λ =

1

e~ωλ/kBT − 1
, (2.49)
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which leads to a mode heat capacity of

Cλ = kB

(
~ωλ
kBT

)2 e~ωλ/kBT(
e~ωλ/kBT − 1

)2
. (2.50)

In the classical (equipartition) limit, each phonon mode has an energy of kBT and population

of kBT/~ωλ, thus giving rise to a temperature-independent mode heat capacity of kB. The

classical limit always overestimates the heat capacity (see Fig. 2.3), particularly at low

temperatures. Specifically in the case of MgO, the classical limit leads to overestimates in

the heat capacity of 11.2%, 5.3% and 3.1% at 500 K, 750 K and 1000 K, respectively.

As rigorously derived by Feng and Ruan57, phonon population in the classical limit

(equipartition) cannot be directly used to compute three- and four-phonon scattering rates

in Eq. 2.37 and 2.38, since the resulting relaxation time is not properly defined from the

linearized BTE. However, since classical limit and BE statistics do converge to the same

limit at high temperature, in Chapter 3 we utilized the equipartition phonon occupation in

Eq. 2.37 and 2.38 to compute scattering rates in order to compare with molecular dynamics

simulations performed at high T.

Calculation of Phonon Lifetimes using MD

An alternative way to compute phonon lifetime, occupation and frequency shift consists in

combining the phonon properties computed using ALD and MD. Before starting our simula-

tions, one can compute the phonon frequencies and eigenvectors for the target temperature

using the phonon renormalization (PRN) scheme described in Ref.66. Once the phonon

frequencies ωλ and eigenvectors eλ are known, the energy of each phonon mode can be com-

puted during a MD simulation as a function of time. The energy of a phonon mode λ is

calculated as

Eλ(t) = Kλ(t) + Uλ(t) (2.51)
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where K and V are, respectively, the kinetic and potential components of the energy of the

phonon mode. The kinetic component is calculated from the projection q̇ of the phonon

mode on the velocities v of the atoms. The potential component is calculated by projecting

onto the displacement u of the atoms from their equilibrium positions r0, i.e.

Kλ(t) =
1

2N
‖q̇λ‖2 Uλ(t) =

1

2N
ω2
λ‖qλ‖

2 (2.52)

q̇λ =
∑
l,b

√
mb

N
ei
~kr0(l,b)~e ∗b,λ · v(l, b, t) (2.53)

qλ =
∑
l,b

√
mb

N
ei
~kr0(l,b)~e ∗b,λ · u(l, b, t) (2.54)

Here, l and b are indices over the primitive cells and the atoms inside a primitive cell,

respectively. N is the number of atoms in the system, mb is the mass of atom b, and ωλ is

the frequency of the phonon mode λ. The displacement u is given by u(t) = r(t) − r0(t).

The vector ~eb,λ describes the direction and phase of the displacement of atom b due to the

phonon with wavevector ~k and polarization λ.

The lifetime of each phonon mode is then calculated from the normalized autocorrelation of

the energy:

τλ =

∫ ∞
0

〈Eλ(0)Eλ(t)〉
〈Eλ(0)Eλ(0)〉

dt (2.55)

In order to reduce the noise due to the tail of the autocorrelation, the lifetime can be

computed from a fit to the equation

〈Eλ(0)Eλ(t)〉
〈Eλ(0)Eλ(0)〉

= e−t/τλ (2.56)

with the lifetime τλ as a single fitting parameter. In Chapter 3 lifetimes are computed

as described above during an NVE simulation, once the system is prepared at the target

temperature using a Nose-Hoover76 thermostat.

The lifetimes from MD were computed using a parallel python code, called pyTauMD, which
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we developed and will be described in an upcoming publication. Briefly, the main steps of

the workflow are the following: (i) Calculation of the dynamical matrix from the second

derivative of the potential energy E. (ii) Diagonalization of the latter to compute phonon

eigenvectors and frequency. If those are already available, it is possible to skip steps one and

two. (iii) Evaluation of the energy per mode as a function of time, using the scalar product of

the phonon eigenvector on the velocities and displacement of the atoms following equations

2.52-2.54. (iv) The average number of phonons is obtained from the average energy of a

phonon mode as computed during MD, divided by the energy of a single phonon ~ω. (v)

The lifetime τ of a phonon mode is then computed using the autocorrelation of the energy

as described in Eq. 2.56.

Average Phonon Occupation

The classical Hamiltonian of a system of vibrating atoms can be written, in the harmonic

approximation, as a sum of kinetic and potential energy over phonon modes:

Hharm({q, q̇}) =
∑
λ

[ 1

2N
‖q̇λ‖2 +

1

2N
ω2
λ‖qλ‖

2] (2.57)

As a consequence of the equipartition theorem, the average kinetic and potential energy for

each phonon mode is equal to kBT/2. Each phonon mode has an average energy and phonon

number given by:

〈Eλ〉 = kBT 〈nλ〉 =
kBT

~ωλ
(2.58)

From the procedure used to calculate the phonon lifetimes, described above, one can obtain

the phonon energy averaged over time

〈Eλ〉 =
1

Γ

∫ Γ

0
Eλ(t)dt (2.59)
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where here Γ is the total simulation time, and the mode-by-mode average phonon occupation

number 〈nλ〉 is

〈nλ〉 =
〈Eλ〉
~ωλ

(2.60)

Frequency Shifts

Phonon frequencies are dependent on temperature due to different degrees of atomic displace-

ments from their equilibrium positions as a function of T, amounting to sampling different

portions of the anharmonic potential energy surfaces. This change in phonon frequencies

as a function of T (which we call shift in phonon frequencies relative to their T=0 value,

or phonon renormalization) naturally manifests itself in MD simulations. In our analysis in

Chapter 3, we compute the frequency shift from the kinetic part Kλ(t) of the phonon mode

energy. We fit its normalized time autocorrelation function to the equation

〈Kλ(0)Kλ(t)〉
〈Kλ(0)Kλ(0)〉

= e−t/τλ cos2 ωλ(T ) (2.61)

where we added the dependence (T ) to the frequency ωλ. The frequency shift is then defined

as the difference between the frequency obtained during MD simulations and that obtained

from diagonalizing the dynamical matrix at T=0. Note that this procedure does not include

effects arising from the temperature-dependent change in lattice constant, as we compute

both frequencies at the same lattice constant.

2.4 Comparison of Green-Kubo and Boltzmann Transport

Equation based methods

While MD and ALD are fundamentally distinct and practically disparate approaches, they

have nonetheless both been shown to give reasonably accurate predictions for similar sys-

tems57,77,78. Typically, GK calculations are performed using classical MD where the poten-

tial energy is given by an interatomic potential as a function of the positions of the atoms.
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Recently, Marcolongo et. al.22 and Carbogno et al.79 showed that the Green-Kubo formal-

ism can be applied to ab initio MD, although the method of Ref.79 is limited to solids and

contains approximations on the partition of slow and fast vibrational modes.

We note that the Green-Kubo formalism does not rely on the definition of phonons and is

generally applicable: it can describe conductive heat transport in crystalline or amorphous

materials, materials with defects, nanostructures, and fluids. The GK method implicitly

accounts for all anharmonic terms in the potential energy. In BTE language, this would

translate to including all phonons processes in the perturbative expansion (instead of only

up to the third or fourth order), thus allowing for greater accuracy at high temperatures.

Nonetheless, the GK method suffers from three deficiencies: (i) being based on classical MD,

it is not known how to include quantum effects such as zero point energy or quantization of

the phonon energy levels, leading to lower accuracy at low temperatures. This problem is

of a theoretical nature and, to our knowledge, has not been solved, although semi-empirical

corrections have been proposed80,81; (ii) long simulation times (order of ns) are needed for

convergence, especially for systems with high values of thermal conductivity, mostly due to

noise in the long time tail of the heat flux autocorrelation function. Acceleration is possible

based on the methods proposed in Ref.54 or79, although the latter one is limited to crystals

and based on phonon theory; and (iii) the value of the thermal conductivity calculated in

a GK simulation is a function of the number of atoms included in the MD cell, converging

in the infinite limit to the bulk value. Currently, no theory or model exists to predict or

extrapolate to the thermodynamic limit, leading to the necessity of simulating at various cell

sizes with increasing numbers of atoms until satisfactory convergence is obtained. We refer

to78 for a detailed study.

Meanwhile, phonon-based ALD approaches for calculating lattice thermal conductivity, ap-

plicable to crystalline systems, have been developed based on the Boltzmann transport equa-

tion (BTE), with the central assumption that collective vibrations can be thought of as

quasi-particles termed phonons which have explicit group velocities and scatter with each
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other82–84. Within these approaches, the lattice thermal conductivity is calculated by solv-

ing the BTE, under the relaxation time approximation, with relaxation times obtained using

perturbation theory and considering anharmonic phonon-phonon interactions, such as three-

and four-phonon scattering processes57,60,65,85,86.

The BTE-ALD approach is more advantageous compared with MD-based method in the

following respect: (i) the quantum (Bose-Einstein) statistics is utilized, thus (presumably)

attaining better accuracy at low temperatures; (ii) first-principles calculations may be used

to obtain third and fourth order force constants in a relatively straightforward manner for

a variety of systems, to accurately model heat transport in bulk crystals with relatively

low computational costs, and computation for larger systems in some cases can be paral-

lelized62,75,85,87; and (iii) convergence issues with respect to system size and sampling are

less severe than in MD.

However, BTE-ALD suffers from several deficiencies: (i) the approach depends on the as-

sumption that lattice vibrations can be treated as quasiparticles, i.e., both the anharmonic

frequency shift and broadening (real and imaginary part of the phonon self-energy) are

relatively small compared to the phonon frequency, and fails when quasiparticles are not

well-defined, such as in the localization limit in systems with strong intrinsic disorder88,89;

An alternative approach was recently developed90, based on the definition of a new class of

collective excitation, called relaxons, as linear combinations of phonons; (ii) the approach is

based on perturbation theory, which is accurate only in the perturbative limit and may fail

in severely anharmonic systems or at high temperatures since the scattering processes are

limited to third or at most fourth order; and (iii) it is difficult to use the phonon BTE method

to model heat transport in non-crystalline systems including defects and nanostructures, and

the approach cannot be applied to fluids or even solids when diffusion occurs.
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CHAPTER 3

A COMPARISON OF MOLECULAR DYNAMICS AND

BOLTZMANN TRANSPORT APPROACHES

3.1 Introduction

As described in the previous chapter, two major approaches, namely molecular dynamics

(MD) simulations and calculations solving approximately the Boltzmann transport equation

(BTE), have been developed to compute the lattice thermal conductivity. In this chapter

we present a detailed direct comparison of these two approaches, using as prototypical cases

MgO and PbTe. The comparison, carried out using empirical potentials, takes into account

the effects of fourth order phonon scattering, temperature-dependent phonon frequencies

(phonon renormalization), and investigates the effects of quantum vs. classical statistics.

We clarify that equipartition, as opposed to Maxwell Boltzmann, govern the statistics of

phonons in MD simulations. We find that lattice thermal conductivity values from MD and

BTE show an apparent, satisfactory agreement; however such an agreement is the result of

error cancellations. We also show that the primary effect of statistics on thermal conductivity

is via the scattering rate dependence on phonon populations. We aim to provide a controlled,

comprehensive, and systematic comparison of MD vs. ALD-BTE based approaches for the

prediction of lattice thermal conductivity.

In an earlier study77, Turney et al. presented and compared methods in several categories:

(1) quasi-harmonic and anharmonic lattice dynamics calculations, (2) a combination of quasi-

harmonic lattice dynamics calculations and molecular dynamics simulations, and (3) Green-

Kubo and direct molecular dynamics, to assess their validity. They pointed out that the

lattice dynamics calculations tend to underestimate lattice thermal conductivity at above

half of the Debye temperature. However, their lattice dynamics calculations excluded higher-

than-third-order anharmonic phonon-phonon interactions. In addition, the impact of differ-

ent statistics (quantum vs. classical) on calculated thermal conductivity was not clarified.
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In a follow-on study, the same authors91 assessed different corrections to MD simulations

to account for quantum statistics, using silicon and the Stillinger Weber potential. They

found that these corrections failed at low temperatures due to the classical distribution of

phonon modes. He et al.78 compared the GK-MD and BTE approaches for the computation

of thermal conductivity of Si, Ge, and Si-Ge alloys, and found that the results are consistent

for the pure compounds, though alloy systems prove to be problematic for BTE. In this

study, some investigations into the effects of quantum statistics were carried out via the use

of classical statistics in BTE. In addition, the effects of temperature-induced anharmonic

phonon renormalization or higher-than-third-order interactions were again not considered.

Since several of the previous studies were carried out on Si or related systems, it is of interest

to test the results on more diverse types of systems.

In order to accomplish a meaningful comparison, we select two representative systems: a

small-gap semiconductor with low lattice thermal conductivity (PbTe), and an insulator

with higher lattice thermal conductivity (MgO). These two materials have the further ad-

vantage of having simple structures. For each material, we use MD and BTE-ALD, with

the same interatomic potential, to evaluate the temperature-dependent values of the lattice

thermal conductivity well below, near, and well above their respective Debye temperatures.

We further investigate the source of the differences between the two approaches by deriving

lifetimes from MD simulations, considering heat capacities and phonon occupancies under

different treatment of statistics, and using these quantities in the BTE expression. The goal

is to determine the underlying physical reasons for divergences and convergences between

the two approaches.

3.2 Model Systems and Interatomic Potentials

To ensure that any differences in computed thermal conductivity arise solely from the treat-

ment of heat transport (i.e. atoms vs. phonons), we used the same interatomic potential for

both MD and BTE calculations. For MgO, we used the potential described in Ref.92; for
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PbTe, we used the potential from Ref.93. Both potentials are of the Buckingham-Coulomb

type. The MgO potential was shown92 to predict experimental lattice constant, thermal

expansion and thermal conductivity reasonably well in the 300K-1500K range. The PbTe

potential developed by Qiu et al.93 was shown to reasonably reproduce the mechanical and

vibrational properties of PbTe bulk crystal, as well as lattice thermal conductivity. We stud-

ied MgO at 500K, 750K, and 1000K and PbTe at 100K, 150K, and 300K. The experimental

Debye temperatures of MgO and PbTe are 743K94 and 177K95, respectively. To account

for thermal expansion, the lattice parameters computed from NPT MD simulations at each

temperature were used.

3.2.1 Molecular Dynamics: computational details

All classical simulations were performed using LAMMPS96. The MgO samples contain 32768

(500-750K) or 4096 (1000K) atoms, with the smaller number of atoms for higher temperature

due to the shorter mean free path at higher temperature. The PbTe samples contain 8192

atoms. For all systems, Nose-Hoover NVT equilibration runs of 20 ps for MgO and 100 ps

for PbTe were followed by NVE simulations of 3 ns to obtain the lattice thermal conductivity

(κ). For each temperature and material, 4-9 GK MD runs were performed, to give a total

of 12-27 ns of statistics. The time step used for MgO is 1 fs whereas that for PbTe is 0.5 fs.

The MgO 500K and 1000K data are from the Supporting Information in Ref.27.

3.2.2 Boltzmann Transport Equation: computational details

In the BTE-ALD calculations, for both MgO and PbTe, we used 6×6×6 supercells to extract

harmonic and anharmonic interatomic force constants (IFCs) up to the fourth order using

compressive sensing lattice dynamics75. There is no explicit cutoff distance enforced on the

harmonic IFCs97. To further verify the extracted harmonic IFCs, we compare the calculated

phonon dispersions with those independently obtained by Phonopy98. The cutoff distance

of the third order IFCs is limited to the seventh nearest neighbor shell, which leads to
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converged lattice thermal conductivity when only three-phonon interactions are accounted

for. Considering the short-range nature of 4th-order anharmonicity75 and the associated

combinatorial growth in the number of parameters, the 4th-order IFCs are limited to the

second nearest neighbor shell.

We also verified that the additional inclusion of the third nearest neighbor shell in the

fourth order IFCs leads to negligible changes in both frequency shifts and lattice thermal

conductivity. The phonon BTE with renormalized harmonic IFCs and anharmonic IFCs

as input were solved using q-point mesh of 16×16×16 and 12×12×12, respectively, which

are deliberately chosen to be equivalent to the supercell structures used in MD simulations.

All anharmonic lattice dynamics calculations were performed using an in-house customized

ShengBTE package which further includes four-phonon scatterings for phonon lifetimes62.

Figure 3.1: (a) Relative force prediction error by compressive sensing lattice dynamics as a
function of included maximum order of interactions. (b) Comparison between predicted and
Gulp-computed forces when interatomic force constants up to 6th-order are included.

.

The essential ingredients for the calculation of τ−1
λ are harmonic and anharmonic in-

teratomic force constants (IFCs). We utilized our recently-developed compressive sensing

lattice dynamics (CSLD)75 approach to extract both harmonic and anharmonic IFCs, which

are obtained from a convex optimization problem that minimizes a weighted sum of the `1
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norm of the IFCs Φ and the root-mean-square fitting error

ΦCS = arg minΦ ‖Φ‖1 +
µ

2
‖F− AΦ‖22, (3.1)

where F is a vector composed of atomic forces calculated by DFT, and A is a matrix formed

by the products the atomic displacements. The parameter µ is a tuning parameter used to

control the relative weights of the force fitting error versus the sparsity of Φ components.

Since (1) small µ leads to sparse solution of Φ at the expense of the accuracy of the fitted Φ

(“underfitting”) and (2) large µ give a dense solution of Φ but with poor predictive power

(“overfitting”), an optimal µ is determined by monitoring the predictive relative error for a

leave-out subset of the training data not used in fitting. To reduce the parameter space of

Φ, linear constraints from crystal symmetry and translational symmetry are explored and

strictly enforced by finding the null space representation of Φ. More details on numerical

issues and the symmetrization of IFCs can be found in Ref.70,75,99,100. The dependence of

force prediction error on the order of included interactions is given in 3.1

3.3 Results and Discussions

Phonon Dispersion Average Phonon Occupation

Our results for phonon numbers for MgO and PbTe at various temperatures are shown in

Figure 3.4, where we compare the distributions obtained in our calculations against those

predicted by equipartition, as well as the Maxwell-Boltzmann (MB) and Bose-Einstein (BE)

statistics. The computed distributions deviate significantly from those of the MB distribu-

tion, illustrating that classical phonons in MD are distributed not via MB but equipartition

(EQ). The computed distributions deviate also from BE statistics but the agreement im-

proves with increasing temperature, as expected.
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Figure 3.2: Comparison of phonon dispersions for MgO and PbTe calculated using Phonopy
and compressive sensing lattice dynamics (CSLD). Temperature-dependent lattice parame-
ters were determined by MD simulations.
.

3.3.1 Temperature-dependent phonon frequencies

It is instructive to compare the phonon frequencies and their changes as a function of tem-

perature obtained using the two different approaches. Fig. 3.2 in the Supplemental Materials

(SM) shows comparisons of phonon dispersions, showing that the fitted potential using CSLD

gives similar dispersions to those obtained using finite displacements with the original inter-

atomic potential. In Fig. 3.5, we show the mode-resolved frequency shifts as calculated in

ALD and in MD, relative to the frequencies obtained from direct diagonalization. Fig. 3.3

displays the phonon density of states for these three cases. As expected, the frequency shifts

increase with temperature. With the exception of high frequency MgO modes, the frequency

shifts in MD are found to be smaller than the ones in ALD. The difference in frequency shifts

39



Figure 3.3: Phonon density of states plots for MgO at 500K (a), 750K (b), 1000K (c) and
for PbTe at 100K (d), 150K (e) and 300K (f). DD (blue line) indicates the density of state
calculated from the direct diagonalization of the dynamical matrix; BTE (orange) is the
result of anharmonic lattice dynamics calculations and MD (green) is the result of molecular
dynamics simulations.

between MD and ALD increases at high frequency, likely because of the different phonon

distributions. This difference persists at high temperatures, despite an expected decrease in

the difference between the two phonon distributions with increasing temperatures. More-

over, we note that the agreement between ALD and MD approaches is better in MgO, where

frequency shifts are large (∼1 THz), than in PbTe, where frequency shifts are on average

10 times smaller (∼0.1 THz). To further confirm the ALD results, we performed additional

self-consistent phonon (SCPH) calculations of frequency shifts in reciprocal space, as derived

from many-body Green-function theory56,70,101; the results are found to agree with those

obtained by the real space-based PRN scheme. This indicates that part of the discrepancies

between MD and ALD may be numerical in nature.
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Figure 3.4: Phonon occupation per mode as a function of frequency for MgO at 500K (a),
750K (b) and 1000K (c) and PbTe at 100K (d), 150K (e) and 300K (f). For all materials
and temperature, we compare the energy distribution calculated in our molecular dynamics
(MD) simulations against three possible statistics: Bose-Einstein (BE) (blue dot-dashed
lines), equipartition (EQ) (solid black lines) and Maxwell-Boltzmann (MB) (orange dashed
lines).
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Figure 3.5: Mode-resolved frequency shift of MgO at finite temperatures [(a): 500 K; (b):
750 K; (c): 1000K] relative to the 0 K. Mode-resolved frequency shift of PbTe at finite
temperatures [(d): 100 K; (e): 150 K; (f): 300K] relative to the 0 K. The solid magenta
disks and empty blue circles denote results from molecular dynamics simulations and anhar-
monic phonon renormalization, respectively. The frequency shift from anharmonic phonon
renormalization is computed using Bose-Einstein statistics. We also find that replacing Bose-
Einstein with classical statistics leads to only very small changes in computed frequency shift
(e.g, a relatively change of 8% and 2% for MgO at 500 K and 1000 K, respectively).

3.3.2 Phonon lifetimes

We compare the phonon mode-resolved scattering rates of MgO and PbTe obtained from MD

and ALD at various temperatures in Fig. 3.7. To perform a valid comparison, we enforce

equipartition for phonon population in ALD calculations, thus following the same statistics as

in MD simulations. Overall, good agreement is found between MD and ALD results, despite

the rather different formalisms based on atomic motion or phonon quasiparticles. In general,

acoustic modes show much smaller scattering rates than those of optical modes, primarily

due to the limited scattering phase space of low-frequency phonon modes. Scattering rates
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Figure 3.6: Mode-resolved frequency shift of MgO at finite temperatures [(a): 500 K; (b):
750 K; (c): 1000K] relative to the 0 K. Mode-resolved frequency shift of PbTe at finite
temperatures [(d): 100 K; (e): 150 K; (f): 300K] relative to the 0 K. The solid magenta disks
and empty blue circles denote results from molecular dynamics simulations and anharmonic
phonon renormalization, respectively. Different from Fig.3.5, here the phonon frequency
from molecular dynamics is obtained combining Eq 2.52 and equipartition by taking the
ratio ‖qλ‖2/‖q̇λ‖2.

of both acoustic and optical modes increase with enhanced phonon populations at higher

temperatures. We notice that, for both MgO and PbTe, scattering rates of acoustic modes

obtained from the two methods agree well with each other, while those of optical modes are

found to be smaller from MD simulations, but with decreased discrepancy between MD and

ALD at high temperatures. We note that the larger discrepancy associated with the high-

lying optical modes at relatively low temperatures might be due to the breakdown of the

relaxation time approximation when equipartition is assumed for phonon population in the

linearized BTE, while high temperature tends to reduce such discrepancy, as pointed out by

Feng and Ruan57. To shed light on the impact of statistics on lifetimes in ALD calculations,
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Figure 3.7: Comparison of mode-resolved scattering rates of MgO between molecular dy-
namics (MD) simulations and anharmonic lattice dynamics (ALD) calculations at (a) 500
K, (b) 750 K and (c) 1000 K. (d)-(f) the same as (a)-(c) but for PbTe at 100 K, 150 K
and 300 K, respectively. Phonon populations were assumed to follow equipartition in ALD
calculations.
.
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Figure 3.8: Comparison of mode-resolved scattering rates of MgO obtained by assuming
Bose-Einstein statistic (BE) and classical equipartition (EQ) in anharmonic lattice dynamics
(ALD) calculations at (a) 500 K, (b) 750 K and (c) 1000 K. (d)-(f) the same as (a)-(c) but
for PbTe at 100 K, 150 K and 300 K, respectively.
.

we also compare the scattering rates calculated using phonon populations obeying Bose-

Einstein statistics and equipartition, respectively, in Fig. S5 (see Supplementary Materials).

Consistently, we find that equipartition leads to higher phonon scattering rates, and again,

with decreased difference from those obtained by assuming Bose-Einstein statistics at higher

temperatures. This discrepancy is deeply rooted in the fact that phonon populations from

Bose-Einstein statistics and equipartition are different, particularly for the high-frequency

optical phonons. It is the overall increased phonon populations in the case of equipartition

that leads to higher phonon scattering rates. Our results suggest that phonon scattering rates

calculated using Bose-Einstein statistics compare better with MD simulations than those

from equipartition, particularly for the high-lying optical phonon modes. This agreement,

however, may be accidental or suggest error cancellations.
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Figure 3.9: Lifetimes computed from Molecular Dynamics using two different expressions.
The lifetimes calculated from Eq. 2.61 are plotted vs. those from Eq. 2.55.

To reveal the role of the higher-than-third-order phonon scattering processes in deter-

mining overall phonon scattering rates, we show the decomposed total scattering rates by

separating them into contributions from three- and four-phonon processes for MgO and PbTe

in Fig. 3.10. The MgO results reveal that the contribution of four-phonon scattering is com-

parable to that of three-phonon scattering at all temperatures studied here. Particularly,

four-phonon scattering rates of optical modes with frequency of about 10 THz are even higher

than those of three-phonon processes, highlighting the importance of including four-phonon

scattering processes to accurately predict the thermal conductivity. It is also evident from

the PbTe results that four-phonon scattering rates have a stronger temperature-dependence

than three-phonon scattering rates, with increasing relative contributions to total scattering

rates at higher temperatures.
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Figure 3.10: Decomposed three- and four-phonon scattering rates for MgO at (a) 500 K, (b)
750 K and (c) 1000 K, and PbTe at (d) 100 K, (e) 150 K and (f) 300 K.
.
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3.3.3 Calculations of the Thermal Conductivity

Here we discuss our finding, summarized in Table 3.1, in which we use lifetimes obtained

from MD simulations (τMD), as well as from three- and four-phonon scattering (τBE , in

the BTE expression for thermal conductivity (Eq. 2.36). We also use the classical equipar-

tition (CEQ) and Bose-Einstein (CBE) expressions for heat capacity in Eq. 2.36. All the

above results are listed in comparison to the Green-Kubo (GK) thermal conductivity, and

labeled approximations 1-7 or A1-A7 in Table 3.1. For MgO, the thermal conductivity val-

ues obtained from BTE using three- and four-phonon scattering processes, and Bose-Einstein

statistics (A4 in Table 3.1), agrees strikingly well (to within 3%) with the Green-Kubo results

(A7). For PbTe, however, the agreement is only satisfactory (within 16%). This agreement

is better than previous comparisons (e.g. Ref.77), likely due to the inclusion of fourth-order

phonon scattering in the BTE-ALD treatment. The agreement, however, may be due to a

number of error cancellations, as explained below.

One significant difference between the MD and BTE approaches is the inclusion of phonon

scattering processes to all orders in MD, as opposed to the order-by-order expansion in BTE.

Because the rate of scattering processes at different orders are summed, i.e. via Matthiessen’s

rule, the inclusion of higher order should reduce the lifetimes and therefore the thermal

conductivity. Indeed, substituting lifetimes from MD into the BTE expression with the BE

expression for heat capacity (A2) results in lower thermal conductivity values compared

to using BTE lifetimes (A4), due to the inclusion of higher-order scattering processes in

MD. Because of the computation of the lifetimes using energy autocorrelation functions, the

dissipative vs non-dissipative effects of Umklapp vs normal processes, respectively, are also

preserved.

The effects of statistics on the heat capacity and the corresponding effects on thermal

conductivity can be made apparent by considering the changes in predicted values as the heat

capacity is evaluated using equipartition (A1, A3, A5) or Bose-Einstein statistics (A2, A4,
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A1 A2 A3 A4
Compound Temperature τMD CEQ τMD CBE τBE CEQ τBE CBE
MgO 500K 29.4 27.0 35.5 32.8
MgO 750K 16.3 15.6 20.9 20.2
MgO 1000K 10.4 10.2 14.7 14.4
PbTe 100K 11.2 10.7 13.0 12.4
PbTe 150K 7.0 6.8 7.9 7.7
PbTe 300K 3.1 3.1 3.4 3.4

A5 A6 A7
Compound Temperature τEQ CEQ τEQ CBE GK

MgO 500K 27.1 25.2 32.6 (2.1)
MgO 750K 17.4 16.8 19.6 (0.5)
MgO 1000K 12.6 12.4 14.1 (0.7)
PbTe 100K 10.2 9.8 10.4 (0.8)
PbTe 150K 6.6 6.5 6.5 (0.6)
PbTe 300K 3.0 3.0 3.2 (0.2)

Table 3.1: Computed thermal conductivity of MgO and PbTe using different expressions for
lifetimes (τ) and heat capacities (C). All thermal conductivity values are in W/mK. The
lifetimes τMD’s are obtained from MD simulations according to Equation 2.55, τBE ’s are
obtained from BTE according to phonons in a Bose Einstein distribution, whereas τEQ’s
are obtained from BTE according to phonon population obeying equipartition. All BTE
calculations include three- and four-phonon processes. The heat capacities CEQ and CBE
correspond to those obtained from equipartition and Bose-Einstein statistics, respectively,
as shown in Fig. 2.3. Finally, the thermal conductivity obtained from Green-Kubo (GK) is
listed. The different approximations are labeled A1 to A7 in the first row.

A6), when the treatment of the lifetimes is held constant. Since classical heat capacities are

consistently higher, and especially so at low temperatures, than Bose-Einstein heat capaci-

ties, the thermal conductivity values are also higher in A1, A3, and A5 than in A2, A4, and

A6, respectively. The difference decreases with increasing temperature as expected. More-

over, we find that using BE heat capacities with MD lifetimes (A2) worsens rather than

improves the agreement with the BTE-ALD results (A4). In agreement with Ref.91, BE

treatment of heat capacities together with MD lifetimes is ruled out as a possible quantum

correction for classical MD simulations of thermal conductivity.

As mentioned above, phonon occupations also directly affect scattering rates calculated

from three- and four-phonon scattering processes. This effect is apparent from a comparison

between A4 and A6. It is seen that changing the occupation numbers to those corresponding
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to equipartition (A6) rather than the Bose-Einstein distribution (A4), without changing the

heat capacity, changes the thermal conductivity significantly (up to 24%). Note also, that

the effect of statistics on scattering rates is significantly larger than the effects of statistics

on heat capacities. For example, the differences between A5 and A6 is smaller than those

between A4 and A6.

Attempting to remove the effects of statistics, a comparison can be made between BTE

and MD approaches by comparing the results of BTE with equipartition (A5) to the Green-

Kubo values (A7). Here, one finds that the agreement is reasonable with MgO and excellent

with PbTe. We note, however, that the relaxation time approximation in BTE is not strictly

valid when equipartition is enforced in phonon populations.

Interestingly, substituting MD lifetimes as well as heat capacities evaluated with equipar-

tition into the BTE expression (A1) results in thermal conductivity values which are signifi-

cantly different from those obtained from the Green Kubo expression (A7). The difference is

likely due to the single-mode approximation used in the BTE approach. This highlights the

fact that apart from treatments of lifetimes and heat capacities, the summation according

to phonon modes in and of itself introduces a difference between BTE and MD methods for

computing thermal conductivity.

3.4 Conclusions

In conclusion, in this chapter we have presented a detailed comparison between molecu-

lar dynamics (MD) and Boltzmann Transport Equation using anharmonic lattice dynam-

ics (BTE-ALD) approaches for the computation of thermal conductivity. Improvements in

BTE-ALD such as the inclusion of fourth-order phonon scattering processes, and treatment of

temperature-dependent phonon frequency shifts (phonon renormalization) were included. Is-

sues regarding the proper treatment of statistics in MD simulations, namely classical equipar-

tition rather than Maxwell Boltzmann, were addressed. Thermal conductivity values were

found to agree well between BTE-ALD and Green-Kubo (GK) MD, but a detailed anal-
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ysis showed that such agreements are introduced by cancellations of different errors. By

substituting lifetimes derived from energy-energy autocorrelation function from MD simula-

tions into the BTE expression, we determined the effects of higher-than-4th-order phonon

processes, the effects of statistics via the lifetimes and heat capacities, and the effects of

single-mode relaxation time approximation itself, to the calculation of thermal conductivity.

Significantly, we find that the effects of statistics on thermal conductivity is primarily due

to effects on scattering rates. We also find that a full substitution of MD lifetimes and heat

capacities in the BTE expression fails to reproduce GK results, indicating a significant effect

of single-mode relaxation time treatment on thermal conductivity. One significant lesson

from this comparison is that for integrated properties such as transport coefficients, appar-

ent agreement may mask fundamental physical differences, thus caution is advised in the

interpretation of the results.
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CHAPTER 4

THERMAL TRANSPORT IN NANO-POROUS SILICON

BRIDGES

4.1 Thermal Transport in Nano-porous Silicon Bridges

We now turn to the discussion of the thermal conductivity of a nanostructured material:

nanoporous Si. Controlling nanoscale thermal transport via phonon engineering is a promis-

ing path for novel thermal management in electronic devices and high performance thermo-

electrics102. The conversion efficiency of a thermoelectric device is controlled by the figure

of merit of the material, zT = σS2T/κ, where T is the temperature, σ the electrical conduc-

tivity, S the Seebeck coefficient and κ the thermal conductivity. The thermal conductivity

is the sum of the electronic thermal conductivity and of the lattice thermal conductivity. An

efficient thermoelectric material possesses a large Seebeck coefficient and electrical conduc-

tivity, while having a low thermal conductivity.

Usually, materials with nanometer feature sizes show unique thermal transport properties

compared to the original bulk material. Nanostructured materials can in principle be de-

signed to have significantly reduced thermal conductivity, at the price of a slightly reduced

electrical conductivity. This has been demonstrated both experimentally and theoretically in

various nanomaterials such as superlattices103,104 and nanowires105–107. An alternative path

to reduce thermal conductivity is the use of ultrathin silicon containing periodic arrangement

of nanopores in a two-dimensional lattice of pores with a sub-100 nm period108–113.

In recent years, nanoporous thin films have attracted great interest due to their potential

applications not only in thermoelectric devices114, but also as sensors and for nanoscale ther-

mal insulation. The creation of reproducible samples with a defect free lattice of nanopores

and a feature size of a few tens of nanometers has been made possible by recent progress in

nanoscale manufacturing, lithography and block copolymer directed self-assembly.115

The mechanism for unusually low κ of nanoporous thin films is still under debate and it
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remains an open question. Here we report calculations of the thermal conductivity of Si

bridges of up to 37.5 nm, using the GK method and empirical potentials. Previous theoret-

ical work116,117 suggests that disorder at the surfaces of the pores may play an important

role in reducing the group velocity, the mean free paths and the lifetimes of phonons, thus

reducing the thermal conductivity, similar to what happens in silicon nanowires with disor-

dered surfaces105.

Previous computational works could only study samples with a feature size in the range of

a few nm. In these nanostructures, phonons frequently interact with the boundaries, i.e.

the surface of the pores, and phonon-surface scattering processes strongly reduce heat con-

duction. Generally speaking, when the wavelength of a phonon is shorter than the surface

roughness, the phonon loses coherence and scatter diffusely. When this is the dominant

scattering process, the thermal conductivity can be shown to be inversely proportional to

the surface-to-volume ratio of the structure and approximately proportional to the limiting

dimension of the structure118.

On the experimental side, there are data available for porous silicon bridges with a regular

lattice of pore with various porosity and a periodic length ranging from approx 1000 to 60

nm113,119–121 and one study of a sample with a period of 34 nm109. Those length-scale are

much higher than the one studied computationally using MD thus far.

Here, we have studied the room temperature thermal conductivity of Silicon thin films with

two-dimensional hexagonal lattice of pores with periods between 7.5 and 37.5 nm and poros-

ity between 20% and 40%. The porosity is in the range that is typical for the block copolymer

directed self-assembly fabrication process, and the range of periods nicely bridge the gap be-

tween previously available MD results and available experimental studies.

4.2 Sample creation

The physical samples were created by our collaborators in Prof. Nealey’s group at the

University of Chicago. A detailed description of the fabrication process will be found in an
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upcoming publication; here we summarize the main steps, shown schematically in fig. 4.2.

A block copolymer film122 is deposited and annealed on a pre-patterned single crystal wafer

containing an intermediate layer of SiO2 and a top layer of Silicon. During annealing, the

block copolymer will self-assemble in a regular pattern115. A sequence of photo-lithographic

and chemical techniques are then used to etch the holes in the Silicon layer and to remove

a portion of the SiO2 layer, leaving a porous silicon bridge of a height of 100 nm suspended

in air, with a lattice period (called pitch) of 37.5 nm and a porosity of approximately 33%.

During this sequence of processes, three pads of Aluminum are deposed at the center of

the bridge and near the start and end of the bridge. These Aluminum pads are necessary

for the measurement of the thermal conductivity using either Time-domain25 or Frequency-

domain26 thermo-reflectance.
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Figure 4.1: Fabrication steps of the porous silicon bridges. See text for description. Image
courtesy of Elizabeth Michiko Ashley.
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4.3 Method

All simulations were performed using LAMMPS123 and the Tersoff potential124,125, pre-

viously used to study thermal properties of nanowires78 in the presence of oxidation. To

understand the effect of oxidation on the thermal conductivity of porous Si bridges we com-

pared systems containing only Silicon and samples in which the surface of the pores was

oxidized.

The non-oxidized samples were prepared by carving the pores from a crystalline sample of

pure Si to obtain the desired pitch and pore diameter, followed by a coordinate minimiza-

tion and a short equilibration to let the Si surface reconstruct. The samples with oxidized

pore surfaces were created by removing a Si annulus with a width of 0.5 nm of Silicon from

the interior surface of the pore and substituting it with a layer of amorphous SiO2 of the

same volume, in order to keep the porosity and the pitch of the system unchanged. The

amorphous layer was obtained from a bulk amorphous SiO2 prepared by melting crystalline

SiO2 at 5300K, followed by annealing at a cooling rate of 1.6 K/ps. The sample was kept at

a pressure of 1 atm during the annealing, resulting in a final density of 2.25 g/cm3, close to

the experimental density of amorphous silica. After the addition of the amorphous layer to

the pure Silicon matrix, the whole system was kept at 900K for 1 ns and slowly cooled to

300K to let the exposed surface of the amorphous layer relax and the amorphous SiO2 layer

adhere to the Silicon lattice.

The thermal conductivity was calculated using the Green-Kubo method. Since it is not

possible to simulate bridges of 100nm thickness, we used periodic boundary conditions and

normalized the thermal conductivity by the ratio of the bulk thermal conductivity and the

thermal conductivity of a non-porous silicon bridge 100 nm thick. In the case of pris-

tine porous silicon bridges, we calculated the heat current autocorrelation function with a

timestep of 1 fs, a sampling rate of 2 fs for 10 n using 8 replicas, for a total of 80 ns at each

combination of pitch and porosity.
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Figure 4.2: SEM image of a real sample and of a snapshot from our simulations. Silicon
atoms are in yellow, Oxygen atoms in red. Top image courtesy of Elizabeth M. Ashley.
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4.4 Molecular Dynamics Results

In figure 4.5 we present our results for the in-plane thermal conductivity of porous Silicon

bridges in the absence of oxidation as a function of pitch and porosity. This material is

anisotropic, and we can expect the thermal conductivity in the cross-plane direction to

be different from that in the in-plane direction. Indeed, we found that in our simulations

the cross-plane thermal conductivity is around twice as large as the one in-plane.. To our

knowledge, only the in-plane thermal conductivity has been measured, so in what follows we

limit our discussion to this component. We explored three porosities (20%, 33% and 40%)

and three pitch sizes (7.5, 22.5 and 37.5 nm) for a total of nine combinations, to capture the

range of experimentally feasible porosities and pitches. For a 40% porosity and a 37.5 nm

pitch, we observe a thermal conductivity of 3.3± 0.3 W/mK, compared to the experimental

thermal conductivity of 4.8− 5.3 W/mK at the same pitch and 42% porosity126.

Our results are summarized in Table 4.5. As expected, the thermal conductivity increases

with increasing pitch and with decreasing porosity. In Fig. 4.5 we present the same data, as

a function of the diameter of the pores and of the porosity. The pore diameter dp is:

dp =

√
2 4
√

3√
π

p
√
φ (4.1)

Here dp is the pore diameter, p is the pitch and φ is the porosity. We find that the Prasher

model properly fits our data, with the exception of the higher porosity samples, where the

thermal conductivity is underestimated at low pitch and overestimated when the pitch is

longer than approximately 30 nm. In Figure 4.6 we show our data as a function of the neck

size, defined as:

n = p− dp (4.2)

The neck size is the minimum length of solid material between pores. Previous works112,113,118,120

have showed that the thermal conductivity presents a clear trend as a function of the neck

size, with a less pronounced dependence on the other parameters, such as pitch or porosity.
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This trend has been demonstrated experimentally for n >≈ 15, and our results extend this

trend down to 2.5 nm. Some authors118 claimed that the thermal conductivity should be

only a function of neck size when it is smaller than 100 nm, a distance comparable to the

mean free path of phonons in bulk silicon. However our simulations and model show that

the thermal conductivity is not completely determined by the neck size. Another apparent

trend, often discussed in the literature112,113,116 is the dependence of the thermal conduc-

tivity on the surface-to-volume ratio. We show our results in Fig. 4.7. As already noted in

experiments118,127 and in simulations128,129, we find that the thermal conductivity sharply

decreases as a function of the surface-to-volume ratio, due to the increased phonon scattering

at the surface of the pores.

We also computed the thermal conductivity of the porous silicon bridge in the presence of

surface oxidation. In this case we only studied samples with a 33% porosity so far. We

observe a large, approximately 4 fold reduction in the thermal conductivity of the sample

with the 7.5 nm pitch, but little to no change in the sample with a 37.5 nm pitch. The

large decrease we observed can be justified by observing that (1) the sample with the smaller

pitch contains a larger percentage of amorphous silica , compared to Si; (2) the layer of

amorphous silica reduces the fraction of the neck composed of pure silicon by approx. 40%

in the smallest sample, but only by approx. 7% in the 37.5-nm-pitch sample.

Amorphous SiO2 has a much lower thermal conductivity than Silicon (2.7 and 146 W/mK,

respectively), which partly explain the reduction in thermal conductivity after oxidation.

Moreover, the addition of the amorphous silica layer increases the amount of phonon scat-

tering at the pore surface, because of the different material and because of the increase in

the surface area available for surface-phonon scattering.

Finally, we suspect the addition of the amorphous silica layer reduces the group velocity of

long-wavelength acoustic phonons, due to the different elastic properties of silica and silicon.

Since long-wavelength phonons are important contributors to the overall thermal conductiv-

ity, a reduction in their group velocity would greatly reduce the thermal conductivity. It is
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reasonable to assume that the reduction in group velocity following oxidation would be more

pronounced in the sample with the smaller pitch.

4.5 Models

When the mean free path of phonons is comparable to the pore size and the pitch, effective-

medium models fail in their prediction of the thermal conductivity of nanoporous materials.

In theory, the Boltzmann transport equation, complemented by the Allen-Feldman theory

of thermal transport, could be used instead. However, solving the BTE in such a complex

network of pores, with such a large elementary cell, is impractical. Monte Carlo ray tracing

transmission models130, based on an approximate solution of the BTE, overestimate the

thermal conductivity of porous Silicon bridges once the pitch is smaller than 500 nanome-

ters131. As an alternative, Prasher132 proposed an approximate model for predicting the

thermal conductivity of phonons in two-dimensional nanoporous materials made from aligned

cylindrical pores, which turns out to agree rather well with the results of our MD simulations.

The model captures the size effects due to the interplay between phonon mean path, pore

diameter and the pitch and reduces to the effective-medium models for macroporous mate-

rials. The full derivation of the model can be found in132. The final equation expresses the

thermal conductivity of the nanoporous material as a function of two transport properties

of the bulk material and two geometric properties of the nanoporous sample: the thermal

conductivity κ0 and the mean free path l of the phonons in the original bulk material; the

porosity φ and the diameter of the pores dp in the porous sample.

κ(φ, dp, l) =
κ0

(1+φ)
(1−φ)

+ 1
q(dp,φ,l) F (φ,dp)

(4.3)
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The so called view factor F is given by:

F (φ, dp) = 1−
dp
L

(π
2
−
(

sin−1(dp/L) +
√

(L/dp)2 − 1− L/dp
))

And the rescaled lengths d and L are:

q =
3dp
8l

√
π

φ
L = dp

√
π

4φ

The Prasher model does not take into account the reduction in thermal conductivity due

to the finite thickness of the silicon bridge. Other models, e.g.133 incorporate this effect,

but we found they overestimated the thermal conductivity for large pore diameters and in

the limit of zero porosity. Therefore, we used the simpler Prasher model, with the thermal

conductivity of a suspended silicon bridge with zero porosity (72 W/mK) in place of the

bulk thermal conductivity. Finally, the Prasher model contains the parameter l, the bulk

phonon mean free path. We used our data to fit l, finding l = 67 nm ±1.

Figure 4.3: Left: nomenclature used to describe the geometrical properties of the sample.
Not to scale. Right: schematic representation of the main phonon scattering processes in a
nanoporous silicon bridge.
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Figure 4.4: Thermal conductivity of nanoporous silicon bridge as a function of pitch and
porosity. When not visible, the error bars are occluded by the markers. Porosity is calculated
as a fraction of the total volume. Solid lines are calculated from a single fit of Eq. 4.3 using
all data.

Porosity (%) Pitch (nm) κ (W/mK) δκ (W/mK)
20 7.5 2.0 0.2
20 22.5 5.2 0.4
20 37.5 7.9 0.6
33 7.5 1.20 0.05
33 22.5 3.0 0.1
33 37.5 4.8 0.5
40 7.5 1.0 0.1
40 22.5 2.6 0.2
40 37.5 3.3 0.3

Table 4.1: Thermal conductivity of porous silicon bridges, 100 nm thick, as a function of
porosity and pitch.
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Figure 4.5: Thermal conductivity of nanoporous silicon bridge as a function of the diameter
of the pores and porosity. The pore diameter is calculated using Eq. 4.1. Solid lines are
calculated from a single fit of Eq. 4.3 using all data.
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Figure 4.6: Thermal conductivity of nanoporous silicon bridge as a function of neck length
and porosity. The neck length is calculated using Eq. 4.2. Solid lines are calculated from a
single fit of Eq. 4.3 using all data.
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Figure 4.7: Thermal conductivity of nanoporous silicon bridge as a function of the surface-
to-volume and porosity. Solid lines are calculated from a single fit of Eq. 4.3 using all
data.
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4.6 Conclusions

Thermal management in modern electronic devices and high performance thermoelectrics

increasingly require a more sophisticated control of thermal transport at the nanoscale. Un-

derstanding thermal transport at the nanoscale is a necessary step in gaining this control.

Porous silicon bridges with a regular lattice of pores promise immediate interesting appli-

cations as sensors, thermal barrier and potentially thermoelectric devices. However, they

also represent an ideal test-bed for different theories and models for heat transport. They

combine a relatively simple and highly regular geometrical pattern with complex thermal

transport properties. These transport properties derive from the interplay between intrinsic

phonons-phonon scattering, phonon-surface scattering and change in phonon properties due

to porosity and to the reduced length scale. Recent advancement in manufacture makes it

possible to build these devices with a pitch in the same length-scale of the phonon mean

path in the bulk.

In our study, we investigated the thermal conductivity of nanoporous silicon bridges with

a pitch in the 7.5 to 37.5 nm range, and with porosity in the 20% - 40% range. These

simulations bridged the gap between previous simulations and available experiments, and

provide results in the range where the interplay previously described is most complex. We

found good agreement with experiments at 37.5 nm, 40% porosity and we found that the

oxidation of pores (addition of a SiO2 layer at the surfaces of pores) does not change the

conductivity within our error bars for systems at a 37.5 nm pitch, while it substantially

reduces the thermal conductivity of systems at smaller pitches.

While more work is needed, and it is in progress, our simulations provided a microscopic

understanding of thermal transport in these materials, the relation between morphology and

thermal conductivity, including the effect of porous oxidation at smaller pitch. We found

that our simulation results are correctly fitted by the Prasher model, which we hope will

assist in engineering of the thermal conductivity of these and similar devices.
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CHAPTER 5

APPROACH TO EQUILIBRIUM METHOD

5.1 Introduction

In previous chapters we have described BTE based methods to obtain the thermal conduc-

tivity and also methods based on Equilibrium MD. In addition to equilibrium methods, non

equilibrium ones have also been developed. Non Equilibrium (NEMD) methods compute

the thermal conductivity in the steady state from the response of the system to a pertur-

bation. They can be classified according to the nature of the perturbation: in the so called

direct method134 it is a temperature gradient causing a heat flux135; in reverse NEMD, also

known as the Muller-Plathe approach, the constant heat flux acts as the perturbation136.

The ”approach to equilibrium” methods compose the third class of MD based methods. In

these approaches, the thermal conductivity is computed from the time response of the system

to an instantaneous perturbation. This perturbation can be in the form of a square137,138

or sinusoidal temperature profile27. Ab initio non equilibrium MD calculations have been

reported, using homogeneous NEMD72 and hence involving the explicit calculations of heat

currents or using the method of Ref.139,140, which faces serious convergence challenges as a

function of simulation time.

5.2 Sinusoidal Approach to Equilibrium for Solids

Addressing the need for an efficient and general quantum simulation framework for ther-

mal properties of materials, we developed a method to simulate heat transport from first

principles, which can be employed for predictive calculations of complex, homogeneous and

heterogeneous solids. We generalized the approach to equilibrium molecular dynamics137,138

(AEMD) method by implementing sinusoidal temperature gradients, thus avoiding tempera-

ture discontinuities. We call this approach sinusoidal AEMD (SAEMD). We show below that
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SAEMD can be applied in a straightforward manner to the calculation of thermal conduc-

tivity using density functional theory (DFT). This approach only requires the computation

of MD trajectories and atomic forces, with no additional calculation of energy derivatives,

e.g. force constants, energy densities or direct calculations of currents. The precision of

the method can be systematically increased by parallel computations on multiple replicas,

thus requiring much shorter sequential simulation times than ordinary non equilibrium tech-

niques. Below we briefly describe our formulation and we discuss results obtained with

classical potentials and first principles molecular dynamics. We then compare our findings

to experimental data, previous simulations and our own calculations using the GK method.

Within the AEMD approach the average temperature of a solid is arbitrarily changed

by a discontinuous temperature profile; subsequently the way equilibrium is approached

after applying the perturbation is monitored, by carrying out an NVE (constant number

of particles N, volume V and energy E) simulation. In particular the temporal decay of T

towards an equilibrium value is used to calculate the thermal conductivity. AEMD has been

successfully applied to crystalline and amorphous solids and alloys138, as well as to 2D and

nanostructured materials such as nanocrystalline silicon138, Si-Ge alloy nanocomposites141,

graphene142,143, graphane,144, and porous Si nanowires145. In the absence of net convective

transport, and assuming that α = κ/ρcv is a constant, the heat equation is given by:

∂T

∂t
= α

∂2T

∂t2
(5.1)

The SAEMD method is based on the comparison of the solution of the heat equation

obtained analytically and that computed by using molecular dynamics simulations. For a

periodic system represented by a given slab, the analytical solution of the heat equation:

T (z, t) = A0 +
∑
n

[An cos(γnz) +Bn sin(γnz)] e−γ
2
nαt (5.2)

where T (z, t = 0) is the initial condition; γ = 2πn
Lz

and the An and Bn coefficients are:
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An =
2

Lz

∫ Lz

0
cos(γnz)T (z, 0)dz (5.3)

Bn =
2

Lz

∫ Lz

0
sin(γnz)T (z, 0)dz (5.4)

In our calculations we used local Nose-Hoover thermostats to impose the initial sinusoidal,

and hence continuous, temperature profile T(z,0), which is position dependent:

T (z, 0) = T0 +
∆T0

2
sin

(
2πz

Lz

)
(5.5)

where z is the direction of heat propagation, T0 is the average temperature and ∆T0 is the

peak to peak difference in the temperature applied to a slab chosen to represent the system

of interest, and periodically repeated in x,y,z. The solution of the heat equation can be

expressed as:

T (z, t) = A0 +
∑
n

Bn sin(γnz)eγ
2
nαt (5.6)

where the An and Bn coefficients are all zero but

A0 = T0 (5.7)

B1 =
∆T0

2
(5.8)

T (z, t) = T0 +
∆T0

2
sin

(
2πz

Lz

)
e−γ

2
1αt (5.9)

where γ1 = 2π/Lz and the thermal diffusivity α = κ/ρcv, where ρ is the density and cv is

the volumetric heat capacity. The difference between the average temperature of the left

and right side of the slab representing the periodic system is given by:
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∆T (t) = T1(t)− T2(t) (5.10)

T1(t) =
2

Lz

∫ Lz
2

0
T (z, t)dz (5.11)

T2(t) =
2

Lz

∫ Lz

Lz
2

T (z, t)dz (5.12)

The difference between the average temperature of the two sides of the system subject

to the sinusoidal T profile is

∆T (t) =
2

Lz

∫ Lz
2

0
T (z, t) dz − 2

Lz

∫ Lz

Lz
2

T (z, t) dz (5.13)

=
2∆T0

π
e−γ

2
1αt (5.14)

In order to solve the same equation numerically, by using molecular dynamics, we proceed

in three steps:

1. We start with atoms in crystalline positions, and carry out an NVT simulation, with

a thermostat (Nose-Hoover) set at the target temperature.

2. We then subdivide the simulation cell representing the systems into slabs and assign

a different T to each slab, determined by the position dependent temperature profile

(perturbation) we wish to impose on the sample.

3. We monitor the evolution of the system under the imposed perturbation toward equi-

librium, by carrying out an NVE simulation.

During step (3) the instantaneous average temperatures T1 and T2 of the two halves

of the simulation cell are computed from the kinetic energy of the atoms. The difference

∆T (t) is then computed as T1(t)− T2(t). Finally, the known analytical solution of the heat

equation is used to fit the solution obtained via MD, i.e. t ∆T (t) is fitted using equation
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Figure 5.1: Top: Temperature profile along the heat transport direction z, averaged over
30 samples, for a classical molecular dynamics run performed at 1000K for MgO. Smooth,
continuous solid lines represent analytical solutions of the heat equation. Note the rapid
decay of the sinusoidal profile to zero over 10 ps (blue line). Bottom: Difference in the
average temperature (∆T (t)) between the hot and cold side of a periodic slab representing
MgO, as a function of time, during a molecular dynamics run at constant volume and energy,
carried out after the application of a sinusoidal temperature profile (Eq.1). We show first
principles results (black line) obtained for a slab with 960 atoms at 500K, and classical result
(red line) for the same size slab, but averaged over 30 samples. Solid lines are the results of
a fit to Eq. 5.14. The rate of decay of ∆T is proportional to the thermal conductivity.

(5.14). From this fit the best estimate of the thermal diffusion α is obtained and then the

thermal conductivity is computed.

At variance with the original AEMD approach, only the fundamental mode is present

when using sinusoidal gradients, and thus no higher harmonics in the Fourier expansion of

the temperature profile need be considered. The thermal diffusivity α is obtained by fitting

the expression of ∆T in Eq. 5.14, as obtained during an NVE run. As an example, in Fig. 5.1

(top panel) we show the instantaneous temperature averaged over 30 samples of crystalline

MgO (1280 atom samples) at the beginning and during the NVE simulation, along with the
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analytical solution of the heat equation (continuous lines). In the lower panel of Fig 5.1 we

show the difference in temperature as a function of time and the fitted function (Eq. 5.14)

used to calculate the thermal diffusivity. In addition, separate calculations to compute the

heat capacity as a function of T were carried out and the thermal conductivity is readily

obtained from κ = αρcv, where ρ is the known density of the system (set by choosing the

volume V).

We note that within the SAEMD approach, typical simulation times to reach equilib-

rium are shorter by about 2 order of magnitude, compared to those required by the NEMD

method, thus making the technique presented here amenable to use with first principles

approaches, i.e. density functional theory (see SI for a detailed comparison between tech-

niques). Simulations times are also one order of magnitude shorter than in the GK approach.

When using a GK formulation, the simulation time scale is determined by the time required

to reduce the noise in the tail of the heat current autocorrelation function; in NEMD it is

the time needed to reach a stationary state between the cold and hot ends of the system,

plus the additional time required to obtain an accurate temperature gradient that determine

the length of thermal conductivity simulations. These simulation times are of course system

dependent, but they can be estimated to be, in general,78,146 two order of magnitude longer

than the time required to reach equilibrium within SAEMD.

The efficiency of the SAEMD method relies on the ability to reduce statistical errors in

the determination of the thermal conductivity, which arise due to the intrinsic noise in the

temperature profile of a finite system. Given the transient nature of our MD simulations,

statistical errors may not be improved by increasing the simulation time once the temperature

difference (Eq. 5.14) vanishes. Instead, one may carry out multiple, parallel runs and then

average the results obtained for the various replicas. However, care must be exercised in the

way averages are performed and direct averaging over values of α from different replicas may

lead to inaccurate or even wrong results. In the absence of noise, the difference in temperature

∆T (t) decays to zero at a rate proportional to the thermal diffusivity α. In the presence of
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noise this rate is modified: the probability distribution of α is an asymmetrical function (we

report an example in the SI) and its average value increases as a function of increasing noise.

The value of α obtained by averaging over different replicas may thus result to be greatly

overestimated. In our calculations we averaged over instantaneous temperature differences

∆T (t) obtained for several replicas, and then we performed a single fit to the average value

to compute the diffusivity.

5.3 Finite Size Effects

A well known challenge in realistic predictions of thermal conductivity of solids is posed by

finite size effects. Within the AEMD approach, check of convergence is required with respect

to the lateral section of the sample used, as well as the length of the system in the direction of

heat transport, so as to ensure that all relevant phonon mean free paths are correctly taken

into account. In our calculations, finite size scaling was performed by computing κ for several

samples of length L, as illustrated in Fig. 6.1 and Fig. 6.2. The extrapolation implicitly

assumes that there exists a certain sample length after which only one dominant phonon

mean free path is present. Under the additional assumption of validity of the Matthiessen’s

rule one obtains147

κ(L) = κ∞/(1 +
λ

L
) (5.15)

This equation appears to properly fit results obtained at finite sizes within both NEMD,

for which it was developed, and AEMD, although it is not fully justified for the latter (in

particular the assumption of an additional scattering term due to the thermostat, valid

within NEMD, is not justified). Very recently a new fitting equation for the AEMD method

has been proposed148, not based on the Matthiessen’s rule, where it is assumed that acoustic

phonons, whose lifetime is proportional to 1/ω2, are the major contributors to heat transport.

κ(L) = κ∞(1−
√

Λ/L) (5.16)
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We show in Fig. 6.1 that eq. 5.15 and 5.16 yield nearly the same results for the case of

MgO, for large sizes, in spite of having been derived under different assumptions.

5.4 Use of independent replicas

Here we discuss the averaging technique used in our work by presenting one case in details.

We calculated the thermal conductivity of MgO at 500K with a cell of length of 6 nm, using

two different lateral sections of 0.5 and 2.5 nm. We calculated the thermal conductivity using

100 simulations for each lateral section and we performed averages in two different ways: (i)

we computed the thermal conductivity for each of the 100 simulations from the temperature

difference, and we then calculated the average value of the thermal conductivity. (ii) We first

averaged the temperature profile, as a function of time, over all the simulations. We then

used this average to compute the average conductivity. We show in Fig.5.2 and in Table 5.4

how the use of method (i) may result in a serious overestimation of the computed value in

the case of simulations with strong noise.

In order to further illustrate our point about averaging noisy data, we report in table 5.4

the results for a simple model where the temperature decay is given by exp(-t/κ), with κ

chosen equal to 4 (a.u.), plus a white Gaussian noise. We studied two cases of low and high

noise. By using this simple model we are able to show that the procedure suggested by the

reviewer would result in an overestimate of κ in the case of high noise, while our procedure

gives the correct results in both case of low and high noise.

Method Low noise High noise
Fig 5.3 (right panel) Fig 5.3 (right panel)

(i) Fit each ∆T (t); find average κ Computed κ = 4.0009 Computed κ = 4.889
(ii) Average ∆T (t); find κ from 〈∆T 〉 Computed κ = 3.997 Computed κ = 3.939

Table 5.1: Results for a simple model where the temperature decay is given by e−t/κ, with
κ chosen equal to 4 (a.u.), plus a white gaussian noise. We studied two cases of low and
high noise. By using this model, we show that method (i) would overestimate κ in the case
of high noise, while method (ii) gives the correct result in both low and high noise.
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Figure 5.2: Probability distribution and average value of the thermal conductivity calculated
over 100 replicas for two systems of the same length but containing 96 (red) or 2400 (blue)
atoms. Solid lines are drawn as a guide to the eye; N ,x0 and t are fitting parameters. Solid
vertical lines are: (A) the thermal conductivity calculated as the average of the thermal
conductivity obtained from each simulation, for the system with 96 atoms; (B) the thermal
conductivity calculated from the average of the temperature difference for the system with 96
atoms. Note the difference with the A value; (C) and (C’) thermal conductivity calculated as
the average of the thermal conductivity obtained from each simulation and from the average
of the temperature difference. Note the similarity between the values of C and C’. The
simulations for the system with 2400 atoms exhibit clearly much less noise than those for
the 96 atom system.

75



Figure 5.3: Low (right) and high (left) noise applied to the signal e−t/κ. The results for the
computed decay are show in Table 5.4.

Type of simulation and κ [W/mK] ∆κ [W/mK]
lateral cross section
NEMD 2X2 39.7 2.7
NEMD 3X3 34.7 1.1
NEMD 4X4 30.9 1.3
AEMD 2X2 40 0.4
SAEMD 2X2 43 1
SAEMD 4X4 32 1.6

Table 5.2: Extrapolated values of the thermal conductivity (second column) and their statis-
tical error (third column) obtained using non-equilibrium MD (NEMD), approach to equi-
librium MD (AEMD) and Sinusoidal approach to equilibrium MD (SAEMD), with lateral
sections of 2x2, 3x3 and 4x4 MgO unit cells.
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5.5 Sinusoidal Approach to Equilibrium for Fluids

In its original formulation presented in the previous section, the SAEMD approach cannot

be applied to liquids27. Below we present a method based on approach to equilibrium

MD simulations, which retains all the advantages of SAEMD, and can straightforwardly be

applied to liquids.

5.6 Method

The general equation of heat transport is:

ρcp

(∂T
∂t

+ (~v · ∇T )
)

= κ∇2T + q̇

where v is the net mass velocity of atoms and molecules in the material, κ is the thermal

conductivity; q is the external heat flux, T is the temperature, cp is the heat capacity at

constant pressure (P ) and ρ is the density of the system. We compute the thermal conduc-

tivity of a condensed system (either fluid or solid) from its response to a perturbation. The

latter is expressed as a non-homogeneous constant temperature profile, which is maintained

by a thermostat during a MD simulation. The response of the system results into a non-

homogeneous constant energy flux proportional to the Laplacian of the temperature and to

the thermal conductivity. The temperature profile is defined as:

T (x, y, z) = T0 +
∆T

8

((
1− cos

(
2πx

L

))(
1− cos

(
2πy

L

))(
1− cos

(
2πz

L

))
− 1

2

)
(5.17)

where L is the length of the simulation cell chosen to represent the system, and ∆T is

the difference between the maximum and the minimum temperature within the MD cell.

When the thermal conductivity is computed using the approach to equilibrium method in a
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transient regime (SAEMD method), q = 0 and the velocity term v is set to zero, to obtain:

∂T

∂t
=

κ

ρcp
∇2T

In the case of solids, setting v=0 is justified, since the atoms are not free to move. However,

in the case of liquids, atoms or molecules diffuse and the velocity term cannot be set to zero.

Hence to generalize the SAEMD method to liquids, here we solve the heat equation in the

presence of a perturbation in the steady state, where:

0 = κ∇2T + q̇

We partition the MD cell into two regions, an interior one defined as the sphere centered

in the middle of the cell and containing half of its volume; the second region (exterior)

contains the remaining half of the cell. This partition is not unique, and the system may be

divided into more than two regions, if needed. Our choice is motivated by the simplicity of

the configuration.

After the perturbation is applied, we monitor how much energy the thermostat is provid-

ing to the interior region, and how much energy the thermostat removes from the exterior

one. This continuous energy exchange is necessary to maintain the temperature difference

between the two regions in the steady state and the sum of the energy provided and re-

moved must be zero when a steady state is reached. The time derivative of the difference

of the energy exchanged (q̇) is the key quantity necessary for the calculation of the thermal

conductivity.

Under the assumption that the thermal conductivity (κ) of the system is isotropic and

independent on position, we can obtain κ from the ratio of q̇ and the difference in the integrals

over the two regions (internal and external) of the Laplacian of the temperature.

We note that, depending on the size of the chosen simulation cell and hence on the tem-

perature gradient created in the cell, the temperature profile obtained during the simulation
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Figure 5.4: Energy (Q(t)) exchanged between the interior(blue) and exterior (red) partitions
of a simulation cell as a function of time, in a close to equilibrium molecular dynamics
simulation (SAEMD) of liquid water under pressure (see text). The three panels show
results obtained by averaging over 2, 8 and 20 replicas. The shaded regions represent the
uncertainty in the estimation of Q(t). The black line is the total energy exchanged between
the two regions.

may turn out not to be identical to the one specified by the perturbation imposed. Hence

in order to correct for this behavior, in our calculations we multiplied the difference in the

integrals of Eq. 5.18 by the ratio between the expected temperature difference in the two

regions and the one observed during the simulation.

q̇ =
∂(qint − qext)

∂t
= κ

(∫
int
∇2T −

∫
ext
∇2T

)
(5.18)

In order to obtain statistically meaningful data, in our simulations we averaged over

results obtained from multiple independent replicas. We show the importance of using

multiple replicas in figure 5.4, where we report qint, qext and their estimated error as a

function of the simulation time using 2, 8 and 20 replicas for the calculations of the thermal

conductivity of water under pressure, using cells with 512 water molecules at P = 9.7 GPa

and T=1000K.

5.7 Finite Size Effects

The thermal conductivity computed from MD simulations using periodic boundary condi-

tions (pbc) suffers from finite size effects for two reasons: (i) the cell size (and hence number
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of atoms) chosen to represent the heat propagation in the system is of course finite; this

approximation is present in all methods and it is the only source of finite size effects in

equilibrium simulations based on GK; (ii) the need to keep different parts of the system

at different T, to monitor the flow of energy; this approximation affects the NEMD and

SAEMD approaches, but clearly not GK.

Due to the presence of finite size effects, an extrapolation of simulation results obtained

for different cell sizes is usually necessary to obtain a converged value of κ. In solids, the

extrapolation of simulation results as a function of size is obtained using models for phonon

mean free paths147,148. In liquids, simple models of vibrational modes and their mean free

paths are not available. We derived approximate formulae to extrapolate the results of our

simulations for water based on the phenomenological model of heat transport presented in

reference149, where the contribution of all pairs of molecules up to a distance r to the heat

flux (J) is written as:

J(r) = Cρ2
N

∫ r

0
Q̇(r′)g(r′)r′3r′−mdr′ . (5.19)

Here g is the radial distribution function of the liquid, C is a constant, ρN is the number

density; r−m accounts for the fact that the interaction between molecules is a many-body

interaction, rather than pairwise. For liquid water in the range 300-600K, using MD simu-

lations Ohara149 found that Q̇(r′) = Q0/r
3 for r > 0.7nm and that a value of m = 2 best

describes the heat flux of water at ambient conditions. In the limit of large r, g(r) = 1 and

we rewrite equation 5.19 as:

J(L) = J∞ − C ′
∫ ∞
L

Q0r
−2dr = J∞(1− λ/L) (5.20)

where J∞ is the extrapolated value of the heat current for L −→ ∞ and C and λ are

constants. In our simulations we observed that the auto-correlation function (A(τ)) of the

current J(t) can be expressed as a product of an oscillating function independent on size
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(f(τ)) multiplied by size dependent intensities and we approximate it as A(τ) ' (JL)2 ·f(τ).

Hence the thermal conductivity is proportional to (JL)2 and using Eq. 5.20 we write κ as:

κ(L) = C ′′J∞(1− λ/L)2 = κ∞(1− λ/L)2 (5.21)

where κ∞ is the extrapolated value of the thermal conductivity for L −→ ∞ and C
′′

is a

constant. As we will see below, using Eq. 5.21 we can accurately fit our simulation results

at ambient conditions and thus determine the value of κ∞. However, as expected Eq. 5.21

is not appropriate to fit our high T and P results, since the value m = 2 used in Eq. 5.20

and Eq. 5.21 was derived for water at ambient conditions. Hence, we rewrote Eq. 5.21 by

treating m as a fitting parameter and we found that a value of m = 4 appeared to fit our

simulation results relatively well. For m = 4 Eq. 5.21 becomes to leading order in 1/L:

κ(L) = κ∞ − (λ/L)3 (5.22)

and as shown below it fits accurately our high pressure results. We note that Eq. 5.21 is

equal to leading order in L to an equation150 derived from hydrodynamics arguments and

used to describe finite size effects in the calculations of the diffusivity of fluids, including

water.
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CHAPTER 6

FIRST-PRINCIPLES SIMULATIONS OF HEAT TRANSPORT

Introduction

In this chapter we use the method discussed in Chapter 5 by computing the thermal con-

ductivity of solids using classical and ab initio molecular dynamics at close to equilibrium

conditions. We discuss results for a representative oxide, MgO, at different temperatures

and for ordered and nanostructured morphologies, showing the performance of the method

in different conditions.

6.1 Computational details

For MgO, we used the potential described in Ref.92; This potential is of the Buckingham-

Coulomb type. The MgO potential was shown92 to predict experimental lattice constant,

thermal expansion and thermal conductivity reasonably well in the 300K-1500K range. First

principles calculations were carried out using a 40 Rydberg cutoff, the pseudopotentials

O HSCV PBE-1.0.xml for Oxygen and a modified version of 12-Mg.GGA.fhi for Magnesium.

6.2 Lateral section

We carried out a detailed study of our results as a function of the lateral section. Results are

shown in Table 5.4 for both SAEMD and NEMD, using classical potentials. The 2x2 lateral

section used in our first principles calculations turned out to be smaller than the one required

to fully converge the value of the thermal conductivity, as indicated by the results obtained

with classical potentials. Unfortunately carrying out simulations with a (4x4) lateral section

is prohibitively expensive at present, hence we used a correction factor (αc) for the (2x2)

first principles results, namely we multiplied them by αc = 32/43 ≈ 0.744; αc equals the
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ratio [κ SAEMD (4x4)]/[κ SAEMD (2x2)] of values of κ computed in SAEMD simulations

with classical potentials.

6.3 Results

We now turn to the presentation of our results for a representative solid, MgO, chosen

because of the availability of experimental data and of several results from other studies to

compare with. We first describe classical and first principles simulations of bulk MgO and

compare data obtained with discontinuous and sinusoidal temperature gradients, as well as

using the GK method. We then show that the SAEMD approach is general and it can be

used also for systems containing nano-grains, and not only for ordered bulk systems.

All classical simulations were carried out using LAMMPS123, with a Buckingham Coulomb

potential shown92 to describe reasonably well density, thermal expansion and thermal con-

ductivity of crystalline MgO. First principles MD simulations were carried out by coupling

the LAMMPS and Qbox151 codes within a client-server strategy. The former was used

to integrate the equation of motion and to apply the local thermostats, and the latter to

compute DFT forces on atoms at each time step and to carry out the NVE part of the

simulation. Alternatively, a position dependent thermostat can be implemented directly in

the first principles MD engine. The time needed to generate the temperature profile, the

approximate time necessary to reach equilibrium and the number of replicas necessary to

obtain a ≈ 10% statistical error were the same for classical and first principles simulations.

A timestep of 1 fs was adopted in our MD simulations and a constant lateral section of 2X2

elementary cells was chosen, as a reasonable compromise between computational cost and

accuracy. However finite size scaling tests for the lateral sections conducted with classical

potentials showed this cross section not to be fully converged. Unfortunately carrying out

first principles simulations with a (4X4) lateral section is prohibitively expensive at present,

hence we used a correction factor αc for the first principles result, namely we multiplied

them by αc = 32/43 ≈ 0.744; αc equals the ratio [κ SAEMD(4X4)]/[κ SAEMD(2X2)] of
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values of κ computed in SAEMD simulations with classical potentials. We realize this is an

approximation, which could be eliminated using larger simulation cells in the future. Green

Kubo simulations with classical potentials were performed with the same 1 fs timestep in

the NVE ensemble and using a cubic supercell. We averaged the thermal conductivity over

multiple replicas and tested convergence with respect to both time and number of atoms.

We analyzed the differences in the extrapolation of AEMD results obtained with classical

potentials, as a function of the maximum length (LMAX) of the simulation cell in the direc-

tion of heat transport. The values of κ∞ obtained with LMAX larger than or equal to 13

nm are similar to each other, within reasonable error bars (between 1 and 2 W/mK). These

results thus justify our extrapolation of the first principles results, which have been obtained

by including cells with LMAX up to 13 nm.

Results obtained with classical potentials are shown in Fig. 6.1 for bulk MgO at 500

and 1000K. We found very good agreement between AEMD and SAEMD calculations at

both temperatures, as well as between different extrapolation methods. For the thermal

conductivity of MgO at 500 K computed with SAEMD we obtained 32±1.6 W/mK using Eq.

5.15 and a 4x4 lateral section, against a value of 32± 1 using GK and an experimental value

of 34.12. Note that, as pointed out in Ref.148, Eq. 5.16 is appropriate to describe thermal

conductivity extrapolations at large sizes, but not at short sample lengths. We thus used a

minimal length of ≈ 20 nm when fitting Eq. 5.16. First principles MD results are presented

in the top panel of Fig. 6.1. We carried out calculations for crystalline samples with 192,

256, 384, 512 and 960 atoms using gradient corrected exchange correlation functionals (the

Perdew-Burke-Ernzerhof (PBE)152 functional;). We averaged the temperature difference

over 12, 8, 4, 4 and 1 replicas for 3, 4, 5, 7 and 15 ps, respectively, for the five chosen sizes,

with a 10% target error. The results and their extrapolation using Eq. 5.15 (50 W/mK)

turned out to be consistent with those of classical calculations using the same lateral section

(43 W/mK for SAEMD simulations), giving a bulk thermal conductivity of 37 W/mK for

MgO at 500K, when corrected to account for the difference between 4x4 and 2x2 results
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Figure 6.1: Thermal conductivity (κ) of crystalline MgO computed at 500 (top panel) and
1000K (lower panel), as a function of the length of the periodic slab (L), using approach
to equilibrium molecular dynamics (AEMD, red curves), sinusoidal approach to equilibrium
(SAEMD, black curves) and classical potentials. We compare results obtained with the two
methods using classical potentials and we show (blue curve) first principles results obtained
with the SAEMD method. Solid and dotted lines represent a fit to Eq. 5.15, and 5.16,
respectively.

(αc = 0.744). We emphasize that the main finding of our first principles MD simulations is

the demonstration of their feasibility, opening the way to studying heat transport in complex

and realistic systems, without the need to compute any heat current or energy densities. It

is also reassuring to find good agreement with experiment and classical potentials and with

previous simulations1,2,92,140.
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Figure 6.2: Thermal conductivity (κ) of a periodic slab representing nanocrystalline MgO, as
a function of the slab length L, computed at 1000K using a classical potential. The average
radius of nanocrystalline grains is 2 nm. We compare simulation results obtained with ap-
proach to equilibrium molecular dynamics (AEMD method, red dots), sinusoidal approach to
equilibrium molecular dynamics (SAEMD, black dots) and equilibrium molecular dynamics
using a Green Kubo (GK) formulation (blue lines). The blue lines represent the results of
converged GK simulations as a function of size. Convergence was obtained for L ≈ 8nm with
a cubic supercell; the top and bottom blue lines represent the population standard deviation
of the samples used for GK calculations.

6.4 Nanocrystalline MgO

Finally, we tested the validity of the SAEMD approach for nanostructured MgO. In Fig.

6.2 we show the thermal conductivity of nanocrystalline MgO obtained using Green Kubo,

AEMD and SAEMD methods. The grains were created by insertion of small crystalline

seeds in random points of the molten phase, followed by grains growth. We averaged over

multiple simulations in order to account for the random nature of grains in the samples,

using classical potentials. We found again remarkable agreement between AEMD, SAEMD

and GK calculations, indicating that the analytical solution of the heat equation is valid

also at the nanoscale, at least for the 3D material investigated here. As expected, we also

found a reduction of the thermal conductivity with respect to bulk MgO, by approximately
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a factor of 3, for 2 nm grains at 1000K.

6.4.1 Data for nanocrystalline MgO

Temperature radius NC Nz Atoms Replicas sim time k
1000 K 2nm 30 ≈36000 20 3 ns 6.1 ± 0.1
1000 K 2nm 60 143208 1 1 ns 5.8

Table 6.1: Green Kubo simulations for nanocrystalline (NC) MgO. In all tables simulation
time only include the time used to calculate the thermal conductivity. The time taken to
create the grains does not depend on the calculation method

Temperature radius NC Nz Ny Atoms Replicas sim time k
1000K 2 nm 30 30 ≈ 36000 20 200 ps 4.8
1000K 2 nm 60 30 ≈ 72000 10 200 ps 5.4

Table 6.2: SAEMD simulations for NC MgO.

Temperature NC radius Nz Ny Atoms Replicas sim time k
1000K 2 nm 10 20 ≈ 8000 10 24 ps 3.8
1000K 2 nm 20 20 ≈ 16000 10 34 ps 4.6
1000K 2 nm 30 20 ≈ 24000 10 24 ps 4.7
1000K 2 nm 50 20 ≈ 40000 5 44 ps 5.5
1000K 2 nm 70 20 ≈ 56000 4 104 ps 5.4
1000K 2 nm 100 20 ≈ 80000 4 154 ps 5.7
1000K 2 nm 200 20 ≈ 160000 4 404 ps 5.6
1000 2 nm ∞ 5.8 ± 0.1

Table 6.3: AEMD simulations for NC MgO.
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6.5 Experimental data and results of previous simulations
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Figure 6.3: Experimental data and results of previous simulation. Results from SAEMD
using classical MD are presented for the maximum lateral section available. Results from
SAEMD using first principles MD use the correction factor αc. Since Katsura1 only pub-
lished results for thermal diffusivity, we used the density and thermal capacity from Ref.2

to calculate the thermal conductivity.
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6.6 Green Kubo and Non-Equilibrium molecular dynamics

simulations for bulk MgO

As a mean of validating our SAEMD results we also carried out GK and Non Equilibrium

MD calculations of the thermal conductivity of crystalline MgO. In Figures 6.4, 6.5 and

6.6, and Tables 6.6, 6.6, 6.6 and 6.6 we show that there is almost a 2 orders of magnitude

difference between SAEMD (or AEMD) simulation times and NEMD simulation times for

the thermal conductivity of the same system (MgO at 500 K). We comment these results

below, offering an explanation of why required NEMD simulation times are longer.

• In general, the time to reach a steady state in SAEMD and NEMD are similar, as

suggested by the reviewer. In the NEMD method a heat current is induced inside the

system, and the steady state is reached once the heat current has propagated through

the entire system. The timescale of this process is roughly given by the length of the

system squared divided by the heat diffusivity. Not unsurprisingly, this is the same

timescale of the temperature profile evolution during the approach to equilibrium phase

of SAEMD.

• When carrying out NEMD simulations, one computes the temperature gradient for

each of the two sides of the slab (the hot and cold one). We found that, even when

averaging over 4 replicas, 400 ps were needed to reach stable temperature gradients.

The main reason why NEMD is much more disadvantageous than SAEMD in terms of

simulation time is because calculations of temperature gradients are required, unlike in

the SAEMD case. In order to have enough statistics to evaluate a reasonable gradient

requires much longer simulation times than with SAEMD. This is also the reason why

NEMD would not be applicable to first principles simulations at present. Time scales

of the order of 500 ns are out of the questions even for rather small systems.

• For GK the comparison regarding first principles simulations is not straightforward as

additional calculations of the energy density are required. One of the main points of
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our work is to present a method to carry out calculations of the thermal conductivity

by computing only positions and forces.

Figure 6.4: Green Kubo (GK) simulations of the thermal conductivity of MgO at 500 K;
each of the simulations requires the calculation of an energy density and is performed on
cubic cells of side L. The 5 points above correspond to 23, 33, 43, 83 and 163 cells (see table
6.1 for exact values of κ). A posteriori one can see that simulations with cells of size 43

(containing 512 atoms) appear to be converged. The simulation time required for that size
cell was approximately 48 ns.
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Figure 6.5: Non-equilibrium MD (NEMD) simulations of the thermal conductivity of MgO
at 500 K; Lz denotes the direction of heat transport. Black, red and blue curves correspond
to simulations carried out with lateral sections of (2x2), (3x3) and (4x4), respectively. The
extrapolated values of κ considering all points in the figure are 40 ± 2.7, 34 ± 2.4 and 30
± 1 W/mK, respectively. A posteriori we can determine that by omitting the last point
from the fit (Lz = 63 nm), in (2x2) simulations we obtain a value of 40 ± 6. 0; in (3x3)
simulations we obtain a value of 36.1 ± 5.5. In 4x4 simulations, we included only points up
to Lz = 38. Note that the total time of the simulation of the largest size (similar to that of
the smaller sizes) for 2x2 later sections is 96 ns. At least five points are necessary, hence the
total time (encompassing different sizes) for the largest error bars shown in the figure is 480
ns.
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Temperature NL Atoms Replicas Sim time k (W/mK) total sim time (ns)
500 K 2 64 20 3 ns 19.2 ± 0.5 60
500 K 3 216 20 3 ns 33.0 ± 0.6 60
500 K 4 512 16 3 ns 31.3 ± 0.9 48
500 K 8 4096 8 3 ns 32.2 ± 1.2 24
500 K 16 32768 4 3 ns 32.6 ± 2.1 12
1000 K 4 512 8 3 ns 13.2 ± 0.7
1000 K 8 4096 9 3 ns 14.1 ± 0.7

Table 6.4: Simulation results for Green-Kubo calculations of the thermal conductivity of
MgO. We used cubic systems for GK calculations. NL is the number of elementary cells in
each cartesian direction. There are 8 atoms for elementary cell. The error in the thermal
conductivity, when available, is the standard deviation of the mean.
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Classical NEMD simulations at 500K
2X2 cross section

Nz Atoms Replicas sim time [ns] k [W/mK]
6 192 80 1.2 0.7
8 256 80 1.2 5.6
12 384 80 1.2 7.7
24 768 80 1.2 13.1
30 960 80 1.2 15.8
60 1920 80 1.2 21.4
90 2880 80 1.2 25.4
120 3840 80 1.2 27.6
150 4800 80 1.2 30

3X3 cross section
Nz Atoms Replicas sim time [ns] k [W/mK]
6 432 100 1.2 0.7
8 576 100 1.2 4.4
12 864 100 1.2 6.7
24 1728 100 1.2 11.5
30 2160 100 1.2 14
60 4320 100 1.2 18.4
90 6480 100 1.2 22.3
120 8640 100 1.2 24.4
150 10800 100 1.2 25.2

4X4 cross section
Nz Atoms Replicas sim time [ns] k [W/mK]
8 1024 120 1.2 4.8
12 1536 120 1.2 6.6
24 3072 120 1.2 11.2
30 3840 120 1.2 13.3
60 7680 120 1.2 17.6
90 11520 120 1.2 20.7

Table 6.5: Simulation results for NEMD calculations of the thermal conductivity of MgO
at 500 K. The error in the asymptotic value of the thermal conductivity is the uncertainty
in the fitting procedure. Nz denotes the number of elementary cells in the direction of heat
transport. The extrapolated values of κ considering all points in the figure are 39.7 ± 2.7,
34.7 ± 1.1 and 30.9 ± 1.3 W/mK, respectively. A posteriori we can determine that by
omitting the last point from the fit (Lz = 63 nm), in (2x2) simulations we obtain a value
of 40 ± 6.0; in (3x3) simulations we obtain a value of 36.1 ± 5.5. In 4x4 simulations, we
included only points up to Lz = 38. Note that the total time of the simulation of the largest
size (similar to that of the smaller sizes) for 2x2 later sections is 96 ns. At least five points
are necessary, hence the total time (encompassing different sizes) for the largest error bars
shown in the figure is 480 ns.
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Figure 6.6: Close to equilibrium MD simulations of the thermal conductivity of MgO at
500 K; Lz denotes the direction of heat transport. We report SAEMD and AEMD results
with classical potentials and first principles MD results using the SAEMD technique, labeled
FPMD. The extrapolated values of κ considering all points in the figure are 40± 1.0 (AEMD),
43 ± 1.1 (SAEMD) and 50 (FPMD) W/mK, respectively. A posteriori we can determine
that by omitting the last point from the fit in classical simulations we obtain values that
differ by less than 5% with respect to the converged values. Note that the total time of the
simulation to obtain error bars similar to the one considered in the NEMD simulations is
30X55X5 ps = 8250 ps = 8.25 ns to be compared with the 480 ns.
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Classical SAEMD simulations for bulk MgO.
2X2 cross section

Temperature Nz Atoms Replicas sim time k [W/mK]
500 K 12 384 300 10 ps 4.5
500 K 16 512 160 35 ps 6.5
500 K 20 640 64 30 ps 7.3
500 K 24 768 64 35 ps 9.0
500 K 30 960 30 50 ps 10.5
500 K 40 1280 30 60 ps 13.0
500 K 60 1920 30 95 ps 18.2
500 K 80 2560 30 55 ps 21.0
500 K 120 3840 30 140 ps 24.9
500 K 160 5120 30 140 ps 28.7
500 K 300 9600 5 420 ps 32.9
500 K ∞ eq. 5 43 ±1.1
500 K ∞ eq. 6 45 ±1
Temperature Nz Atoms Replicas sim time k [W/mK]
1000 K 20 640 100 50 ps 6.5
1000 K 30 960 64 50 ps 8.8
1000 K 40 1280 30 80 ps 8.9
1000 K 60 1920 30 100 ps 11.1
1000 K 80 2560 100 140 ps 12.4
1000 K 100 3200 64 170 ps 13.3
1000 K 120 3840 24 220 ps 12.9
1000 K ∞ eq. 5 17.3 ±0.9
1000 K ∞ eq. 6 19 ±2

Table 6.6: Simulation results for SAEMD calculations of the thermal conductivity. We used
a 2X2XNz simulation cell. The error in the asymptotic value of the thermal conductivity is
the uncertainty in the fitting procedure
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Classical simulations
4X4 cross section
Temperature Nz Atoms Replicas sim time k [W/mK]
500 K 6 768 60 60 ps 4.5
500 K 8 1024 60 60 ps 3.8
500 K 12 1536 60 60 ps 5.7
500 K 16 2048 60 60 ps 7.7
500 K 20 2560 60 60 ps 8.1
500 K 24 3072 60 60 ps 9.8
500 K 30 3840 60 60 ps 11.1
500 K 60 7680 60 60 ps 16.3
500 K 90 11520 60 60 ps 18.3
500 K 120 15360 60 60 ps 21.6
500 K ∞ eq. 5 32.2 ± 1.6

Table 6.7: Simulation results for SAEMD calculations of the thermal conductivity. We used
a 4X4XNz simulation cell. The error in the asymptotic value of the thermal conductivity is
the uncertainty in the fitting procedure

First principles results
Temperature Nz Atoms Replicas sim time k [W/mK]
500 K 6 192 12 3 ps 1.4
500 K 8 256 8 4 ps 2.5
500 K 12 384 4 5 ps 3.9
500 K 16 512 4 7 ps 3.6
500 K 30 960 1 15 ps 7.2
500 K ∞ eq. 5 50

Table 6.8: Simulation results for SAEMD calculations of the thermal conductivity for the
first principles simulations. We used a 2X2XNz simulation cell.
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6.7 Conclusions

In summary, in this chapter we presented a first principles non equilibrium molecular dy-

namics approach for the calculations of the thermal conductivity of materials. The method

is a variant of AEMD, utilizing simpler initial conditions and a fit to the analytic solution

of the heat equation with just one Fourier coefficient. The method avoids the use of discon-

tinuous temperature gradients, and it permits to employ noise reduction techniques, which

in turn allow one to reduce the number of parallel replicas used in the calculation. Within

SAEMD only atomic trajectories and forces are needed and no other calculation of energy

densities, force constants or heat current are required, making the framework presented here

amenable to calculations within density functional theory. Furthermore, slabs of different

sizes may be equilibrated at the target temperature at the same time, thus allowing one to

exploit the parallel architecture of modern high performance computers. All of these char-

acteristics make the SAEMD method ideal to be used with first principles Hamiltonians, as

demonstrated here for a representative oxide, MgO.
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CHAPTER 7

ATOMISTIC SIMULATIONS OF THE THERMAL

CONDUCTIVITY OF LIQUIDS

7.1 Introduction

Here we present an application of sinusoidal approach to equilibrium molecular dynam-

ics (SAEMD) to compute the thermal conductivity of liquids. Similar to non-equilibrium

molecular dynamics, and unlike equilibrium simulations based on the Green Kubo formal-

ism, the method only requires the calculation of forces and total energies. The evaluation of

heat fluxes and energy densities is not necessary, thus offering the promise of efficiently im-

plementing first principles simulations based on density functional theory or deep molecular

dynamics. As mentioned earlier, our approach is a generalization of SAEMD for solids, where

the thermal conductivity is computed in the steady state, instead of a transient regime, thus

properly taking into account diffusive terms in the heat equation.

As an example, we present results for liquid water at ambient conditions and under pressure,

at conditions (1000K and 10 GPa) for which ab-initio simulations of the structural properties

of the liquid have been recently reported153. We present results for liquid water at ambient

conditions and under pressure and discuss simulation requirements to obtain converged val-

ues of the thermal conductivity as a function of size and simulation time.

Water is responsible for heat transfer in many physical, chemical and biological processes.

It exhibits a number of anomalous properties, including high specific heat and, with the

exception of liquid metals, the highest thermal conductivity of pure liquids at standard con-

ditions154. While measurements of heat transport in water are available at room T and P,

very few experiments155 have been reported under extreme conditions, where the ability to

predict thermal conductivity is thus particularly important.
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7.2 Results

In this section we present our results for the thermal conductivity of water at ambient

conditions (T = 300K, ρ = 1 g/cm3) and under pressure (T= 1000K, ρ = 1.57 g/cm3).

Structural properties under pressure were recently investigated153 with ab initio MD using

the PBE functional152, and we chose one snapshot from the trajectories reported in the ab

initio study to start our simulations. Water at ambient conditions was described with the

TIP4P-2005f force field156. This empirical potential turned out to be numerically unstable at

high T and P; in particular, we found non physical dissociation events in our simulations. At

high P we then used the SPCE-Fl force field157, which describes the OH bonded interaction

with a harmonic potential and by construction cannot lead to any dissociation. Note that we

used flexible potentials to avoid spurious effects in the calculations of heat transfer brought

about by the presence of constraints in MD simulations with rigid water molecules158. As

discussed in the conclusions, it would be desirable to use more realistic force fields and

ultimately conduct ab initio simulations; however as reported below, the time scales required

for the simulations of heat transport in water make the use of ab initio MD prohibitive and

point at the future use of machine-learned first principle potentials as a viable alternative.

In our work we chose to use empirical potentials to demonstrate the accuracy and robustness

of the method proposed here, as compared to GK simulations, and to test finite size scaling

and the required simulation times.

We compare below (Fig. 7.1 and Fig. 7.2) results obtained with GK and SAEMD

simulations. In the former case, for each replica we carried out simulations for 800000 steps

(200 ps) under NVT conditions (initializing the calculation with different initial velocities

in different replicas), followed by NVE simulations to collect data to compute the thermal

conductivity. When discussing simulation time we only refer to this part of the simulation.

For each cell size we used 8 replicas and 600 ps long simulations, except for the 13824

molecules cell, where we run 4 replicas.

The SAEMD simulations included 3 steps: (i) equilibration of the system at constant
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temperature; (ii) application of a temperature perturbation; we carried out relatively long

simulations of about 100 ps in this transient regime but several tests indicated that if needed,

this time may be decreased by up to one order of magnitude, the exact simulation time de-

pending on the system; (iii) collection of results to compute κ. As in the case of Green-Kubo

simulations, we averaged over multiple independent replicas and when discussing simulation

time we only refer to the final part of the simulation.
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216 512 1728 4096 13824
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Figure 7.1: Thermal conductivity (κ) of water at 300K as a function of the linear size (L)
of the cubic simulation cell and the number of water molecules. Results obtained with
Green Kubo (GK) and close to equilibrium molecular dynamics simulations (SAEMD) are
represented by red and black dots, respectively. Solid lines were obtained by fitting the data
with Eq.5.21. We also show a fit of SAEMD results using Eq.5.22 (dotted black line). All
simulations were performed with the TIP4P-2005f force field. GK results are slightly offset
on the x axis to avoid overlap with SAEMD results.

Figure 7.1 shows our results for the thermal conductivity of water at 300K, 1 g/cm3 using

the TIP4P-20005f potential, computed using Green-Kubo and SAEMD simulations. Both

methods yield almost identical extrapolated values of the thermal conductivity, within error

bars: we obtained 0.98± 0.01 for GK and 0.95± 0.02 for SAEMD when using Eq.6 to fit the

data and 1.04 ± 0.01 when using Eq. 5 to fit only 3 points. GK results were extrapolated

using Eq. 5. We note that GK simulation results exhibit a weaker dependence on size: for

example, in simulations with 512 water molecules, the GK value of κ is about 10% lower than
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Figure 7.2: Thermal conductivity (κ) of water at 1000K and a density of 1.57 g/cm3 as a
function of the linear size (L) of the cubic simulation cell and the number of water molecules.
Results obtained with Green Kubo (GK) and close to equilibrium molecular dynamics sim-
ulations (SAEMD) are represented by red and black dots, respectively. Solid lines were
obtained by fitting the data with Eq. 5.22. All simulations were performed with the SPCE-
Fl force field. GK results are slightly offset on the x axis to avoid overlap with SAEMD
results.
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Figure 7.3: Thermal conductivity (κ) of water at 1000K and a density of 1.57 g/cm3 com-
puted with a 512 molecules cell by close to equilibrium molecular dynamics simulations, as
a function of the total simulation time. All simulations were performed with the SPCE-Fl
force field.

101



201684
number of replicas

0.0

0.1

0.2

0.3

0.4

0.5
0.1 ns
0.25 ns
0.5 ns

Figure 7.4: Average relative error (σ) in the computed thermal conductivity of water at
1000K and density of 1.57 g/cm3, as a function of the number of replicas. Simulations
were carried out with 512 molecules cells and the close to equilibrium approach, using the
SPCE-Fl force field.

κ∞, while that obtained with SAEMD is about 16% lower. We emphasize that while GK

appears to be the method of choice when using empirical potentials, due to its weaker size

dependence, the SAEMD approach offers the promise of efficiently performing simulations

with neural-network-derived potentials and possibly using forces derived from DFT, since it

does not require any calculation of the heat flux or of energy densities, but only of energies

and forces.

In figure 7.2 we present our results for water at 1000K, and 9.7 GPa using the SPCE-Fl

force field. The values of the thermal conductivity extrapolated using equation 5.22 are

2.47 ± 0.04 and 2.36 ± 0.06 for GK and SAEMD, respectively. As in the case of water

at ambient conditions, size effects are more severe when using SAEMD, although in this

case the two methods give the same results within statistical error bars for 512 molecules

simulations. The increase of more than a factor of 2 of the thermal conductivity found here

at extreme conditions is consistent with the observed increase of thermal conductivity of

water with respect to pressure159.
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In figure 7.3 we show the thermal conductivity as a function of the total simulation

time in a SAEMD simulation, when using 512 water molecules cells at 1000K, computed by

averaging over 20 replicas, each simulated for 500 ps. We found that for a total simulation

time equal to or larger than 5 ns, the results are approximately converged. In figure 7.4 we

show the relative error in the thermal conductivity of water at 1000K using 512 molecules as

a function of the number of replicas used and of the simulation time. The figure shows that,

after a short simulation time of 100 ps, the error can be reduced by either increasing the

simulation time or the number of replicas. While the total simulation time is the same for the

same relative error, the option of increasing the number of replicas allows for independent

parallel runs and shorter sequential times.

In table 7.1 we summarize available results for the thermal conductivity of water at ≈

300K and 1 atm. None of the values reported in the table, except those obtained here

for EIP, were extrapolated to obtain κ∞ although some studies did increase the number of

molecules in the cell in the direction of heat transport to test finite size effects. Overall we

expect the values obtained with small cell sizes to be an underestimate of the extrapolated

value for a given force-field; hence the apparent agreement with experiments is not neces-

sarily representative of the accuracy of the force field or in general of the description of the

interaction chosen in the simulations.

7.3 Water at extreme conditions using deepMD

An interesting direction to explore is the use of the approach in conjunction with deepMD

potentials based on first principles forces174. In fact, we have successfully conducted a

series of simulations of a 512 molecules cell of water molecules at high pressure and tem-

perature using the deep-MD potential developed with the method of Ref.174 and the close

to equilibrium approach. The NN was trained on simulations performed with the SCAN

exchange-correlation potential. The neural network was trained on thousands of simulations

performed between 0 and 2500K, at pressure ranging from ≈ 0 to 100 GPa. We used the vast
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Force Field Method T κ Nmol ts Nrep Ref.

TIP4P-2005f156 GK 300K 0.98(1) 13824 600 ps 4 this work
TIP4P-2005f SAEMD 300K 0.95(2) 13824 500 ps 20 this work
deepMD SAEMD 300K 0.85(3) 512 250 ps 20 this work

SPC160 NEMD 298K 0.88(2) 900 2 ns 1 161

SPC NEMD 298K 0.776(19) 2180 1 ns 1 162

SPC GK 298K 0.802(16) 2180 1 ns 1 162

SPCE163 NEMD 298K 0.930(16) 900 2 ns 1 161

SPC f160 135 NEMD 300K 0.7(1) 27036 300 ps 1 135

SPCE-F164 GK 300K 0.970(9) 180 40 ns 1 54

SPC-Fw165 GK 300K 0.854(104) 2180 1 ns 1 162

SPC-Fw NEMD 300K 1.011(6) 2180 1 ns 1 162

SPC-Fd166 GK 300K 0.793(105) 2180 1 ns 1 162

SPC-Fd NEMD 300K 0.977(12) 2180 1 ns 1 162

TIP3P35 NEMD 298K 0.880(19) 900 2 ns 1 161

TIP4P-2005167 NEMD 298K 0.910(14) 900 2 ns 1 161

TIP5P168 GK 298K 0.668(31) 2048 15-20 ns 6 169

TIP5P NEMD 298K 0.680(7) 900 2 ns 1 161

TIP5P-Ew170 NEMD 298K 0.620(7) 900 2 ns 1 161

PBE152 GK 385K 0.74(12) 64 90 ps 1 22

PBE152 NEMD 353K 0.79 480 150 ps 1 171

Exp 300K 0.609 172

Exp 300K 0.6096 173

Table 7.1: Measured (Exp) and computed values of the thermal conductivity (κ (W/mK))
of water at density of ' 1 g/cm3, obtained using different force fields (first column). All
computed values were obtained using molecular dynamics with the Green Kubo (GK), non-
equilibrium (NEMD) or close to equilibrium (SAEMD) approach (see second column) at a
temperature (T (K)) given in the third column. The maximum number of molecules (Nmol)
in the unit cell, the simulation time per replica (ts) and the number of replicas (Nrep are
given in column 5, 6 and 7, respectively.
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Figure 7.5: Thermal conductivity of water computed with SAEMD and deepMD as a function
of temperature and density. Blue is 1000K, orange is 2000K. The black dot is the thermal
conductivity at STP (300K, 1atm).

Figure 7.6: Thermal conductivity of water computed with SAEMD and deepMD as a function
of pressure. Blue is 1000K, orange is 2000K. The black dot is the thermal conductivity at
STP (300K, 1atm). Solid line is a fit with A

√
P
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Temperature (K) Density (g/cm3) Pressure (GPa) κ (W/mK)
1000 1 1.2 0.39 ± 0.03
1000 1.57 8.6 1.67 ± 0.06
1000 1.86 17.4 2.2 ± 0.1
2000 1 2.9 0.77 ± 0.02
2000 1.57 12.4 2.29 ± 0.07
2000 1.86 22.3 2.55 ± 0.09

Table 7.2: Thermal conductivity of water at extreme temperature and pressure computed
using SAEMD and deepMD

range of temperature and pressure over which the NN was trained to calculate the thermal

conductivity of water at 1000K and 2000K, at densities between 1 g/cm3 and 1.86 g/cm3.

We present our results in Fig. 7.5. We observed a large reduction in the thermal conduc-

tivity, at constant density, when going from 300K to 1000K, and an almost equal increase

from 1000K to 2000K. This last trend continues as we study increasing density, and we see

the thermal conductivity increase when going from 1000K to 2000K.

The reason for this behavior is not yet clear. We suspect this is due to two opposing trends:

the increase in temperature disrupts the network of hydrogen-bond, and at the same time

also causes dissociation. Further studies are necessary, but it is reasonable to speculate

that the decrease in thermal conductivity we observed between 300 and 1000K is due to

the breaking of the hydrogen-bond network. This trend is then reversed once water can

dissociate, and the thermal conductivity again increases.

In Fig. 7.6 we show the same data as a function of pressure. There is still a dependence on

the temperature, but the data show that pressure, rather than temperature, plays a dom-

inant role in determining the thermal conductivity. We also included a simple fit with the

square root of the pressure. There is no particular reason for the choice of this functional

form, to our knowledge no model exist for the thermal conductivity of water in this pressure

range and other functions are certainly possible.
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7.4 Conclusions

In this chapter, we presented a method for the calculation of the thermal conductivity of

liquids which relies on molecular dynamics simulations conducted close to equilibrium con-

ditions, in the steady state. Similar to non-equilibrium molecular dynamics, and unlike

equilibrium simulations based on GK, the method only requires the calculation of forces and

total energies and the evaluation of heat fluxes and energy densities is not necessary. The

close to equilibrium approach requires in general shorter simulation times than NEMD and

thus allows one to take better advantage of parallel computing architectures. However, the

cell size dependence found in the present work is still less favorable than that observed with

GK simulations. Hence when using empirical force fields, for which the calculation of energy

densities is straightforward and does not add any computational complexity, GK simulations

should be the method of choice for homogeneous systems, from the standpoint of efficiency.

Instead, in cases when computing energy densities and heat fluxes amount to additional, ex-

pensive calculations (as, e.g. in the case of first-principles simulations), SAEMD is expected

to be the most efficient method for solid and the method presented here the most efficient

one for liquids. We note however that, at least in the case of liquid water and ambient and

extreme conditions studied here, the cell sizes and especially simulation times required for

convergence still rule out the possibility of carrying out converged first principles simula-

tions (and the same is true for GK). The results obtained here with empirical potentials and

deepMD show an almost three-fold increase of the thermal conductivity of water when going

standard conditions to high pressure and temperature conditions (P ' 22 GPa and T' 2,000

K). Using the SAEMD and deepMD together allowed us to explore the thermal conductivity

of water at extreme conditions, where dissociation plays a key factor in the structural and

transport properties of water. Finally, we note that in the case of water, especially at ambient

conditions, proton quantum effects are likely to play a significant role in determining the value

of the thermal conductivity and that close to equilibrium simulations are expected to be more

straightforward to couple to a path integral formulation than simulations based on the Green-
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Kubo formalism. Data and workflows, with the exception of the deepMD data, are available

online at https://paperstack.uchicago.edu/paperdetails/5eb086e8e092384bb26754dc
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CHAPTER 8

SUMMARY AND CONCLUSIONS

Thermal transport concerns a variety of different disciplines and technological applications,

for example thermal management in battery and microchip and efficiency in thermoelectric

conversion devices. The accurate prediction of thermal transport coefficients is critical in

helping the design of such devices. We described two of the more popular methods, Green-

Kubo and Boltzmann Transport Equation. We also discussed at length their strengths and

limitations, both in general and especially regarding ab initio simulations. We showed the

applications of these methods in the study of thermal transport in MgO and PbTe. We car-

ried a detailed comparison of several properties related to thermal transport and highlighted

the role of each of these properties in the final value of the thermal conductivity.

Next, we presented the results of our study of the thermal conductivity of nano-porous

silicon bridge, bridging the size gap between experiments and previous simulations, and dis-

cussed the role of the size and surface details of nanostructures in the reduction of thermal

conductivity. We explored the effect of both the size of the pores and of porosity, showing

how both affect the thermal conductivity. We also briefly discussed the role of surface oxi-

dation on the thermal conductivity, and its relevance when the size of the pore is down to a

few nm.

In the second section of this thesis, we presented a new method that we developed for

the calculation of thermal conductivity in homogeneous solids and fluids. With this method,

one can efficiently compute the thermal conductivity using either classical, first principle

or neural-network Molecular Dynamics. We presented the application of this method to

the calculation of the thermal conductivity of solid crystalline and nanocrystalline MgO

and liquid water. To show the performance of our approach we computed the thermal

conductivity of MgO from first principle and the thermal conductivity of water at extreme
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temperature and pressure using a Neural Network potential trained on first principle data.
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and thermal conductivity from compressive sensing of first-principles calculations.
Phys. Rev. Lett., 113:185501, Oct 2014. doi: 10.1103/PhysRevLett.113.185501. URL
http://link.aps.org/doi/10.1103/PhysRevLett.113.185501.
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Compressive sensing as a paradigm for building physics models. Phys.
Rev. B, 87:035125, Jan 2013. doi: 10.1103/PhysRevB.87.035125. URL
http://link.aps.org/doi/10.1103/PhysRevB.87.035125.

120
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